]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/powerpc/kernel/process.c
Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[mv-sheeva.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/syscalls.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #endif
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
56
57 extern unsigned long _get_SP(void);
58
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
64 #endif
65
66 /*
67  * Make sure the floating-point register state in the
68  * the thread_struct is up to date for task tsk.
69  */
70 void flush_fp_to_thread(struct task_struct *tsk)
71 {
72         if (tsk->thread.regs) {
73                 /*
74                  * We need to disable preemption here because if we didn't,
75                  * another process could get scheduled after the regs->msr
76                  * test but before we have finished saving the FP registers
77                  * to the thread_struct.  That process could take over the
78                  * FPU, and then when we get scheduled again we would store
79                  * bogus values for the remaining FP registers.
80                  */
81                 preempt_disable();
82                 if (tsk->thread.regs->msr & MSR_FP) {
83 #ifdef CONFIG_SMP
84                         /*
85                          * This should only ever be called for current or
86                          * for a stopped child process.  Since we save away
87                          * the FP register state on context switch on SMP,
88                          * there is something wrong if a stopped child appears
89                          * to still have its FP state in the CPU registers.
90                          */
91                         BUG_ON(tsk != current);
92 #endif
93                         giveup_fpu(tsk);
94                 }
95                 preempt_enable();
96         }
97 }
98
99 void enable_kernel_fp(void)
100 {
101         WARN_ON(preemptible());
102
103 #ifdef CONFIG_SMP
104         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
105                 giveup_fpu(current);
106         else
107                 giveup_fpu(NULL);       /* just enables FP for kernel */
108 #else
109         giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
111 }
112 EXPORT_SYMBOL(enable_kernel_fp);
113
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
116 {
117         WARN_ON(preemptible());
118
119 #ifdef CONFIG_SMP
120         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121                 giveup_altivec(current);
122         else
123                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
124 #else
125         giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
127 }
128 EXPORT_SYMBOL(enable_kernel_altivec);
129
130 /*
131  * Make sure the VMX/Altivec register state in the
132  * the thread_struct is up to date for task tsk.
133  */
134 void flush_altivec_to_thread(struct task_struct *tsk)
135 {
136         if (tsk->thread.regs) {
137                 preempt_disable();
138                 if (tsk->thread.regs->msr & MSR_VEC) {
139 #ifdef CONFIG_SMP
140                         BUG_ON(tsk != current);
141 #endif
142                         giveup_altivec(tsk);
143                 }
144                 preempt_enable();
145         }
146 }
147 #endif /* CONFIG_ALTIVEC */
148
149 #ifdef CONFIG_VSX
150 #if 0
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
153 {
154         WARN_ON(preemptible());
155
156 #ifdef CONFIG_SMP
157         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
158                 giveup_vsx(current);
159         else
160                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
161 #else
162         giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
164 }
165 EXPORT_SYMBOL(enable_kernel_vsx);
166 #endif
167
168 void giveup_vsx(struct task_struct *tsk)
169 {
170         giveup_fpu(tsk);
171         giveup_altivec(tsk);
172         __giveup_vsx(tsk);
173 }
174
175 void flush_vsx_to_thread(struct task_struct *tsk)
176 {
177         if (tsk->thread.regs) {
178                 preempt_disable();
179                 if (tsk->thread.regs->msr & MSR_VSX) {
180 #ifdef CONFIG_SMP
181                         BUG_ON(tsk != current);
182 #endif
183                         giveup_vsx(tsk);
184                 }
185                 preempt_enable();
186         }
187 }
188 #endif /* CONFIG_VSX */
189
190 #ifdef CONFIG_SPE
191
192 void enable_kernel_spe(void)
193 {
194         WARN_ON(preemptible());
195
196 #ifdef CONFIG_SMP
197         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
198                 giveup_spe(current);
199         else
200                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
201 #else
202         giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
204 }
205 EXPORT_SYMBOL(enable_kernel_spe);
206
207 void flush_spe_to_thread(struct task_struct *tsk)
208 {
209         if (tsk->thread.regs) {
210                 preempt_disable();
211                 if (tsk->thread.regs->msr & MSR_SPE) {
212 #ifdef CONFIG_SMP
213                         BUG_ON(tsk != current);
214 #endif
215                         giveup_spe(tsk);
216                 }
217                 preempt_enable();
218         }
219 }
220 #endif /* CONFIG_SPE */
221
222 #ifndef CONFIG_SMP
223 /*
224  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225  * and the current task has some state, discard it.
