]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/lparcfg.c
Merge tag 'sound-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[karo-tx-linux.git] / arch / powerpc / kernel / lparcfg.c
1 /*
2  * PowerPC64 LPAR Configuration Information Driver
3  *
4  * Dave Engebretsen engebret@us.ibm.com
5  *    Copyright (c) 2003 Dave Engebretsen
6  * Will Schmidt willschm@us.ibm.com
7  *    SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8  *    seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9  * Nathan Lynch nathanl@austin.ibm.com
10  *    Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18  * keyword - value pairs that specify the configuration of the partition.
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/time.h>
34 #include <asm/prom.h>
35 #include <asm/vdso_datapage.h>
36 #include <asm/vio.h>
37 #include <asm/mmu.h>
38
39 #define MODULE_VERS "1.9"
40 #define MODULE_NAME "lparcfg"
41
42 /* #define LPARCFG_DEBUG */
43
44 static struct proc_dir_entry *proc_ppc64_lparcfg;
45
46 /*
47  * Track sum of all purrs across all processors. This is used to further
48  * calculate usage values by different applications
49  */
50 static unsigned long get_purr(void)
51 {
52         unsigned long sum_purr = 0;
53         int cpu;
54
55         for_each_possible_cpu(cpu) {
56                 struct cpu_usage *cu;
57
58                 cu = &per_cpu(cpu_usage_array, cpu);
59                 sum_purr += cu->current_tb;
60         }
61         return sum_purr;
62 }
63
64 /*
65  * Methods used to fetch LPAR data when running on a pSeries platform.
66  */
67
68 struct hvcall_ppp_data {
69         u64     entitlement;
70         u64     unallocated_entitlement;
71         u16     group_num;
72         u16     pool_num;
73         u8      capped;
74         u8      weight;
75         u8      unallocated_weight;
76         u16     active_procs_in_pool;
77         u16     active_system_procs;
78         u16     phys_platform_procs;
79         u32     max_proc_cap_avail;
80         u32     entitled_proc_cap_avail;
81 };
82
83 /*
84  * H_GET_PPP hcall returns info in 4 parms.
85  *  entitled_capacity,unallocated_capacity,
86  *  aggregation, resource_capability).
87  *
88  *  R4 = Entitled Processor Capacity Percentage.
89  *  R5 = Unallocated Processor Capacity Percentage.
90  *  R6 (AABBCCDDEEFFGGHH).
91  *      XXXX - reserved (0)
92  *          XXXX - reserved (0)
93  *              XXXX - Group Number
94  *                  XXXX - Pool Number.
95  *  R7 (IIJJKKLLMMNNOOPP).
96  *      XX - reserved. (0)
97  *        XX - bit 0-6 reserved (0).   bit 7 is Capped indicator.
98  *          XX - variable processor Capacity Weight
99  *            XX - Unallocated Variable Processor Capacity Weight.
100  *              XXXX - Active processors in Physical Processor Pool.
101  *                  XXXX  - Processors active on platform.
102  *  R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
103  *      XXXX - Physical platform procs allocated to virtualization.
104  *          XXXXXX - Max procs capacity % available to the partitions pool.
105  *                XXXXXX - Entitled procs capacity % available to the
106  *                         partitions pool.
