2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/syscalls.h>
52 #include <asm/firmware.h>
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
57 extern unsigned long _get_SP(void);
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
67 * Make sure the floating-point register state in the
68 * the thread_struct is up to date for task tsk.
70 void flush_fp_to_thread(struct task_struct *tsk)
72 if (tsk->thread.regs) {
74 * We need to disable preemption here because if we didn't,
75 * another process could get scheduled after the regs->msr
76 * test but before we have finished saving the FP registers
77 * to the thread_struct. That process could take over the
78 * FPU, and then when we get scheduled again we would store
79 * bogus values for the remaining FP registers.
82 if (tsk->thread.regs->msr & MSR_FP) {
85 * This should only ever be called for current or
86 * for a stopped child process. Since we save away
87 * the FP register state on context switch on SMP,
88 * there is something wrong if a stopped child appears
89 * to still have its FP state in the CPU registers.
91 BUG_ON(tsk != current);
99 void enable_kernel_fp(void)
101 WARN_ON(preemptible());
104 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107 giveup_fpu(NULL); /* just enables FP for kernel */
109 giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
112 EXPORT_SYMBOL(enable_kernel_fp);
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
117 WARN_ON(preemptible());
120 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121 giveup_altivec(current);
123 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
125 giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
128 EXPORT_SYMBOL(enable_kernel_altivec);
131 * Make sure the VMX/Altivec register state in the
132 * the thread_struct is up to date for task tsk.
134 void flush_altivec_to_thread(struct task_struct *tsk)
136 if (tsk->thread.regs) {
138 if (tsk->thread.regs->msr & MSR_VEC) {
140 BUG_ON(tsk != current);
147 #endif /* CONFIG_ALTIVEC */
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
154 WARN_ON(preemptible());
157 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
160 giveup_vsx(NULL); /* just enable vsx for kernel - force */
162 giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
165 EXPORT_SYMBOL(enable_kernel_vsx);
168 void giveup_vsx(struct task_struct *tsk)
175 void flush_vsx_to_thread(struct task_struct *tsk)
177 if (tsk->thread.regs) {
179 if (tsk->thread.regs->msr & MSR_VSX) {
181 BUG_ON(tsk != current);
188 #endif /* CONFIG_VSX */
192 void enable_kernel_spe(void)
194 WARN_ON(preemptible());
197 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
200 giveup_spe(NULL); /* just enable SPE for kernel - force */
202 giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
205 EXPORT_SYMBOL(enable_kernel_spe);
207 void flush_spe_to_thread(struct task_struct *tsk)
209 if (tsk->thread.regs) {
211 if (tsk->thread.regs->msr & MSR_SPE) {
213 BUG_ON(tsk != current);
220 #endif /* CONFIG_SPE */
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
237 if (last_task_used_vsx == current)
238 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
241 if (last_task_used_spe == current)
242 last_task_used_spe = NULL;
246 #endif /* CONFIG_SMP */
248 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
249 void do_send_trap(struct pt_regs *regs, unsigned long address,
250 unsigned long error_code, int signal_code, int breakpt)
254 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
255 11, SIGSEGV) == NOTIFY_STOP)
258 /* Deliver the signal to userspace */
259 info.si_signo = SIGTRAP;
260 info.si_errno = breakpt; /* breakpoint or watchpoint id */
261 info.si_code = signal_code;
262 info.si_addr = (void __user *)address;
263 force_sig_info(SIGTRAP, &info, current);
265 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
266 void do_dabr(struct pt_regs *regs, unsigned long address,
267 unsigned long error_code)
271 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
272 11, SIGSEGV) == NOTIFY_STOP)
275 if (debugger_dabr_match(regs))
281 /* Deliver the signal to userspace */
282 info.si_signo = SIGTRAP;
284 info.si_code = TRAP_HWBKPT;
285 info.si_addr = (void __user *)address;
286 force_sig_info(SIGTRAP, &info, current);
288 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
290 static DEFINE_PER_CPU(unsigned long, current_dabr);
292 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
294 * Set the debug registers back to their default "safe" values.