226  */
227 void discard_lazy_cpu_state(void)
228 {
229         preempt_disable();
230         if (last_task_used_math == current)
231                 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233         if (last_task_used_altivec == current)
234                 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_VSX
237         if (last_task_used_vsx == current)
238                 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
240 #ifdef CONFIG_SPE
241         if (last_task_used_spe == current)
242                 last_task_used_spe = NULL;
243 #endif
244         preempt_enable();
245 }
246 #endif /* CONFIG_SMP */
247
248 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
249 void do_send_trap(struct pt_regs *regs, unsigned long address,
250                   unsigned long error_code, int signal_code, int breakpt)
251 {
252         siginfo_t info;
253
254         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
255                         11, SIGSEGV) == NOTIFY_STOP)
256                 return;
257
258         /* Deliver the signal to userspace */
259         info.si_signo = SIGTRAP;
260         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
261         info.si_code = signal_code;
262         info.si_addr = (void __user *)address;
263         force_sig_info(SIGTRAP, &info, current);
264 }
265 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
266 void do_dabr(struct pt_regs *regs, unsigned long address,
267                     unsigned long error_code)
268 {
269         siginfo_t info;
270
271         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
272                         11, SIGSEGV) == NOTIFY_STOP)
273                 return;
274
275         if (debugger_dabr_match(regs))
276                 return;
277
278         /* Clear the DABR */
279         set_dabr(0);
280
281         /* Deliver the signal to userspace */
282         info.si_signo = SIGTRAP;
283         info.si_errno = 0;
284         info.si_code = TRAP_HWBKPT;
285         info.si_addr = (void __user *)address;
286         force_sig_info(SIGTRAP, &info, current);
287 }
288 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
289
290 static DEFINE_PER_CPU(unsigned long, current_dabr);
291
292 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
293 /*
294  * Set the debug registers back to their default "safe" values.
295  */
296 static void set_debug_reg_defaults(struct thread_struct *thread)
297 {
298         thread->iac1 = thread->iac2 = 0;
299 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
300         thread->iac3 = thread->iac4 = 0;
301 #endif
302         thread->dac1 = thread->dac2 = 0;
303 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
304         thread->dvc1 = thread->dvc2 = 0;
305 #endif
306         thread->dbcr0 = 0;
307 #ifdef CONFIG_BOOKE
308         /*
309          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
310          */
311         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
312                         DBCR1_IAC3US | DBCR1_IAC4US;
313         /*
314          * Force Data Address Compare User/Supervisor bits to be User-only
315          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
316          */
317         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
318 #else
319         thread->dbcr1 = 0;
320 #endif
321 }
322
323 static void prime_debug_regs(struct thread_struct *thread)
324 {
325         mtspr(SPRN_IAC1, thread->iac1);
326         mtspr(SPRN_IAC2, thread->iac2);
327 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
328         mtspr(SPRN_IAC3, thread->iac3);
329         mtspr(SPRN_IAC4, thread->iac4);
330 #endif
331         mtspr(SPRN_DAC1, thread->dac1);
332         mtspr(SPRN_DAC2, thread->dac2);
333 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
334         mtspr(SPRN_DVC1, thread->dvc1);
335         mtspr(SPRN_DVC2, thread->dvc2);
336 #endif
337         mtspr(SPRN_DBCR0, thread->dbcr0);
338         mtspr(SPRN_DBCR1, thread->dbcr1);
339 #ifdef CONFIG_BOOKE
340         mtspr(SPRN_DBCR2, thread->dbcr2);
341 #endif
342 }
343 /*
344  * Unless neither the old or new thread are making use of the
345  * debug registers, set the debug registers from the values
346  * stored in the new thread.
347  */
348 static void switch_booke_debug_regs(struct thread_struct *new_thread)
349 {
350         if ((current->thread.dbcr0 & DBCR0_IDM)
351                 || (new_thread->dbcr0 & DBCR0_IDM))
352                         prime_debug_regs(new_thread);
353 }
354 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357         if (thread->dabr) {
358                 thread->dabr = 0;
359                 set_dabr(0);
360         }
361 }
362 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
363
364 int set_dabr(unsigned long dabr)
365 {
366         __get_cpu_var(current_dabr) = dabr;
367
368         if (ppc_md.set_dabr)
369                 return ppc_md.set_dabr(dabr);
370
371         /* XXX should we have a CPU_FTR_HAS_DABR ? */
372 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
373         mtspr(SPRN_DAC1, dabr);
374 #ifdef CONFIG_PPC_47x
375         isync();
376 #endif
377 #elif defined(CONFIG_PPC_BOOK3S)
378         mtspr(SPRN_DABR, dabr);
379 #endif
380
381
382         return 0;
383 }
384
385 #ifdef CONFIG_PPC64
386 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
387 #endif
388
389 struct task_struct *__switch_to(struct task_struct *prev,
390         struct task_struct *new)
391 {
392         struct thread_struct *new_thread, *old_thread;
393         unsigned long flags;
394         struct task_struct *last;
395
396 #ifdef CONFIG_SMP
397         /* avoid complexity of lazy save/restore of fpu
398          * by just saving it every time we switch out if
399          * this task used the fpu during the last quantum.