107  */
108 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
109 {
110         unsigned long rc;
111         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
112
113         rc = plpar_hcall9(H_GET_PPP, retbuf);
114
115         ppp_data->entitlement = retbuf[0];
116         ppp_data->unallocated_entitlement = retbuf[1];
117
118         ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
119         ppp_data->pool_num = retbuf[2] & 0xffff;
120
121         ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
122         ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
123         ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
124         ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
125         ppp_data->active_system_procs = retbuf[3] & 0xffff;
126
127         ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
128         ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
129         ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
130
131         return rc;
132 }
133
134 static unsigned h_pic(unsigned long *pool_idle_time,
135                       unsigned long *num_procs)
136 {
137         unsigned long rc;
138         unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
139
140         rc = plpar_hcall(H_PIC, retbuf);
141
142         *pool_idle_time = retbuf[0];
143         *num_procs = retbuf[1];
144
145         return rc;
146 }
147
148 /*
149  * parse_ppp_data
150  * Parse out the data returned from h_get_ppp and h_pic
151  */
152 static void parse_ppp_data(struct seq_file *m)
153 {
154         struct hvcall_ppp_data ppp_data;
155         struct device_node *root;
156         const int *perf_level;
157         int rc;
158
159         rc = h_get_ppp(&ppp_data);
160         if (rc)
161                 return;
162
163         seq_printf(m, "partition_entitled_capacity=%lld\n",
164                    ppp_data.entitlement);
165         seq_printf(m, "group=%d\n", ppp_data.group_num);
166         seq_printf(m, "system_active_processors=%d\n",
167                    ppp_data.active_system_procs);
168
169         /* pool related entries are appropriate for shared configs */
170         if (lppaca_of(0).shared_proc) {
171                 unsigned long pool_idle_time, pool_procs;
172
173                 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
174
175                 /* report pool_capacity in percentage */
176                 seq_printf(m, "pool_capacity=%d\n",
177                            ppp_data.active_procs_in_pool * 100);
178
179                 h_pic(&pool_idle_time, &pool_procs);
180                 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
181                 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
182         }
183
184         seq_printf(m, "unallocated_capacity_weight=%d\n",
185                    ppp_data.unallocated_weight);
186         seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
187         seq_printf(m, "capped=%d\n", ppp_data.capped);
188         seq_printf(m, "unallocated_capacity=%lld\n",
189                    ppp_data.unallocated_entitlement);
190
191         /* The last bits of information returned from h_get_ppp are only
192          * valid if the ibm,partition-performance-parameters-level
193          * property is >= 1.
194          */
195         root = of_find_node_by_path("/");
196         if (root) {
197                 perf_level = of_get_property(root,
198                                 "ibm,partition-performance-parameters-level",
199                                              NULL);
200                 if (perf_level && (*perf_level >= 1)) {
201                         seq_printf(m,
202                             "physical_procs_allocated_to_virtualization=%d\n",
203                                    ppp_data.phys_platform_procs);
204                         seq_printf(m, "max_proc_capacity_available=%d\n",
205                                    ppp_data.max_proc_cap_avail);
206                         seq_printf(m, "entitled_proc_capacity_available=%d\n",
207                                    ppp_data.entitled_proc_cap_avail);
208                 }
209
210                 of_node_put(root);
211         }
212 }
213
214 /**
215  * parse_mpp_data
216  * Parse out data returned from h_get_mpp
217  */
218 static void parse_mpp_data(struct seq_file *m)
219 {
220         struct hvcall_mpp_data mpp_data;
221         int rc;
222
223         rc = h_get_mpp(&mpp_data);
224         if (rc)
225                 return;
226
227         seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
228
229         if (mpp_data.mapped_mem != -1)
230                 seq_printf(m, "mapped_entitled_memory=%ld\n",
231                            mpp_data.mapped_mem);
232
233         seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
234         seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
235
236         seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
237         seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
238                    mpp_data.unallocated_mem_weight);
239         seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
240                    mpp_data.unallocated_entitlement);
241
242         if (mpp_data.pool_size != -1)
243                 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
244                            mpp_data.pool_size);
245
246         seq_printf(m, "entitled_memory_loan_request=%ld\n",
247                    mpp_data.loan_request);
248
249         seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
250 }
251
252 /**
253  * parse_mpp_x_data
254  * Parse out data returned from h_get_mpp_x
255  */
256 static void parse_mpp_x_data(struct seq_file *m)
257 {
258         struct hvcall_mpp_x_data mpp_x_data;
259
260         if (!firmware_has_feature(FW_FEATURE_XCMO))
261                 return;
262         if (h_get_mpp_x(&mpp_x_data))
263                 return;
264
265         seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
266
267         if (mpp_x_data.pool_coalesced_bytes)
268                 seq_printf(m, "pool_coalesced_bytes=%ld\n",
269                            mpp_x_data.pool_coalesced_bytes);
270         if (mpp_x_data.pool_purr_cycles)
271                 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
272         if (mpp_x_data.pool_spurr_cycles)
273                 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
274 }
275
276 #define SPLPAR_CHARACTERISTICS_TOKEN 20
277 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
278
279 /*
280  * parse_system_parameter_string()
281  * Retrieve the potential_processors, max_entitled_capacity and friends
282  * through the get-system-parameter rtas call.  Replace keyword strings as
283  * necessary.