296 static void set_debug_reg_defaults(struct thread_struct *thread)
298 thread->iac1 = thread->iac2 = 0;
299 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
300 thread->iac3 = thread->iac4 = 0;
302 thread->dac1 = thread->dac2 = 0;
303 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
304 thread->dvc1 = thread->dvc2 = 0;
309 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
311 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
312 DBCR1_IAC3US | DBCR1_IAC4US;
314 * Force Data Address Compare User/Supervisor bits to be User-only
315 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
317 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
323 static void prime_debug_regs(struct thread_struct *thread)
325 mtspr(SPRN_IAC1, thread->iac1);
326 mtspr(SPRN_IAC2, thread->iac2);
327 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
328 mtspr(SPRN_IAC3, thread->iac3);
329 mtspr(SPRN_IAC4, thread->iac4);
331 mtspr(SPRN_DAC1, thread->dac1);
332 mtspr(SPRN_DAC2, thread->dac2);
333 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
334 mtspr(SPRN_DVC1, thread->dvc1);
335 mtspr(SPRN_DVC2, thread->dvc2);
337 mtspr(SPRN_DBCR0, thread->dbcr0);
338 mtspr(SPRN_DBCR1, thread->dbcr1);
340 mtspr(SPRN_DBCR2, thread->dbcr2);
344 * Unless neither the old or new thread are making use of the
345 * debug registers, set the debug registers from the values
346 * stored in the new thread.
348 static void switch_booke_debug_regs(struct thread_struct *new_thread)
350 if ((current->thread.dbcr0 & DBCR0_IDM)
351 || (new_thread->dbcr0 & DBCR0_IDM))
352 prime_debug_regs(new_thread);
354 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
362 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
364 int set_dabr(unsigned long dabr)
366 __get_cpu_var(current_dabr) = dabr;
369 return ppc_md.set_dabr(dabr);
371 /* XXX should we have a CPU_FTR_HAS_DABR ? */
372 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
373 mtspr(SPRN_DAC1, dabr);
374 #ifdef CONFIG_PPC_47x
377 #elif defined(CONFIG_PPC_BOOK3S)
378 mtspr(SPRN_DABR, dabr);
386 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
389 struct task_struct *__switch_to(struct task_struct *prev,
390 struct task_struct *new)
392 struct thread_struct *new_thread, *old_thread;
394 struct task_struct *last;
397 /* avoid complexity of lazy save/restore of fpu
398 * by just saving it every time we switch out if
399 * this task used the fpu during the last quantum.
401 * If it tries to use the fpu again, it'll trap and
402 * reload its fp regs. So we don't have to do a restore
403 * every switch, just a save.
406 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
408 #ifdef CONFIG_ALTIVEC
410 * If the previous thread used altivec in the last quantum
411 * (thus changing altivec regs) then save them.
412 * We used to check the VRSAVE register but not all apps
413 * set it, so we don't rely on it now (and in fact we need
414 * to save & restore VSCR even if VRSAVE == 0). -- paulus
416 * On SMP we always save/restore altivec regs just to avoid the
417 * complexity of changing processors.
420 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
421 giveup_altivec(prev);
422 #endif /* CONFIG_ALTIVEC */
424 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
425 /* VMX and FPU registers are already save here */
427 #endif /* CONFIG_VSX */
430 * If the previous thread used spe in the last quantum
431 * (thus changing spe regs) then save them.
433 * On SMP we always save/restore spe regs just to avoid the
434 * complexity of changing processors.
436 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
438 #endif /* CONFIG_SPE */
440 #else /* CONFIG_SMP */
441 #ifdef CONFIG_ALTIVEC
442 /* Avoid the trap. On smp this this never happens since
443 * we don't set last_task_used_altivec -- Cort
445 if (new->thread.regs && last_task_used_altivec == new)
446 new->thread.regs->msr |= MSR_VEC;
447 #endif /* CONFIG_ALTIVEC */
449 if (new->thread.regs && last_task_used_vsx == new)
450 new->thread.regs->msr |= MSR_VSX;
451 #endif /* CONFIG_VSX */
453 /* Avoid the trap. On smp this this never happens since
454 * we don't set last_task_used_spe
456 if (new->thread.regs && last_task_used_spe == new)
457 new->thread.regs->msr |= MSR_SPE;
458 #endif /* CONFIG_SPE */
460 #endif /* CONFIG_SMP */
462 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
463 switch_booke_debug_regs(&new->thread);
465 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
466 set_dabr(new->thread.dabr);
470 new_thread = &new->thread;
471 old_thread = ¤t->thread;
475 * Collect processor utilization data per process
477 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
478 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
479 long unsigned start_tb, current_tb;
480 start_tb = old_thread->start_tb;
481 cu->current_tb = current_tb = mfspr(SPRN_PURR);
482 old_thread->accum_tb += (current_tb - start_tb);
483 new_thread->start_tb = current_tb;
487 local_irq_save(flags);
489 account_system_vtime(current);
490 account_process_vtime(current);
491 calculate_steal_time();
494 * We can't take a PMU exception inside _switch() since there is a
495 * window where the kernel stack SLB and the kernel stack are out
496 * of sync. Hard disable here.