400          *
401          * If it tries to use the fpu again, it'll trap and
402          * reload its fp regs.  So we don't have to do a restore
403          * every switch, just a save.
404          *  -- Cort
405          */
406         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
407                 giveup_fpu(prev);
408 #ifdef CONFIG_ALTIVEC
409         /*
410          * If the previous thread used altivec in the last quantum
411          * (thus changing altivec regs) then save them.
412          * We used to check the VRSAVE register but not all apps
413          * set it, so we don't rely on it now (and in fact we need
414          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
415          *
416          * On SMP we always save/restore altivec regs just to avoid the
417          * complexity of changing processors.
418          *  -- Cort
419          */
420         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
421                 giveup_altivec(prev);
422 #endif /* CONFIG_ALTIVEC */
423 #ifdef CONFIG_VSX
424         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
425                 /* VMX and FPU registers are already save here */
426                 __giveup_vsx(prev);
427 #endif /* CONFIG_VSX */
428 #ifdef CONFIG_SPE
429         /*
430          * If the previous thread used spe in the last quantum
431          * (thus changing spe regs) then save them.
432          *
433          * On SMP we always save/restore spe regs just to avoid the
434          * complexity of changing processors.
435          */
436         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
437                 giveup_spe(prev);
438 #endif /* CONFIG_SPE */
439
440 #else  /* CONFIG_SMP */
441 #ifdef CONFIG_ALTIVEC
442         /* Avoid the trap.  On smp this this never happens since
443          * we don't set last_task_used_altivec -- Cort
444          */
445         if (new->thread.regs && last_task_used_altivec == new)
446                 new->thread.regs->msr |= MSR_VEC;
447 #endif /* CONFIG_ALTIVEC */
448 #ifdef CONFIG_VSX
449         if (new->thread.regs && last_task_used_vsx == new)
450                 new->thread.regs->msr |= MSR_VSX;
451 #endif /* CONFIG_VSX */
452 #ifdef CONFIG_SPE
453         /* Avoid the trap.  On smp this this never happens since
454          * we don't set last_task_used_spe
455          */
456         if (new->thread.regs && last_task_used_spe == new)
457                 new->thread.regs->msr |= MSR_SPE;
458 #endif /* CONFIG_SPE */
459
460 #endif /* CONFIG_SMP */
461
462 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
463         switch_booke_debug_regs(&new->thread);
464 #else
465         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
466                 set_dabr(new->thread.dabr);
467 #endif
468
469
470         new_thread = &new->thread;
471         old_thread = &current->thread;
472
473 #ifdef CONFIG_PPC64
474         /*
475          * Collect processor utilization data per process
476          */
477         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
478                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
479                 long unsigned start_tb, current_tb;
480                 start_tb = old_thread->start_tb;
481                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
482                 old_thread->accum_tb += (current_tb - start_tb);
483                 new_thread->start_tb = current_tb;
484         }
485 #endif
486
487         local_irq_save(flags);
488
489         account_system_vtime(current);
490         account_process_vtime(current);
491         calculate_steal_time();
492
493         /*
494          * We can't take a PMU exception inside _switch() since there is a
495          * window where the kernel stack SLB and the kernel stack are out
496          * of sync. Hard disable here.
497          */
498         hard_irq_disable();
499         last = _switch(old_thread, new_thread);
500
501         local_irq_restore(flags);
502
503         return last;
504 }
505
506 static int instructions_to_print = 16;
507
508 static void show_instructions(struct pt_regs *regs)
509 {
510         int i;
511         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
512                         sizeof(int));
513
514         printk("Instruction dump:");
515
516         for (i = 0; i < instructions_to_print; i++) {
517                 int instr;
518
519                 if (!(i % 8))
520                         printk("\n");
521
522 #if !defined(CONFIG_BOOKE)
523                 /* If executing with the IMMU off, adjust pc rather
524                  * than print XXXXXXXX.