284  */
285 static void parse_system_parameter_string(struct seq_file *m)
286 {
287         int call_status;
288
289         unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
290         if (!local_buffer) {
291                 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
292                        __FILE__, __func__, __LINE__);
293                 return;
294         }
295
296         spin_lock(&rtas_data_buf_lock);
297         memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
298         call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
299                                 NULL,
300                                 SPLPAR_CHARACTERISTICS_TOKEN,
301                                 __pa(rtas_data_buf),
302                                 RTAS_DATA_BUF_SIZE);
303         memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
304         spin_unlock(&rtas_data_buf_lock);
305
306         if (call_status != 0) {
307                 printk(KERN_INFO
308                        "%s %s Error calling get-system-parameter (0x%x)\n",
309                        __FILE__, __func__, call_status);
310         } else {
311                 int splpar_strlen;
312                 int idx, w_idx;
313                 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
314                 if (!workbuffer) {
315                         printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
316                                __FILE__, __func__, __LINE__);
317                         kfree(local_buffer);
318                         return;
319                 }
320 #ifdef LPARCFG_DEBUG
321                 printk(KERN_INFO "success calling get-system-parameter\n");
322 #endif
323                 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
324                 local_buffer += 2;      /* step over strlen value */
325
326                 w_idx = 0;
327                 idx = 0;
328                 while ((*local_buffer) && (idx < splpar_strlen)) {
329                         workbuffer[w_idx++] = local_buffer[idx++];
330                         if ((local_buffer[idx] == ',')
331                             || (local_buffer[idx] == '\0')) {
332                                 workbuffer[w_idx] = '\0';
333                                 if (w_idx) {
334                                         /* avoid the empty string */
335                                         seq_printf(m, "%s\n", workbuffer);
336                                 }
337                                 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
338                                 idx++;  /* skip the comma */
339                                 w_idx = 0;
340                         } else if (local_buffer[idx] == '=') {
341                                 /* code here to replace workbuffer contents
342                                    with different keyword strings */
343                                 if (0 == strcmp(workbuffer, "MaxEntCap")) {
344                                         strcpy(workbuffer,
345                                                "partition_max_entitled_capacity");
346                                         w_idx = strlen(workbuffer);
347                                 }
348                                 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
349                                         strcpy(workbuffer,
350                                                "system_potential_processors");
351                                         w_idx = strlen(workbuffer);
352                                 }
353                         }
354                 }
355                 kfree(workbuffer);
356                 local_buffer -= 2;      /* back up over strlen value */
357         }
358         kfree(local_buffer);
359 }
360
361 /* Return the number of processors in the system.
362  * This function reads through the device tree and counts
363  * the virtual processors, this does not include threads.
364  */
365 static int lparcfg_count_active_processors(void)
366 {
367         struct device_node *cpus_dn = NULL;
368         int count = 0;
369
370         while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
371 #ifdef LPARCFG_DEBUG
372                 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
373 #endif
374                 count++;
375         }
376         return count;
377 }
378
379 static void pseries_cmo_data(struct seq_file *m)
380 {
381         int cpu;
382         unsigned long cmo_faults = 0;
383         unsigned long cmo_fault_time = 0;
384
385         seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
386
387         if (!firmware_has_feature(FW_FEATURE_CMO))
388                 return;
389
390         for_each_possible_cpu(cpu) {
391                 cmo_faults += lppaca_of(cpu).cmo_faults;
392                 cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
393         }
394
395         seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
396         seq_printf(m, "cmo_fault_time_usec=%lu\n",
397                    cmo_fault_time / tb_ticks_per_usec);
398         seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
399         seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
400         seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
401 }
402
403 static void splpar_dispatch_data(struct seq_file *m)
404 {
405         int cpu;
406         unsigned long dispatches = 0;
407         unsigned long dispatch_dispersions = 0;
408
409         for_each_possible_cpu(cpu) {
410                 dispatches += lppaca_of(cpu).yield_count;
411                 dispatch_dispersions += lppaca_of(cpu).dispersion_count;
412         }
413
414         seq_printf(m, "dispatches=%lu\n", dispatches);
