]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/process.c
platform/x86: intel_telemetry_debugfs: fix oops when load/unload module
[karo-tx-linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82         /*
83          * If we are saving the current thread's registers, and the
84          * thread is in a transactional state, set the TIF_RESTORE_TM
85          * bit so that we know to restore the registers before
86          * returning to userspace.
87          */
88         if (tsk == current && tsk->thread.regs &&
89             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90             !test_thread_flag(TIF_RESTORE_TM)) {
91                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92                 set_thread_flag(TIF_RESTORE_TM);
93         }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98         return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110         strict_msr_control = true;
111         pr_info("Enabling strict facility control\n");
112
113         return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119         unsigned long oldmsr = mfmsr();
120         unsigned long newmsr;
121
122         newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126                 newmsr |= MSR_VSX;
127 #endif
128
129         if (oldmsr != newmsr)
130                 mtmsr_isync(newmsr);
131
132         return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137         unsigned long oldmsr = mfmsr();
138         unsigned long newmsr;
139
140         newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144                 newmsr &= ~MSR_VSX;
145 #endif
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163 #endif
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk) {
234         if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235                 load_fp_state(&current->thread.fp_state);
236                 current->thread.load_fp++;
237                 return 1;
238         }
239         return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250         unsigned long msr;
251
252         save_altivec(tsk);
253         msr = tsk->thread.regs->msr;
254         msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256         if (cpu_has_feature(CPU_FTR_VSX))
257                 msr &= ~MSR_VSX;
258 #endif
259         tsk->thread.regs->msr = msr;
260 }
261
262 void giveup_altivec(struct task_struct *tsk)
263 {
264         check_if_tm_restore_required(tsk);
265
266         msr_check_and_set(MSR_VEC);
267         __giveup_altivec(tsk);
268         msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271
272 void enable_kernel_altivec(void)
273 {
274         unsigned long cpumsr;
275
276         WARN_ON(preemptible());
277
278         cpumsr = msr_check_and_set(MSR_VEC);
279
280         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281                 check_if_tm_restore_required(current);
282                 /*
283                  * If a thread has already been reclaimed then the
284                  * checkpointed registers are on the CPU but have definitely
285                  * been saved by the reclaim code. Don't need to and *cannot*
286                  * giveup as this would save  to the 'live' structure not the
287                  * checkpointed structure.
288                  */
289                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290                         return;
291                 __giveup_altivec(current);
292         }
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302         if (tsk->thread.regs) {
303                 preempt_disable();
304                 if (tsk->thread.regs->msr & MSR_VEC) {
305                         BUG_ON(tsk != current);
306                         giveup_altivec(tsk);
307                 }
308                 preempt_enable();
309         }
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312
313 static int restore_altivec(struct task_struct *tsk)
314 {
315         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316                 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317                 load_vr_state(&tsk->thread.vr_state);
318                 tsk->thread.used_vr = 1;
319                 tsk->thread.load_vec++;
320
321                 return 1;
322         }
323         return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333         if (tsk->thread.regs->msr & MSR_FP)
334                 __giveup_fpu(tsk);
335         if (tsk->thread.regs->msr & MSR_VEC)
336                 __giveup_altivec(tsk);
337         tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342         check_if_tm_restore_required(tsk);
343
344         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345         __giveup_vsx(tsk);
346         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348
349 static void save_vsx(struct task_struct *tsk)
350 {
351         if (tsk->thread.regs->msr & MSR_FP)
352                 save_fpu(tsk);
353         if (tsk->thread.regs->msr & MSR_VEC)
354                 save_altivec(tsk);
355 }
356
357 void enable_kernel_vsx(void)
358 {
359         unsigned long cpumsr;
360
361         WARN_ON(preemptible());
362
363         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364
365         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366                 check_if_tm_restore_required(current);
367                 /*
368                  * If a thread has already been reclaimed then the
369                  * checkpointed registers are on the CPU but have definitely
370                  * been saved by the reclaim code. Don't need to and *cannot*
371                  * giveup as this would save  to the 'live' structure not the
372                  * checkpointed structure.