525                  */
526                 if (!(regs->msr & MSR_IR))
527                         pc = (unsigned long)phys_to_virt(pc);
528 #endif
529
530                 /* We use __get_user here *only* to avoid an OOPS on a
531                  * bad address because the pc *should* only be a
532                  * kernel address.
533                  */
534                 if (!__kernel_text_address(pc) ||
535                      __get_user(instr, (unsigned int __user *)pc)) {
536                         printk("XXXXXXXX ");
537                 } else {
538                         if (regs->nip == pc)
539                                 printk("<%08x> ", instr);
540                         else
541                                 printk("%08x ", instr);
542                 }
543
544                 pc += sizeof(int);
545         }
546
547         printk("\n");
548 }
549
550 static struct regbit {
551         unsigned long bit;
552         const char *name;
553 } msr_bits[] = {
554         {MSR_EE,        "EE"},
555         {MSR_PR,        "PR"},
556         {MSR_FP,        "FP"},
557         {MSR_VEC,       "VEC"},
558         {MSR_VSX,       "VSX"},
559         {MSR_ME,        "ME"},
560         {MSR_CE,        "CE"},
561         {MSR_DE,        "DE"},
562         {MSR_IR,        "IR"},
563         {MSR_DR,        "DR"},
564         {0,             NULL}
565 };
566
567 static void printbits(unsigned long val, struct regbit *bits)
568 {
569         const char *sep = "";
570
571         printk("<");
572         for (; bits->bit; ++bits)
573                 if (val & bits->bit) {
574                         printk("%s%s", sep, bits->name);
575                         sep = ",";
576                 }
577         printk(">");
578 }
579
580 #ifdef CONFIG_PPC64
581 #define REG             "%016lx"
582 #define REGS_PER_LINE   4
583 #define LAST_VOLATILE   13
584 #else
585 #define REG             "%08lx"
586 #define REGS_PER_LINE   8
587 #define LAST_VOLATILE   12
588 #endif
589
590 void show_regs(struct pt_regs * regs)
591 {
592         int i, trap;
593
594         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
595                regs->nip, regs->link, regs->ctr);
596         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
597                regs, regs->trap, print_tainted(), init_utsname()->release);
598         printk("MSR: "REG" ", regs->msr);
599         printbits(regs->msr, msr_bits);
600         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
601         trap = TRAP(regs);
602         if (trap == 0x300 || trap == 0x600)
603 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
604                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
605 #else
606                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
607 #endif
608         printk("TASK = %p[%d] '%s' THREAD: %p",
609                current, task_pid_nr(current), current->comm, task_thread_info(current));
610
611 #ifdef CONFIG_SMP
612         printk(" CPU: %d", raw_smp_processor_id());
613 #endif /* CONFIG_SMP */
614
615         for (i = 0;  i < 32;  i++) {
616                 if ((i % REGS_PER_LINE) == 0)
617                         printk("\nGPR%02d: ", i);
618                 printk(REG " ", regs->gpr[i]);
619                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
620                         break;
621         }
622         printk("\n");
623 #ifdef CONFIG_KALLSYMS
624         /*
625          * Lookup NIP late so we have the best change of getting the
626          * above info out without failing
627          */
628         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
629         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
630 #endif
631         show_stack(current, (unsigned long *) regs->gpr[1]);
632         if (!user_mode(regs))
633                 show_instructions(regs);
634 }
635
636 void exit_thread(void)
637 {
638         discard_lazy_cpu_state();
639 }
640
641 void flush_thread(void)
642 {
643         discard_lazy_cpu_state();
644
645         set_debug_reg_defaults(&current->thread);
646 }
647
648 void
649 release_thread(struct task_struct *t)
650 {
651 }
652
653 /*
654  * This gets called before we allocate a new thread and copy
655  * the current task into it.
656  */
657 void prepare_to_copy(struct task_struct *tsk)
658 {
659         flush_fp_to_thread(current);
660         flush_altivec_to_thread(current);
661         flush_vsx_to_thread(current);
662         flush_spe_to_thread(current);
663 }
664
665 /*
666  * Copy a thread..