415         seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
416 }
417
418 static void parse_em_data(struct seq_file *m)
419 {
420         unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
421
422         if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
423                 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
424 }
425
426 static int pseries_lparcfg_data(struct seq_file *m, void *v)
427 {
428         int partition_potential_processors;
429         int partition_active_processors;
430         struct device_node *rtas_node;
431         const int *lrdrp = NULL;
432
433         rtas_node = of_find_node_by_path("/rtas");
434         if (rtas_node)
435                 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
436
437         if (lrdrp == NULL) {
438                 partition_potential_processors = vdso_data->processorCount;
439         } else {
440                 partition_potential_processors = *(lrdrp + 4);
441         }
442         of_node_put(rtas_node);
443
444         partition_active_processors = lparcfg_count_active_processors();
445
446         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
447                 /* this call handles the ibm,get-system-parameter contents */
448                 parse_system_parameter_string(m);
449                 parse_ppp_data(m);
450                 parse_mpp_data(m);
451                 parse_mpp_x_data(m);
452                 pseries_cmo_data(m);
453                 splpar_dispatch_data(m);
454
455                 seq_printf(m, "purr=%ld\n", get_purr());
456         } else {                /* non SPLPAR case */
457
458                 seq_printf(m, "system_active_processors=%d\n",
459                            partition_potential_processors);
460
461                 seq_printf(m, "system_potential_processors=%d\n",
462                            partition_potential_processors);
463
464                 seq_printf(m, "partition_max_entitled_capacity=%d\n",
465                            partition_potential_processors * 100);
466
467                 seq_printf(m, "partition_entitled_capacity=%d\n",
468                            partition_active_processors * 100);
469         }
470
471         seq_printf(m, "partition_active_processors=%d\n",
472                    partition_active_processors);
473
474         seq_printf(m, "partition_potential_processors=%d\n",
475                    partition_potential_processors);
476
477         seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
478
479         seq_printf(m, "slb_size=%d\n", mmu_slb_size);
480
481         parse_em_data(m);
482
483         return 0;
484 }
485
486 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
487 {
488         struct hvcall_ppp_data ppp_data;
489         u8 new_weight;
490         u64 new_entitled;
491         ssize_t retval;
492
493         /* Get our current parameters */
494         retval = h_get_ppp(&ppp_data);
495         if (retval)
496                 return retval;
497
498         if (entitlement) {
499                 new_weight = ppp_data.weight;
500                 new_entitled = *entitlement;
501         } else if (weight) {
502                 new_weight = *weight;
503                 new_entitled = ppp_data.entitlement;
504         } else
505                 return -EINVAL;
506
507         pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
508                  __func__, ppp_data.entitlement, ppp_data.weight);
509
510         pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
511                  __func__, new_entitled, new_weight);
512
513         retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
514         return retval;
515 }
516
517 /**
518  * update_mpp
519  *
520  * Update the memory entitlement and weight for the partition.  Caller must
521  * specify either a new entitlement or weight, not both, to be updated
522  * since the h_set_mpp call takes both entitlement and weight as parameters.
523  */
524 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
525 {
526         struct hvcall_mpp_data mpp_data;
527         u64 new_entitled;
528         u8 new_weight;
529         ssize_t rc;
530
531         if (entitlement) {
532                 /* Check with vio to ensure the new memory entitlement
533                  * can be handled.
534                  */
535                 rc = vio_cmo_entitlement_update(*entitlement);
536                 if (rc)
537                         return rc;
538         }
539
540         rc = h_get_mpp(&mpp_data);
541         if (rc)
542                 return rc;
543
544         if (entitlement) {
545                 new_weight = mpp_data.mem_weight;
546                 new_entitled = *entitlement;
547         } else if (weight) {
548                 new_weight = *weight;
549                 new_entitled = mpp_data.entitled_mem;
550         } else
551                 return -EINVAL;
552
553         pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
554                  __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
555
556         pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
557                  __func__, new_entitled, new_weight);
558
559         rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
560         return rc;
561 }
562
563 /*
564  * Interface for changing system parameters (variable capacity weight
565  * and entitled capacity).  Format of input is "param_name=value";
566  * anything after value is ignored.  Valid parameters at this time are
567  * "partition_entitled_capacity" and "capacity_weight".  We use
568  * H_SET_PPP to alter parameters.
569  *
570  * This function should be invoked only on systems with
571  * FW_FEATURE_SPLPAR.