499 last = _switch(old_thread, new_thread);
501 local_irq_restore(flags);
506 static int instructions_to_print = 16;
508 static void show_instructions(struct pt_regs *regs)
511 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
514 printk("Instruction dump:");
516 for (i = 0; i < instructions_to_print; i++) {
522 #if !defined(CONFIG_BOOKE)
523 /* If executing with the IMMU off, adjust pc rather
524 * than print XXXXXXXX.
526 if (!(regs->msr & MSR_IR))
527 pc = (unsigned long)phys_to_virt(pc);
530 /* We use __get_user here *only* to avoid an OOPS on a
531 * bad address because the pc *should* only be a
534 if (!__kernel_text_address(pc) ||
535 __get_user(instr, (unsigned int __user *)pc)) {
539 printk("<%08x> ", instr);
541 printk("%08x ", instr);
550 static struct regbit {
567 static void printbits(unsigned long val, struct regbit *bits)
569 const char *sep = "";
572 for (; bits->bit; ++bits)
573 if (val & bits->bit) {
574 printk("%s%s", sep, bits->name);
582 #define REGS_PER_LINE 4
583 #define LAST_VOLATILE 13
586 #define REGS_PER_LINE 8
587 #define LAST_VOLATILE 12
590 void show_regs(struct pt_regs * regs)
594 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
595 regs->nip, regs->link, regs->ctr);
596 printk("REGS: %p TRAP: %04lx %s (%s)\n",
597 regs, regs->trap, print_tainted(), init_utsname()->release);
598 printk("MSR: "REG" ", regs->msr);
599 printbits(regs->msr, msr_bits);
600 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
602 if (trap == 0x300 || trap == 0x600)
603 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
604 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
606 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
608 printk("TASK = %p[%d] '%s' THREAD: %p",
609 current, task_pid_nr(current), current->comm, task_thread_info(current));
612 printk(" CPU: %d", raw_smp_processor_id());
613 #endif /* CONFIG_SMP */
615 for (i = 0; i < 32; i++) {
616 if ((i % REGS_PER_LINE) == 0)
617 printk("\nGPR%02d: ", i);
618 printk(REG " ", regs->gpr[i]);
619 if (i == LAST_VOLATILE && !FULL_REGS(regs))
623 #ifdef CONFIG_KALLSYMS
625 * Lookup NIP late so we have the best change of getting the
626 * above info out without failing
628 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
629 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
631 show_stack(current, (unsigned long *) regs->gpr[1]);
632 if (!user_mode(regs))
633 show_instructions(regs);
636 void exit_thread(void)
638 discard_lazy_cpu_state();
641 void flush_thread(void)
643 discard_lazy_cpu_state();
645 set_debug_reg_defaults(¤t->thread);
649 release_thread(struct task_struct *t)
654 * This gets called before we allocate a new thread and copy
655 * the current task into it.
657 void prepare_to_copy(struct task_struct *tsk)
659 flush_fp_to_thread(current);
660 flush_altivec_to_thread(current);
661 flush_vsx_to_thread(current);
662 flush_spe_to_thread(current);
668 int copy_thread(unsigned long clone_flags, unsigned long usp,
669 unsigned long unused, struct task_struct *p,
670 struct pt_regs *regs)
672 struct pt_regs *childregs, *kregs;
673 extern void ret_from_fork(void);
674 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
676 CHECK_FULL_REGS(regs);
678 sp -= sizeof(struct pt_regs);
679 childregs = (struct pt_regs *) sp;
681 if ((childregs->msr & MSR_PR) == 0) {
682 /* for kernel thread, set `current' and stackptr in new task */
683 childregs->gpr[1] = sp + sizeof(struct pt_regs);
685 childregs->gpr[2] = (unsigned long) p;
687 clear_tsk_thread_flag(p, TIF_32BIT);
689 p->thread.regs = NULL; /* no user register state */
691 childregs->gpr[1] = usp;
692 p->thread.regs = childregs;
693 if (clone_flags & CLONE_SETTLS) {
695 if (!test_thread_flag(TIF_32BIT))
696 childregs->gpr[13] = childregs->gpr[6];
699 childregs->gpr[2] = childregs->gpr[6];
702 childregs->gpr[3] = 0; /* Result from fork() */
703 sp -= STACK_FRAME_OVERHEAD;
706 * The way this works is that at some point in the future
707 * some task will call _switch to switch to the new task.