667  */
668 int copy_thread(unsigned long clone_flags, unsigned long usp,
669                 unsigned long unused, struct task_struct *p,
670                 struct pt_regs *regs)
671 {
672         struct pt_regs *childregs, *kregs;
673         extern void ret_from_fork(void);
674         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
675
676         CHECK_FULL_REGS(regs);
677         /* Copy registers */
678         sp -= sizeof(struct pt_regs);
679         childregs = (struct pt_regs *) sp;
680         *childregs = *regs;
681         if ((childregs->msr & MSR_PR) == 0) {
682                 /* for kernel thread, set `current' and stackptr in new task */
683                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
684 #ifdef CONFIG_PPC32
685                 childregs->gpr[2] = (unsigned long) p;
686 #else
687                 clear_tsk_thread_flag(p, TIF_32BIT);
688 #endif
689                 p->thread.regs = NULL;  /* no user register state */
690         } else {
691                 childregs->gpr[1] = usp;
692                 p->thread.regs = childregs;
693                 if (clone_flags & CLONE_SETTLS) {
694 #ifdef CONFIG_PPC64
695                         if (!test_thread_flag(TIF_32BIT))
696                                 childregs->gpr[13] = childregs->gpr[6];
697                         else
698 #endif
699                                 childregs->gpr[2] = childregs->gpr[6];
700                 }
701         }
702         childregs->gpr[3] = 0;  /* Result from fork() */
703         sp -= STACK_FRAME_OVERHEAD;
704
705         /*
706          * The way this works is that at some point in the future
707          * some task will call _switch to switch to the new task.
708          * That will pop off the stack frame created below and start
709          * the new task running at ret_from_fork.  The new task will
710          * do some house keeping and then return from the fork or clone
711          * system call, using the stack frame created above.
712          */
713         sp -= sizeof(struct pt_regs);
714         kregs = (struct pt_regs *) sp;
715         sp -= STACK_FRAME_OVERHEAD;
716         p->thread.ksp = sp;
717         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
718                                 _ALIGN_UP(sizeof(struct thread_info), 16);
719
720 #ifdef CONFIG_PPC_STD_MMU_64
721         if (cpu_has_feature(CPU_FTR_SLB)) {
722                 unsigned long sp_vsid;
723                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
724
725                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
726                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
727                                 << SLB_VSID_SHIFT_1T;
728                 else
729                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
730                                 << SLB_VSID_SHIFT;
731                 sp_vsid |= SLB_VSID_KERNEL | llp;
732                 p->thread.ksp_vsid = sp_vsid;
733         }
734 #endif /* CONFIG_PPC_STD_MMU_64 */
735
736         /*
737          * The PPC64 ABI makes use of a TOC to contain function 
738          * pointers.  The function (ret_from_except) is actually a pointer
739          * to the TOC entry.  The first entry is a pointer to the actual
740          * function.
741          */
742 #ifdef CONFIG_PPC64
743         kregs->nip = *((unsigned long *)ret_from_fork);
744 #else
745         kregs->nip = (unsigned long)ret_from_fork;
746 #endif
747
748         return 0;
749 }
750
751 /*
752  * Set up a thread for executing a new program
753  */
754 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
755 {
756 #ifdef CONFIG_PPC64
757         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
758 #endif
759
760         set_fs(USER_DS);
761
762         /*
763          * If we exec out of a kernel thread then thread.regs will not be
764          * set.  Do it now.
765          */
766         if (!current->thread.regs) {
767                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
768                 current->thread.regs = regs - 1;
769         }
770
771         memset(regs->gpr, 0, sizeof(regs->gpr));
772         regs->ctr = 0;
773         regs->link = 0;
774         regs->xer = 0;
775         regs->ccr = 0;
776         regs->gpr[1] = sp;
777
778         /*
779          * We have just cleared all the nonvolatile GPRs, so make
780          * FULL_REGS(regs) return true.  This is necessary to allow
781          * ptrace to examine the thread immediately after exec.
782          */
783         regs->trap &= ~1UL;
784
785 #ifdef CONFIG_PPC32
786         regs->mq = 0;
787         regs->nip = start;
788         regs->msr = MSR_USER;
789 #else
790         if (!test_thread_flag(TIF_32BIT)) {
791                 unsigned long entry, toc;
792
793                 /* start is a relocated pointer to the function descriptor for
794                  * the elf _start routine.  The first entry in the function
795                  * descriptor is the entry address of _start and the second
796                  * entry is the TOC value we need to use.
797                  */
798                 __get_user(entry, (unsigned long __user *)start);
799                 __get_user(toc, (unsigned long __user *)start+1);
800
801                 /* Check whether the e_entry function descriptor entries
802                  * need to be relocated before we can use them.