572  */
573 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
574                              size_t count, loff_t * off)
575 {
576         int kbuf_sz = 64;
577         char kbuf[kbuf_sz];
578         char *tmp;
579         u64 new_entitled, *new_entitled_ptr = &new_entitled;
580         u8 new_weight, *new_weight_ptr = &new_weight;
581         ssize_t retval;
582
583         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
584                 return -EINVAL;
585
586         if (count > kbuf_sz)
587                 return -EINVAL;
588
589         if (copy_from_user(kbuf, buf, count))
590                 return -EFAULT;
591
592         kbuf[count - 1] = '\0';
593         tmp = strchr(kbuf, '=');
594         if (!tmp)
595                 return -EINVAL;
596
597         *tmp++ = '\0';
598
599         if (!strcmp(kbuf, "partition_entitled_capacity")) {
600                 char *endp;
601                 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
602                 if (endp == tmp)
603                         return -EINVAL;
604
605                 retval = update_ppp(new_entitled_ptr, NULL);
606         } else if (!strcmp(kbuf, "capacity_weight")) {
607                 char *endp;
608                 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
609                 if (endp == tmp)
610                         return -EINVAL;
611
612                 retval = update_ppp(NULL, new_weight_ptr);
613         } else if (!strcmp(kbuf, "entitled_memory")) {
614                 char *endp;
615                 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
616                 if (endp == tmp)
617                         return -EINVAL;
618
619                 retval = update_mpp(new_entitled_ptr, NULL);
620         } else if (!strcmp(kbuf, "entitled_memory_weight")) {
621                 char *endp;
622                 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
623                 if (endp == tmp)
624                         return -EINVAL;
625
626                 retval = update_mpp(NULL, new_weight_ptr);
627         } else
628                 return -EINVAL;
629
630         if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
631                 retval = count;
632         } else if (retval == H_BUSY) {
633                 retval = -EBUSY;
634         } else if (retval == H_HARDWARE) {
635                 retval = -EIO;
636         } else if (retval == H_PARAMETER) {
637                 retval = -EINVAL;
638         }
639
640         return retval;
641 }
642
643 static int lparcfg_data(struct seq_file *m, void *v)
644 {
645         struct device_node *rootdn;
646         const char *model = "";
647         const char *system_id = "";
648         const char *tmp;
649         const unsigned int *lp_index_ptr;
650         unsigned int lp_index = 0;
651
652         seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
653
654         rootdn = of_find_node_by_path("/");
655         if (rootdn) {
656                 tmp = of_get_property(rootdn, "model", NULL);
657                 if (tmp)
658                         model = tmp;
659                 tmp = of_get_property(rootdn, "system-id", NULL);
660                 if (tmp)
661                         system_id = tmp;
662                 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
663                                         NULL);
664                 if (lp_index_ptr)
665                         lp_index = *lp_index_ptr;
666                 of_node_put(rootdn);
667         }
668         seq_printf(m, "serial_number=%s\n", system_id);
669         seq_printf(m, "system_type=%s\n", model);
670         seq_printf(m, "partition_id=%d\n", (int)lp_index);
671
672         return pseries_lparcfg_data(m, v);
673 }
674
675 static int lparcfg_open(struct inode *inode, struct file *file)
676 {
677         return single_open(file, lparcfg_data, NULL);
678 }
679
680 static const struct file_operations lparcfg_fops = {
681         .owner          = THIS_MODULE,
682         .read           = seq_read,
683         .write          = lparcfg_write,
684         .open           = lparcfg_open,
685         .release        = single_release,
686         .llseek         = seq_lseek,
687 };
688
689 static int __init lparcfg_init(void)
690 {
691         struct proc_dir_entry *ent;
692         umode_t mode = S_IRUSR | S_IRGRP | S_IROTH;
693
694         /* Allow writing if we have FW_FEATURE_SPLPAR */
695         if (firmware_has_feature(FW_FEATURE_SPLPAR))
696                 mode |= S_IWUSR;
697
698         ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
699         if (!ent) {
700                 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
701                 return -EIO;
702         }
703
704         proc_ppc64_lparcfg = ent;
705         return 0;
706 }
707
708 static void __exit lparcfg_cleanup(void)
709 {
710         if (proc_ppc64_lparcfg)
711                 remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
712 }
713
714 module_init(lparcfg_init);
715 module_exit(lparcfg_cleanup);
716 MODULE_DESCRIPTION("Interface for LPAR configuration data");
717 MODULE_AUTHOR("Dave Engebretsen");
718 MODULE_LICENSE("GPL");