373                  */
374                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375                         return;
376                 if (current->thread.regs->msr & MSR_FP)
377                         __giveup_fpu(current);
378                 if (current->thread.regs->msr & MSR_VEC)
379                         __giveup_altivec(current);
380                 __giveup_vsx(current);
381         }
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387         if (tsk->thread.regs) {
388                 preempt_disable();
389                 if (tsk->thread.regs->msr & MSR_VSX) {
390                         BUG_ON(tsk != current);
391                         giveup_vsx(tsk);
392                 }
393                 preempt_enable();
394         }
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397
398 static int restore_vsx(struct task_struct *tsk)
399 {
400         if (cpu_has_feature(CPU_FTR_VSX)) {
401                 tsk->thread.used_vsr = 1;
402                 return 1;
403         }
404
405         return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415         check_if_tm_restore_required(tsk);
416
417         msr_check_and_set(MSR_SPE);
418         __giveup_spe(tsk);
419         msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422
423 void enable_kernel_spe(void)
424 {
425         WARN_ON(preemptible());
426
427         msr_check_and_set(MSR_SPE);
428
429         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430                 check_if_tm_restore_required(current);
431                 __giveup_spe(current);
432         }
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438         if (tsk->thread.regs) {
439                 preempt_disable();
440                 if (tsk->thread.regs->msr & MSR_SPE) {
441                         BUG_ON(tsk != current);
442                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443                         giveup_spe(tsk);
444                 }
445                 preempt_enable();
446         }
447 }
448 #endif /* CONFIG_SPE */
449
450 static unsigned long msr_all_available;
451
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455         msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458         if (cpu_has_feature(CPU_FTR_ALTIVEC))
459                 msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462         if (cpu_has_feature(CPU_FTR_VSX))
463                 msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466         if (cpu_has_feature(CPU_FTR_SPE))
467                 msr_all_available |= MSR_SPE;
468 #endif
469
470         return 0;
471 }
472 early_initcall(init_msr_all_available);
473
474 void giveup_all(struct task_struct *tsk)
475 {
476         unsigned long usermsr;
477
478         if (!tsk->thread.regs)
479                 return;
480
481         usermsr = tsk->thread.regs->msr;
482
483         if ((usermsr & msr_all_available) == 0)
484                 return;
485
486         msr_check_and_set(msr_all_available);
487         check_if_tm_restore_required(tsk);
488
489 #ifdef CONFIG_PPC_FPU
490         if (usermsr & MSR_FP)
491                 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494         if (usermsr & MSR_VEC)
495                 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498         if (usermsr & MSR_VSX)
499                 __giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502         if (usermsr & MSR_SPE)
503                 __giveup_spe(tsk);
504 #endif
505
506         msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509
510 void restore_math(struct pt_regs *regs)
511 {
512         unsigned long msr;
513
514         if (!msr_tm_active(regs->msr) &&
515                 !current->thread.load_fp && !loadvec(current->thread))
516                 return;
517
518         msr = regs->msr;
519         msr_check_and_set(msr_all_available);
520
521         /*
522          * Only reload if the bit is not set in the user MSR, the bit BEING set
523          * indicates that the registers are hot
524          */
525         if ((!(msr & MSR_FP)) && restore_fp(current))
526                 msr |= MSR_FP | current->thread.fpexc_mode;
527
528         if ((!(msr & MSR_VEC)) && restore_altivec(current))
529                 msr |= MSR_VEC;
530
531         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
532                         restore_vsx(current)) {
533                 msr |= MSR_VSX;
534         }
535
536         msr_check_and_clear(msr_all_available);
537
538         regs->msr = msr;
539 }
540
541 void save_all(struct task_struct *tsk)
542 {
543         unsigned long usermsr;
544
545         if (!tsk->thread.regs)
546                 return;
547
548         usermsr = tsk->thread.regs->msr;
549
550         if ((usermsr & msr_all_available) == 0)
551                 return;
552
553         msr_check_and_set(msr_all_available);
554
555         /*
556          * Saving the way the register space is in hardware, save_vsx boils