803                  */
804                 if (load_addr != 0) {
805                         entry += load_addr;
806                         toc   += load_addr;
807                 }
808                 regs->nip = entry;
809                 regs->gpr[2] = toc;
810                 regs->msr = MSR_USER64;
811         } else {
812                 regs->nip = start;
813                 regs->gpr[2] = 0;
814                 regs->msr = MSR_USER32;
815         }
816 #endif
817
818         discard_lazy_cpu_state();
819 #ifdef CONFIG_VSX
820         current->thread.used_vsr = 0;
821 #endif
822         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
823         current->thread.fpscr.val = 0;
824 #ifdef CONFIG_ALTIVEC
825         memset(current->thread.vr, 0, sizeof(current->thread.vr));
826         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
827         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
828         current->thread.vrsave = 0;
829         current->thread.used_vr = 0;
830 #endif /* CONFIG_ALTIVEC */
831 #ifdef CONFIG_SPE
832         memset(current->thread.evr, 0, sizeof(current->thread.evr));
833         current->thread.acc = 0;
834         current->thread.spefscr = 0;
835         current->thread.used_spe = 0;
836 #endif /* CONFIG_SPE */
837 }
838
839 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
840                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
841
842 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
843 {
844         struct pt_regs *regs = tsk->thread.regs;
845
846         /* This is a bit hairy.  If we are an SPE enabled  processor
847          * (have embedded fp) we store the IEEE exception enable flags in
848          * fpexc_mode.  fpexc_mode is also used for setting FP exception
849          * mode (asyn, precise, disabled) for 'Classic' FP. */
850         if (val & PR_FP_EXC_SW_ENABLE) {
851 #ifdef CONFIG_SPE
852                 if (cpu_has_feature(CPU_FTR_SPE)) {
853                         tsk->thread.fpexc_mode = val &
854                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
855                         return 0;
856                 } else {
857                         return -EINVAL;
858                 }
859 #else
860                 return -EINVAL;
861 #endif
862         }
863
864         /* on a CONFIG_SPE this does not hurt us.  The bits that
865          * __pack_fe01 use do not overlap with bits used for
866          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
867          * on CONFIG_SPE implementations are reserved so writing to
868          * them does not change anything */
869         if (val > PR_FP_EXC_PRECISE)
870                 return -EINVAL;
871         tsk->thread.fpexc_mode = __pack_fe01(val);
872         if (regs != NULL && (regs->msr & MSR_FP) != 0)
873                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
874                         | tsk->thread.fpexc_mode;
875         return 0;
876 }
877
878 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
879 {
880         unsigned int val;
881
882         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
883 #ifdef CONFIG_SPE
884                 if (cpu_has_feature(CPU_FTR_SPE))
885                         val = tsk->thread.fpexc_mode;
886                 else
887                         return -EINVAL;
888 #else
889                 return -EINVAL;
890 #endif
891         else
892                 val = __unpack_fe01(tsk->thread.fpexc_mode);
893         return put_user(val, (unsigned int __user *) adr);
894 }
895
896 int set_endian(struct task_struct *tsk, unsigned int val)
897 {
898         struct pt_regs *regs = tsk->thread.regs;
899
900         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
901             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
902                 return -EINVAL;
903
904         if (regs == NULL)
905                 return -EINVAL;
906
907         if (val == PR_ENDIAN_BIG)
908                 regs->msr &= ~MSR_LE;
909         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
910                 regs->msr |= MSR_LE;
911         else
912                 return -EINVAL;
913
914         return 0;
915 }
916
917 int get_endian(struct task_struct *tsk, unsigned long adr)
918 {
919         struct pt_regs *regs = tsk->thread.regs;
920         unsigned int val;
921
922         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
923             !cpu_has_feature(CPU_FTR_REAL_LE))
924                 return -EINVAL;
925
926         if (regs == NULL)
927                 return -EINVAL;
928
929         if (regs->msr & MSR_LE) {
930                 if (cpu_has_feature(CPU_FTR_REAL_LE))
931                         val = PR_ENDIAN_LITTLE;
932                 else
933                         val = PR_ENDIAN_PPC_LITTLE;
934         } else
935                 val = PR_ENDIAN_BIG;
936
937         return put_user(val, (unsigned int __user *)adr);
938 }
939
940 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
941 {
942         tsk->thread.align_ctl = val;
943         return 0;
944 }
945
946 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
947 {
948         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
949 }
950
951 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
952
953 int sys_clone(unsigned long clone_flags, unsigned long usp,
954               int __user *parent_tidp, void __user *child_threadptr,
955               int __user *child_tidp, int p6,
956               struct pt_regs *regs)
957 {
958         CHECK_FULL_REGS(regs);
959         if (usp == 0)
960                 usp = regs->gpr[1];     /* stack pointer for child */
961 #ifdef CONFIG_PPC64
962         if (test_thread_flag(TIF_32BIT)) {
963                 parent_tidp = TRUNC_PTR(parent_tidp);
964                 child_tidp = TRUNC_PTR(child_tidp);
965         }
966 #endif
967         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
968 }
969
970 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