708 * That will pop off the stack frame created below and start
709 * the new task running at ret_from_fork. The new task will
710 * do some house keeping and then return from the fork or clone
711 * system call, using the stack frame created above.
713 sp -= sizeof(struct pt_regs);
714 kregs = (struct pt_regs *) sp;
715 sp -= STACK_FRAME_OVERHEAD;
717 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
718 _ALIGN_UP(sizeof(struct thread_info), 16);
720 #ifdef CONFIG_PPC_STD_MMU_64
721 if (cpu_has_feature(CPU_FTR_SLB)) {
722 unsigned long sp_vsid;
723 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
725 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
726 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
727 << SLB_VSID_SHIFT_1T;
729 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
731 sp_vsid |= SLB_VSID_KERNEL | llp;
732 p->thread.ksp_vsid = sp_vsid;
734 #endif /* CONFIG_PPC_STD_MMU_64 */
737 * The PPC64 ABI makes use of a TOC to contain function
738 * pointers. The function (ret_from_except) is actually a pointer
739 * to the TOC entry. The first entry is a pointer to the actual
743 kregs->nip = *((unsigned long *)ret_from_fork);
745 kregs->nip = (unsigned long)ret_from_fork;
752 * Set up a thread for executing a new program
754 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
757 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
763 * If we exec out of a kernel thread then thread.regs will not be
766 if (!current->thread.regs) {
767 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
768 current->thread.regs = regs - 1;
771 memset(regs->gpr, 0, sizeof(regs->gpr));
779 * We have just cleared all the nonvolatile GPRs, so make
780 * FULL_REGS(regs) return true. This is necessary to allow
781 * ptrace to examine the thread immediately after exec.
788 regs->msr = MSR_USER;
790 if (!test_thread_flag(TIF_32BIT)) {
791 unsigned long entry, toc;
793 /* start is a relocated pointer to the function descriptor for
794 * the elf _start routine. The first entry in the function
795 * descriptor is the entry address of _start and the second
796 * entry is the TOC value we need to use.
798 __get_user(entry, (unsigned long __user *)start);
799 __get_user(toc, (unsigned long __user *)start+1);
801 /* Check whether the e_entry function descriptor entries
802 * need to be relocated before we can use them.
804 if (load_addr != 0) {
810 regs->msr = MSR_USER64;
814 regs->msr = MSR_USER32;
818 discard_lazy_cpu_state();
820 current->thread.used_vsr = 0;
822 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
823 current->thread.fpscr.val = 0;
824 #ifdef CONFIG_ALTIVEC
825 memset(current->thread.vr, 0, sizeof(current->thread.vr));
826 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
827 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
828 current->thread.vrsave = 0;
829 current->thread.used_vr = 0;
830 #endif /* CONFIG_ALTIVEC */
832 memset(current->thread.evr, 0, sizeof(current->thread.evr));
833 current->thread.acc = 0;
834 current->thread.spefscr = 0;
835 current->thread.used_spe = 0;
836 #endif /* CONFIG_SPE */
839 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
840 | PR_FP_EXC_RES | PR_FP_EXC_INV)
842 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
844 struct pt_regs *regs = tsk->thread.regs;
846 /* This is a bit hairy. If we are an SPE enabled processor
847 * (have embedded fp) we store the IEEE exception enable flags in
848 * fpexc_mode. fpexc_mode is also used for setting FP exception
849 * mode (asyn, precise, disabled) for 'Classic' FP. */
850 if (val & PR_FP_EXC_SW_ENABLE) {