557          * down to a save_fpu() and save_altivec()
558          */
559         if (usermsr & MSR_VSX) {
560                 save_vsx(tsk);
561         } else {
562                 if (usermsr & MSR_FP)
563                         save_fpu(tsk);
564
565                 if (usermsr & MSR_VEC)
566                         save_altivec(tsk);
567         }
568
569         if (usermsr & MSR_SPE)
570                 __giveup_spe(tsk);
571
572         msr_check_and_clear(msr_all_available);
573 }
574
575 void flush_all_to_thread(struct task_struct *tsk)
576 {
577         if (tsk->thread.regs) {
578                 preempt_disable();
579                 BUG_ON(tsk != current);
580                 save_all(tsk);
581
582 #ifdef CONFIG_SPE
583                 if (tsk->thread.regs->msr & MSR_SPE)
584                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
585 #endif
586
587                 preempt_enable();
588         }
589 }
590 EXPORT_SYMBOL(flush_all_to_thread);
591
592 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
593 void do_send_trap(struct pt_regs *regs, unsigned long address,
594                   unsigned long error_code, int signal_code, int breakpt)
595 {
596         siginfo_t info;
597
598         current->thread.trap_nr = signal_code;
599         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
600                         11, SIGSEGV) == NOTIFY_STOP)
601                 return;
602
603         /* Deliver the signal to userspace */
604         info.si_signo = SIGTRAP;
605         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
606         info.si_code = signal_code;
607         info.si_addr = (void __user *)address;
608         force_sig_info(SIGTRAP, &info, current);
609 }
610 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
611 void do_break (struct pt_regs *regs, unsigned long address,
612                     unsigned long error_code)
613 {
614         siginfo_t info;
615
616         current->thread.trap_nr = TRAP_HWBKPT;
617         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618                         11, SIGSEGV) == NOTIFY_STOP)
619                 return;
620
621         if (debugger_break_match(regs))
622                 return;
623
624         /* Clear the breakpoint */
625         hw_breakpoint_disable();
626
627         /* Deliver the signal to userspace */
628         info.si_signo = SIGTRAP;
629         info.si_errno = 0;
630         info.si_code = TRAP_HWBKPT;
631         info.si_addr = (void __user *)address;
632         force_sig_info(SIGTRAP, &info, current);
633 }
634 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
635
636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637
638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
639 /*
640  * Set the debug registers back to their default "safe" values.
641  */
642 static void set_debug_reg_defaults(struct thread_struct *thread)
643 {
644         thread->debug.iac1 = thread->debug.iac2 = 0;
645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
646         thread->debug.iac3 = thread->debug.iac4 = 0;
647 #endif
648         thread->debug.dac1 = thread->debug.dac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650         thread->debug.dvc1 = thread->debug.dvc2 = 0;
651 #endif
652         thread->debug.dbcr0 = 0;
653 #ifdef CONFIG_BOOKE
654         /*
655          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656          */
657         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658                         DBCR1_IAC3US | DBCR1_IAC4US;
659         /*
660          * Force Data Address Compare User/Supervisor bits to be User-only
661          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662          */
663         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664 #else
665         thread->debug.dbcr1 = 0;
666 #endif
667 }
668
669 static void prime_debug_regs(struct debug_reg *debug)
670 {
671         /*
672          * We could have inherited MSR_DE from userspace, since
673          * it doesn't get cleared on exception entry.  Make sure
674          * MSR_DE is clear before we enable any debug events.
675          */
676         mtmsr(mfmsr() & ~MSR_DE);
677
678         mtspr(SPRN_IAC1, debug->iac1);
679         mtspr(SPRN_IAC2, debug->iac2);
680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
681         mtspr(SPRN_IAC3, debug->iac3);
682         mtspr(SPRN_IAC4, debug->iac4);
683 #endif
684         mtspr(SPRN_DAC1, debug->dac1);
685         mtspr(SPRN_DAC2, debug->dac2);
686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687         mtspr(SPRN_DVC1, debug->dvc1);
688         mtspr(SPRN_DVC2, debug->dvc2);
689 #endif
690         mtspr(SPRN_DBCR0, debug->dbcr0);
691         mtspr(SPRN_DBCR1, debug->dbcr1);
692 #ifdef CONFIG_BOOKE
693         mtspr(SPRN_DBCR2, debug->dbcr2);
694 #endif
695 }
696 /*
697  * Unless neither the old or new thread are making use of the
698  * debug registers, set the debug registers from the values
699  * stored in the new thread.