971              unsigned long p4, unsigned long p5, unsigned long p6,
972              struct pt_regs *regs)
973 {
974         CHECK_FULL_REGS(regs);
975         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
976 }
977
978 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
979               unsigned long p4, unsigned long p5, unsigned long p6,
980               struct pt_regs *regs)
981 {
982         CHECK_FULL_REGS(regs);
983         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
984                         regs, 0, NULL, NULL);
985 }
986
987 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
988                unsigned long a3, unsigned long a4, unsigned long a5,
989                struct pt_regs *regs)
990 {
991         int error;
992         char *filename;
993
994         filename = getname((char __user *) a0);
995         error = PTR_ERR(filename);
996         if (IS_ERR(filename))
997                 goto out;
998         flush_fp_to_thread(current);
999         flush_altivec_to_thread(current);
1000         flush_spe_to_thread(current);
1001         error = do_execve(filename, (char __user * __user *) a1,
1002                           (char __user * __user *) a2, regs);
1003         putname(filename);
1004 out:
1005         return error;
1006 }
1007
1008 #ifdef CONFIG_IRQSTACKS
1009 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1010                                   unsigned long nbytes)
1011 {
1012         unsigned long stack_page;
1013         unsigned long cpu = task_cpu(p);
1014
1015         /*
1016          * Avoid crashing if the stack has overflowed and corrupted
1017          * task_cpu(p), which is in the thread_info struct.
1018          */
1019         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1020                 stack_page = (unsigned long) hardirq_ctx[cpu];
1021                 if (sp >= stack_page + sizeof(struct thread_struct)
1022                     && sp <= stack_page + THREAD_SIZE - nbytes)
1023                         return 1;
1024
1025                 stack_page = (unsigned long) softirq_ctx[cpu];
1026                 if (sp >= stack_page + sizeof(struct thread_struct)
1027                     && sp <= stack_page + THREAD_SIZE - nbytes)
1028                         return 1;
1029         }
1030         return 0;
1031 }
1032
1033 #else
1034 #define valid_irq_stack(sp, p, nb)      0
1035 #endif /* CONFIG_IRQSTACKS */
1036
1037 int validate_sp(unsigned long sp, struct task_struct *p,
1038                        unsigned long nbytes)
1039 {
1040         unsigned long stack_page = (unsigned long)task_stack_page(p);
1041
1042         if (sp >= stack_page + sizeof(struct thread_struct)
1043             && sp <= stack_page + THREAD_SIZE - nbytes)
1044                 return 1;
1045
1046         return valid_irq_stack(sp, p, nbytes);
1047 }
1048
1049 EXPORT_SYMBOL(validate_sp);
1050
1051 unsigned long get_wchan(struct task_struct *p)
1052 {
1053         unsigned long ip, sp;
1054         int count = 0;
1055
1056         if (!p || p == current || p->state == TASK_RUNNING)
1057                 return 0;
1058
1059         sp = p->thread.ksp;
1060         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1061                 return 0;
1062
1063         do {
1064                 sp = *(unsigned long *)sp;
1065                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1066                         return 0;
1067                 if (count > 0) {
1068                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1069                         if (!in_sched_functions(ip))
1070                                 return ip;
1071                 }
1072         } while (count++ < 16);
1073         return 0;
1074 }
1075
1076 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1077
1078 void show_stack(struct task_struct *tsk, unsigned long *stack)
1079 {
1080         unsigned long sp, ip, lr, newsp;
1081         int count = 0;
1082         int firstframe = 1;
1083 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1084         int curr_frame = current->curr_ret_stack;
1085         extern void return_to_handler(void);
1086         unsigned long rth = (unsigned long)return_to_handler;
1087         unsigned long mrth = -1;
1088 #ifdef CONFIG_PPC64
1089         extern void mod_return_to_handler(void);
1090         rth = *(unsigned long *)rth;
1091         mrth = (unsigned long)mod_return_to_handler;
1092         mrth = *(unsigned long *)mrth;
1093 #endif
1094 #endif
1095
1096         sp = (unsigned long) stack;
1097         if (tsk == NULL)
1098                 tsk = current;
1099         if (sp == 0) {
1100                 if (tsk == current)
1101                         asm("mr %0,1" : "=r" (sp));
1102                 else
1103                         sp = tsk->thread.ksp;
1104         }
1105
1106         lr = 0;
1107         printk("Call Trace:\n");
1108         do {
1109                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1110                         return;
1111
1112                 stack = (unsigned long *) sp;
1113                 newsp = stack[0];
1114                 ip = stack[STACK_FRAME_LR_SAVE];
1115                 if (!firstframe || ip != lr) {
1116                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1117 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1118                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1119                                 printk(" (%pS)",
1120                                        (void *)current->ret_stack[curr_frame].ret);
1121                                 curr_frame--;
1122                         }
1123 #endif
1124                         if (firstframe)
1125                                 printk(" (unreliable)");
1126                         printk("\n");
1127                 }
1128                 firstframe = 0;
1129
1130                 /*
1131                  * See if this is an exception frame.