852 if (cpu_has_feature(CPU_FTR_SPE)) {
853 tsk->thread.fpexc_mode = val &
854 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
864 /* on a CONFIG_SPE this does not hurt us. The bits that
865 * __pack_fe01 use do not overlap with bits used for
866 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
867 * on CONFIG_SPE implementations are reserved so writing to
868 * them does not change anything */
869 if (val > PR_FP_EXC_PRECISE)
871 tsk->thread.fpexc_mode = __pack_fe01(val);
872 if (regs != NULL && (regs->msr & MSR_FP) != 0)
873 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
874 | tsk->thread.fpexc_mode;
878 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
882 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
884 if (cpu_has_feature(CPU_FTR_SPE))
885 val = tsk->thread.fpexc_mode;
892 val = __unpack_fe01(tsk->thread.fpexc_mode);
893 return put_user(val, (unsigned int __user *) adr);
896 int set_endian(struct task_struct *tsk, unsigned int val)
898 struct pt_regs *regs = tsk->thread.regs;
900 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
901 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
907 if (val == PR_ENDIAN_BIG)
908 regs->msr &= ~MSR_LE;
909 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
917 int get_endian(struct task_struct *tsk, unsigned long adr)
919 struct pt_regs *regs = tsk->thread.regs;
922 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
923 !cpu_has_feature(CPU_FTR_REAL_LE))
929 if (regs->msr & MSR_LE) {
930 if (cpu_has_feature(CPU_FTR_REAL_LE))
931 val = PR_ENDIAN_LITTLE;
933 val = PR_ENDIAN_PPC_LITTLE;
937 return put_user(val, (unsigned int __user *)adr);
940 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
942 tsk->thread.align_ctl = val;
946 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
948 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
951 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
953 int sys_clone(unsigned long clone_flags, unsigned long usp,
954 int __user *parent_tidp, void __user *child_threadptr,
955 int __user *child_tidp, int p6,
956 struct pt_regs *regs)
958 CHECK_FULL_REGS(regs);
960 usp = regs->gpr[1]; /* stack pointer for child */
962 if (test_thread_flag(TIF_32BIT)) {
963 parent_tidp = TRUNC_PTR(parent_tidp);
964 child_tidp = TRUNC_PTR(child_tidp);
967 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
970 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
971 unsigned long p4, unsigned long p5, unsigned long p6,
972 struct pt_regs *regs)
974 CHECK_FULL_REGS(regs);
975 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
978 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
979 unsigned long p4, unsigned long p5, unsigned long p6,
980 struct pt_regs *regs)
982 CHECK_FULL_REGS(regs);
983 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
984 regs, 0, NULL, NULL);
987 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
988 unsigned long a3, unsigned long a4, unsigned long a5,
989 struct pt_regs *regs)
994 filename = getname((char __user *) a0);
995 error = PTR_ERR(filename);
996 if (IS_ERR(filename))
998 flush_fp_to_thread(current);
999 flush_altivec_to_thread(current);
1000 flush_spe_to_thread(current);
1001 error = do_execve(filename, (char __user * __user *) a1,
1002 (char __user * __user *) a2, regs);
1008 #ifdef CONFIG_IRQSTACKS
1009 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1010 unsigned long nbytes)
1012 unsigned long stack_page;
1013 unsigned long cpu = task_cpu(p);
1016 * Avoid crashing if the stack has overflowed and corrupted
1017 * task_cpu(p), which is in the thread_info struct.