700  */
701 void switch_booke_debug_regs(struct debug_reg *new_debug)
702 {
703         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704                 || (new_debug->dbcr0 & DBCR0_IDM))
705                         prime_debug_regs(new_debug);
706 }
707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
709 #ifndef CONFIG_HAVE_HW_BREAKPOINT
710 static void set_debug_reg_defaults(struct thread_struct *thread)
711 {
712         thread->hw_brk.address = 0;
713         thread->hw_brk.type = 0;
714         set_breakpoint(&thread->hw_brk);
715 }
716 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
718
719 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
721 {
722         mtspr(SPRN_DAC1, dabr);
723 #ifdef CONFIG_PPC_47x
724         isync();
725 #endif
726         return 0;
727 }
728 #elif defined(CONFIG_PPC_BOOK3S)
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731         mtspr(SPRN_DABR, dabr);
732         if (cpu_has_feature(CPU_FTR_DABRX))
733                 mtspr(SPRN_DABRX, dabrx);
734         return 0;
735 }
736 #elif defined(CONFIG_PPC_8xx)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
740         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
741         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
742
743         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
744                 lctrl1 |= 0xa0000;
745         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
746                 lctrl1 |= 0xf0000;
747         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
748                 lctrl2 = 0;
749
750         mtspr(SPRN_LCTRL2, 0);
751         mtspr(SPRN_CMPE, addr);
752         mtspr(SPRN_CMPF, addr + 4);
753         mtspr(SPRN_LCTRL1, lctrl1);
754         mtspr(SPRN_LCTRL2, lctrl2);
755
756         return 0;
757 }
758 #else
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761         return -EINVAL;
762 }
763 #endif
764
765 static inline int set_dabr(struct arch_hw_breakpoint *brk)
766 {
767         unsigned long dabr, dabrx;
768
769         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
770         dabrx = ((brk->type >> 3) & 0x7);
771
772         if (ppc_md.set_dabr)
773                 return ppc_md.set_dabr(dabr, dabrx);
774
775         return __set_dabr(dabr, dabrx);
776 }
777
778 static inline int set_dawr(struct arch_hw_breakpoint *brk)
779 {
780         unsigned long dawr, dawrx, mrd;
781
782         dawr = brk->address;
783
784         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
785                                    << (63 - 58); //* read/write bits */
786         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
787                                    << (63 - 59); //* translate */
788         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
789                                    >> 3; //* PRIM bits */
790         /* dawr length is stored in field MDR bits 48:53.  Matches range in
791            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
792            0b111111=64DW.
793            brk->len is in bytes.
794            This aligns up to double word size, shifts and does the bias.
795         */
796         mrd = ((brk->len + 7) >> 3) - 1;
797         dawrx |= (mrd & 0x3f) << (63 - 53);
798
799         if (ppc_md.set_dawr)
800                 return ppc_md.set_dawr(dawr, dawrx);
801         mtspr(SPRN_DAWR, dawr);
802         mtspr(SPRN_DAWRX, dawrx);
803         return 0;
804 }
805
806 void __set_breakpoint(struct arch_hw_breakpoint *brk)
807 {
808         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809
810         if (cpu_has_feature(CPU_FTR_DAWR))
811                 set_dawr(brk);
812         else
813                 set_dabr(brk);
814 }
815
816 void set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818         preempt_disable();
819         __set_breakpoint(brk);
820         preempt_enable();
821 }
822
823 #ifdef CONFIG_PPC64
824 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
825 #endif
826
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828                               struct arch_hw_breakpoint *b)
829 {
830         if (a->address != b->address)
831                 return false;
832         if (a->type != b->type)
833                 return false;
834         if (a->len != b->len)
835                 return false;
836         return true;
837 }
838
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845
846 static void tm_reclaim_thread(struct thread_struct *thr,
847                               struct thread_info *ti, uint8_t cause)
848 {
849         /*
850          * Use the current MSR TM suspended bit to track if we have
851          * checkpointed state outstanding.
852          * On signal delivery, we'd normally reclaim the checkpointed
853          * state to obtain stack pointer (see:get_tm_stackpointer()).
854          * This will then directly return to userspace without going
855          * through __switch_to(). However, if the stack frame is bad,
856          * we need to exit this thread which calls __switch_to() which
857          * will again attempt to reclaim the already saved tm state.
858          * Hence we need to check that we've not already reclaimed
859          * this state.
860          * We do this using the current MSR, rather tracking it in
861          * some specific thread_struct bit, as it has the additional
862          * benefit of checking for a potential TM bad thing exception.