1132                  * We look for the "regshere" marker in the current frame.
1133                  */
1134                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1135                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1136                         struct pt_regs *regs = (struct pt_regs *)
1137                                 (sp + STACK_FRAME_OVERHEAD);
1138                         lr = regs->link;
1139                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1140                                regs->trap, (void *)regs->nip, (void *)lr);
1141                         firstframe = 1;
1142                 }
1143
1144                 sp = newsp;
1145         } while (count++ < kstack_depth_to_print);
1146 }
1147
1148 void dump_stack(void)
1149 {
1150         show_stack(current, NULL);
1151 }
1152 EXPORT_SYMBOL(dump_stack);
1153
1154 #ifdef CONFIG_PPC64
1155 void ppc64_runlatch_on(void)
1156 {
1157         unsigned long ctrl;
1158
1159         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1160                 HMT_medium();
1161
1162                 ctrl = mfspr(SPRN_CTRLF);
1163                 ctrl |= CTRL_RUNLATCH;
1164                 mtspr(SPRN_CTRLT, ctrl);
1165
1166                 set_thread_flag(TIF_RUNLATCH);
1167         }
1168 }
1169
1170 void ppc64_runlatch_off(void)
1171 {
1172         unsigned long ctrl;
1173
1174         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1175                 HMT_medium();
1176
1177                 clear_thread_flag(TIF_RUNLATCH);
1178
1179                 ctrl = mfspr(SPRN_CTRLF);
1180                 ctrl &= ~CTRL_RUNLATCH;
1181                 mtspr(SPRN_CTRLT, ctrl);
1182         }
1183 }
1184 #endif
1185
1186 #if THREAD_SHIFT < PAGE_SHIFT
1187
1188 static struct kmem_cache *thread_info_cache;
1189
1190 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1191 {
1192         struct thread_info *ti;
1193
1194         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1195         if (unlikely(ti == NULL))
1196                 return NULL;
1197 #ifdef CONFIG_DEBUG_STACK_USAGE
1198         memset(ti, 0, THREAD_SIZE);
1199 #endif
1200         return ti;
1201 }
1202
1203 void free_thread_info(struct thread_info *ti)
1204 {
1205         kmem_cache_free(thread_info_cache, ti);
1206 }
1207
1208 void thread_info_cache_init(void)
1209 {
1210         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1211                                               THREAD_SIZE, 0, NULL);
1212         BUG_ON(thread_info_cache == NULL);
1213 }
1214
1215 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1216
1217 unsigned long arch_align_stack(unsigned long sp)
1218 {
1219         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1220                 sp -= get_random_int() & ~PAGE_MASK;
1221         return sp & ~0xf;
1222 }
1223
1224 static inline unsigned long brk_rnd(void)
1225 {
1226         unsigned long rnd = 0;
1227
1228         /* 8MB for 32bit, 1GB for 64bit */
1229         if (is_32bit_task())
1230                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1231         else
1232                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1233
1234         return rnd << PAGE_SHIFT;
1235 }
1236
1237 unsigned long arch_randomize_brk(struct mm_struct *mm)
1238 {
1239         unsigned long base = mm->brk;
1240         unsigned long ret;
1241
1242 #ifdef CONFIG_PPC_STD_MMU_64
1243         /*
1244          * If we are using 1TB segments and we are allowed to randomise
1245          * the heap, we can put it above 1TB so it is backed by a 1TB
1246          * segment. Otherwise the heap will be in the bottom 1TB
1247          * which always uses 256MB segments and this may result in a
1248          * performance penalty.
1249          */
1250         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1251                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1252 #endif
1253
1254         ret = PAGE_ALIGN(base + brk_rnd());
1255
1256         if (ret < mm->brk)
1257                 return mm->brk;
1258
1259         return ret;
1260 }
1261
1262 unsigned long randomize_et_dyn(unsigned long base)
1263 {
1264         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1265
1266         if (ret < base)
1267                 return base;
1268
1269         return ret;
1270 }