1019 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1020 stack_page = (unsigned long) hardirq_ctx[cpu];
1021 if (sp >= stack_page + sizeof(struct thread_struct)
1022 && sp <= stack_page + THREAD_SIZE - nbytes)
1025 stack_page = (unsigned long) softirq_ctx[cpu];
1026 if (sp >= stack_page + sizeof(struct thread_struct)
1027 && sp <= stack_page + THREAD_SIZE - nbytes)
1034 #define valid_irq_stack(sp, p, nb) 0
1035 #endif /* CONFIG_IRQSTACKS */
1037 int validate_sp(unsigned long sp, struct task_struct *p,
1038 unsigned long nbytes)
1040 unsigned long stack_page = (unsigned long)task_stack_page(p);
1042 if (sp >= stack_page + sizeof(struct thread_struct)
1043 && sp <= stack_page + THREAD_SIZE - nbytes)
1046 return valid_irq_stack(sp, p, nbytes);
1049 EXPORT_SYMBOL(validate_sp);
1051 unsigned long get_wchan(struct task_struct *p)
1053 unsigned long ip, sp;
1056 if (!p || p == current || p->state == TASK_RUNNING)
1060 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1064 sp = *(unsigned long *)sp;
1065 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1068 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1069 if (!in_sched_functions(ip))
1072 } while (count++ < 16);
1076 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1078 void show_stack(struct task_struct *tsk, unsigned long *stack)
1080 unsigned long sp, ip, lr, newsp;
1083 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1084 int curr_frame = current->curr_ret_stack;
1085 extern void return_to_handler(void);
1086 unsigned long rth = (unsigned long)return_to_handler;
1087 unsigned long mrth = -1;
1089 extern void mod_return_to_handler(void);
1090 rth = *(unsigned long *)rth;
1091 mrth = (unsigned long)mod_return_to_handler;
1092 mrth = *(unsigned long *)mrth;
1096 sp = (unsigned long) stack;
1101 asm("mr %0,1" : "=r" (sp));
1103 sp = tsk->thread.ksp;
1107 printk("Call Trace:\n");
1109 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1112 stack = (unsigned long *) sp;
1114 ip = stack[STACK_FRAME_LR_SAVE];
1115 if (!firstframe || ip != lr) {
1116 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1117 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1118 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1120 (void *)current->ret_stack[curr_frame].ret);
1125 printk(" (unreliable)");
1131 * See if this is an exception frame.
1132 * We look for the "regshere" marker in the current frame.
1134 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1135 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1136 struct pt_regs *regs = (struct pt_regs *)
1137 (sp + STACK_FRAME_OVERHEAD);
1139 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1140 regs->trap, (void *)regs->nip, (void *)lr);
1145 } while (count++ < kstack_depth_to_print);
1148 void dump_stack(void)
1150 show_stack(current, NULL);
1152 EXPORT_SYMBOL(dump_stack);
1155 void ppc64_runlatch_on(void)
1159 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1162 ctrl = mfspr(SPRN_CTRLF);
1163 ctrl |= CTRL_RUNLATCH;
1164 mtspr(SPRN_CTRLT, ctrl);
1166 set_thread_flag(TIF_RUNLATCH);
1170 void ppc64_runlatch_off(void)
1174 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1177 clear_thread_flag(TIF_RUNLATCH);
1179 ctrl = mfspr(SPRN_CTRLF);
1180 ctrl &= ~CTRL_RUNLATCH;
1181 mtspr(SPRN_CTRLT, ctrl);
1186 #if THREAD_SHIFT < PAGE_SHIFT
1188 static struct kmem_cache *thread_info_cache;
1190 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1192 struct thread_info *ti;
1194 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1195 if (unlikely(ti == NULL))
1197 #ifdef CONFIG_DEBUG_STACK_USAGE
1198 memset(ti, 0, THREAD_SIZE);
1203 void free_thread_info(struct thread_info *ti)
1205 kmem_cache_free(thread_info_cache, ti);
1208 void thread_info_cache_init(void)
1210 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1211 THREAD_SIZE, 0, NULL);
1212 BUG_ON(thread_info_cache == NULL);
1215 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1217 unsigned long arch_align_stack(unsigned long sp)
1219 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1220 sp -= get_random_int() & ~PAGE_MASK;
1224 static inline unsigned long brk_rnd(void)
1226 unsigned long rnd = 0;
1228 /* 8MB for 32bit, 1GB for 64bit */
1229 if (is_32bit_task())
1230 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1232 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1234 return rnd << PAGE_SHIFT;
1237 unsigned long arch_randomize_brk(struct mm_struct *mm)
1239 unsigned long base = mm->brk;
1242 #ifdef CONFIG_PPC_STD_MMU_64
1244 * If we are using 1TB segments and we are allowed to randomise
1245 * the heap, we can put it above 1TB so it is backed by a 1TB
1246 * segment. Otherwise the heap will be in the bottom 1TB
1247 * which always uses 256MB segments and this may result in a
1248 * performance penalty.
1250 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1251 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1254 ret = PAGE_ALIGN(base + brk_rnd());
1262 unsigned long randomize_et_dyn(unsigned long base)
1264 unsigned long ret = PAGE_ALIGN(base + brk_rnd());