863          */
864         if (!MSR_TM_SUSPENDED(mfmsr()))
865                 return;
866
867         giveup_all(container_of(thr, struct task_struct, thread));
868
869         tm_reclaim(thr, thr->ckpt_regs.msr, cause);
870 }
871
872 void tm_reclaim_current(uint8_t cause)
873 {
874         tm_enable();
875         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
876 }
877
878 static inline void tm_reclaim_task(struct task_struct *tsk)
879 {
880         /* We have to work out if we're switching from/to a task that's in the
881          * middle of a transaction.
882          *
883          * In switching we need to maintain a 2nd register state as
884          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
885          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
886          * ckvr_state
887          *
888          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
889          */
890         struct thread_struct *thr = &tsk->thread;
891
892         if (!thr->regs)
893                 return;
894
895         if (!MSR_TM_ACTIVE(thr->regs->msr))
896                 goto out_and_saveregs;
897
898         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
899                  "ccr=%lx, msr=%lx, trap=%lx)\n",
900                  tsk->pid, thr->regs->nip,
901                  thr->regs->ccr, thr->regs->msr,
902                  thr->regs->trap);
903
904         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
905
906         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
907                  tsk->pid);
908
909 out_and_saveregs:
910         /* Always save the regs here, even if a transaction's not active.
911          * This context-switches a thread's TM info SPRs.  We do it here to
912          * be consistent with the restore path (in recheckpoint) which
913          * cannot happen later in _switch().
914          */
915         tm_save_sprs(thr);
916 }
917
918 extern void __tm_recheckpoint(struct thread_struct *thread,
919                               unsigned long orig_msr);
920
921 void tm_recheckpoint(struct thread_struct *thread,
922                      unsigned long orig_msr)
923 {
924         unsigned long flags;
925
926         if (!(thread->regs->msr & MSR_TM))
927                 return;
928
929         /* We really can't be interrupted here as the TEXASR registers can't
930          * change and later in the trecheckpoint code, we have a userspace R1.
931          * So let's hard disable over this region.
932          */
933         local_irq_save(flags);
934         hard_irq_disable();
935
936         /* The TM SPRs are restored here, so that TEXASR.FS can be set
937          * before the trecheckpoint and no explosion occurs.
938          */
939         tm_restore_sprs(thread);
940
941         __tm_recheckpoint(thread, orig_msr);
942
943         local_irq_restore(flags);
944 }
945
946 static inline void tm_recheckpoint_new_task(struct task_struct *new)
947 {
948         unsigned long msr;
949
950         if (!cpu_has_feature(CPU_FTR_TM))
951                 return;
952
953         /* Recheckpoint the registers of the thread we're about to switch to.
954          *
955          * If the task was using FP, we non-lazily reload both the original and
956          * the speculative FP register states.  This is because the kernel
957          * doesn't see if/when a TM rollback occurs, so if we take an FP
958          * unavailable later, we are unable to determine which set of FP regs
959          * need to be restored.
960          */
961         if (!tm_enabled(new))
962                 return;
963
964         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
965                 tm_restore_sprs(&new->thread);
966                 return;
967         }
968         msr = new->thread.ckpt_regs.msr;
969         /* Recheckpoint to restore original checkpointed register state. */
970         TM_DEBUG("*** tm_recheckpoint of pid %d "
971                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
972                  new->pid, new->thread.regs->msr, msr);
973
974         tm_recheckpoint(&new->thread, msr);
975
976         /*
977          * The checkpointed state has been restored but the live state has
978          * not, ensure all the math functionality is turned off to trigger
979          * restore_math() to reload.
980          */
981         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
982
983         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
984                  "(kernel msr 0x%lx)\n",
985                  new->pid, mfmsr());
986 }
987
988 static inline void __switch_to_tm(struct task_struct *prev,
989                 struct task_struct *new)
990 {
991         if (cpu_has_feature(CPU_FTR_TM)) {
992                 if (tm_enabled(prev) || tm_enabled(new))
993                         tm_enable();
994
995                 if (tm_enabled(prev)) {
996                         prev->thread.load_tm++;
997                         tm_reclaim_task(prev);
998                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
999                                 prev->thread.regs->msr &= ~MSR_TM;
1000                 }
1001
1002                 tm_recheckpoint_new_task(new);
1003         }
1004 }
1005
1006 /*
1007  * This is called if we are on the way out to userspace and the
1008  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1009  * FP and/or vector state and does so if necessary.
1010  * If userspace is inside a transaction (whether active or
1011  * suspended) and FP/VMX/VSX instructions have ever been enabled
1012  * inside that transaction, then we have to keep them enabled
1013  * and keep the FP/VMX/VSX state loaded while ever the transaction
1014  * continues.  The reason is that if we didn't, and subsequently
1015  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1016  * we don't know whether it's the same transaction, and thus we
1017  * don't know which of the checkpointed state and the transactional
1018  * state to use.
1019  */
1020 void restore_tm_state(struct pt_regs *regs)
1021 {
1022         unsigned long msr_diff;
1023
1024         /*
1025          * This is the only moment we should clear TIF_RESTORE_TM as
1026          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1027          * again, anything else could lead to an incorrect ckpt_msr being
1028          * saved and therefore incorrect signal contexts.
1029          */
1030         clear_thread_flag(TIF_RESTORE_TM);
1031         if (!MSR_TM_ACTIVE(regs->msr))
1032                 return;
1033
1034         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1035         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1036
1037         /* Ensure that restore_math() will restore */
1038         if (msr_diff & MSR_FP)
1039                 current->thread.load_fp = 1;
1040 #ifdef CONFIG_ALTIVEC
1041         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1042                 current->thread.load_vec = 1;
1043 #endif
1044         restore_math(regs);
1045
1046         regs->msr |= msr_diff;
1047 }
1048
1049 #else
1050 #define tm_recheckpoint_new_task(new)
1051 #define __switch_to_tm(prev, new)
1052 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1053
1054 static inline void save_sprs(struct thread_struct *t)
1055 {
1056 #ifdef CONFIG_ALTIVEC
1057         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1058                 t->vrsave = mfspr(SPRN_VRSAVE);
1059 #endif
1060 #ifdef CONFIG_PPC_BOOK3S_64
1061         if (cpu_has_feature(CPU_FTR_DSCR))
1062                 t->dscr = mfspr(SPRN_DSCR);
1063
1064         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1065                 t->bescr = mfspr(SPRN_BESCR);
1066                 t->ebbhr = mfspr(SPRN_EBBHR);
1067                 t->ebbrr = mfspr(SPRN_EBBRR);
1068
1069                 t->fscr = mfspr(SPRN_FSCR);
1070
1071                 /*
1072                  * Note that the TAR is not available for use in the kernel.
1073                  * (To provide this, the TAR should be backed up/restored on
1074                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1075                  * this should be in pt_regs anyway (for debug).)
1076                  */
1077                 t->tar = mfspr(SPRN_TAR);
1078         }
1079 #endif
1080 }
1081
1082 static inline void restore_sprs(struct thread_struct *old_thread,
1083                                 struct thread_struct *new_thread)
1084 {
1085 #ifdef CONFIG_ALTIVEC
1086         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1087             old_thread->vrsave != new_thread->vrsave)
1088                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1089 #endif
1090 #ifdef CONFIG_PPC_BOOK3S_64
1091         if (cpu_has_feature(CPU_FTR_DSCR)) {
1092                 u64 dscr = get_paca()->dscr_default;
1093                 if (new_thread->dscr_inherit)
1094                         dscr = new_thread->dscr;
1095
1096                 if (old_thread->dscr != dscr)
1097                         mtspr(SPRN_DSCR, dscr);
1098         }
1099
1100         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1101                 if (old_thread->bescr != new_thread->bescr)
1102                         mtspr(SPRN_BESCR, new_thread->bescr);
1103                 if (old_thread->ebbhr != new_thread->ebbhr)
1104                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1105                 if (old_thread->ebbrr != new_thread->ebbrr)
1106                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1107
1108                 if (old_thread->fscr != new_thread->fscr)
1109                         mtspr(SPRN_FSCR, new_thread->fscr);
1110
1111                 if (old_thread->tar != new_thread->tar)
1112                         mtspr(SPRN_TAR, new_thread->tar);
1113         }
1114 #endif
1115 }
1116
1117 struct task_struct *__switch_to(struct task_struct *prev,
1118         struct task_struct *new)
1119 {
1120         struct thread_struct *new_thread, *old_thread;
1121         struct task_struct *last;
1122 #ifdef CONFIG_PPC_BOOK3S_64
1123         struct ppc64_tlb_batch *batch;
1124 #endif
1125
1126         new_thread = &new->thread;
1127         old_thread = &current->thread;
1128
1129         WARN_ON(!irqs_disabled());
1130
1131 #ifdef CONFIG_PPC64
1132         /*
1133          * Collect processor utilization data per process
1134          */
1135         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1136                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1137                 long unsigned start_tb, current_tb;
1138                 start_tb = old_thread->start_tb;
1139                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1140                 old_thread->accum_tb += (current_tb - start_tb);
1141                 new_thread->start_tb = current_tb;
1142         }
1143 #endif /* CONFIG_PPC64 */
1144
1145 #ifdef CONFIG_PPC_STD_MMU_64
1146         batch = this_cpu_ptr(&ppc64_tlb_batch);
1147         if (batch->active) {
1148                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1149                 if (batch->index)
1150                         __flush_tlb_pending(batch);
1151                 batch->active = 0;
1152         }
1153 #endif /* CONFIG_PPC_STD_MMU_64 */
1154
1155 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1156         switch_booke_debug_regs(&new->thread.debug);
1157 #else
1158 /*
1159  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1160  * schedule DABR
1161  */
1162 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1163         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1164                 __set_breakpoint(&new->thread.hw_brk);
1165 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1166 #endif
1167
1168         /*
1169          * We need to save SPRs before treclaim/trecheckpoint as these will
1170          * change a number of them.
1171          */
1172         save_sprs(&prev->thread);
1173
1174         /* Save FPU, Altivec, VSX and SPE state */
1175         giveup_all(prev);
1176
1177         __switch_to_tm(prev, new);
1178
1179         /*
1180          * We can't take a PMU exception inside _switch() since there is a
1181          * window where the kernel stack SLB and the kernel stack are out
1182          * of sync. Hard disable here.
1183          */
1184         hard_irq_disable();
1185
1186         /*
1187          * Call restore_sprs() before calling _switch(). If we move it after
1188          * _switch() then we miss out on calling it for new tasks. The reason
1189          * for this is we manually create a stack frame for new tasks that
1190          * directly returns through ret_from_fork() or
1191          * ret_from_kernel_thread(). See copy_thread() for details.
1192          */
1193         restore_sprs(old_thread, new_thread);
1194
1195         last = _switch(old_thread, new_thread);
1196
1197 #ifdef CONFIG_PPC_STD_MMU_64
1198         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1199                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1200                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1201                 batch->active = 1;
1202         }
1203
1204         if (current_thread_info()->task->thread.regs)
1205                 restore_math(current_thread_info()->task->thread.regs);
1206 #endif /* CONFIG_PPC_STD_MMU_64 */
1207
1208         return last;
1209 }
1210
1211 static int instructions_to_print = 16;
1212
1213 static void show_instructions(struct pt_regs *regs)
1214 {
1215         int i;
1216         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1217                         sizeof(int));
1218
1219         printk("Instruction dump:");
1220
1221         for (i = 0; i < instructions_to_print; i++) {
1222                 int instr;
1223
1224                 if (!(i % 8))
1225                         pr_cont("\n");
1226
1227 #if !defined(CONFIG_BOOKE)
1228                 /* If executing with the IMMU off, adjust pc rather
1229                  * than print XXXXXXXX.
1230                  */
1231                 if (!(regs->msr & MSR_IR))
1232                         pc = (unsigned long)phys_to_virt(pc);
1233 #endif
1234
1235                 if (!__kernel_text_address(pc) ||
1236                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1237                         pr_cont("XXXXXXXX ");
1238                 } else {
1239                         if (regs->nip == pc)
1240                                 pr_cont("<%08x> ", instr);
1241                         else
1242                                 pr_cont("%08x ", instr);
1243                 }
1244
1245                 pc += sizeof(int);
1246         }
1247
1248         pr_cont("\n");
1249 }
1250
1251 struct regbit {
1252         unsigned long bit;
1253         const char *name;
1254 };
1255
1256 static struct regbit msr_bits[] = {
1257 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1258         {MSR_SF,        "SF"},
1259         {MSR_HV,        "HV"},
1260 #endif
1261         {MSR_VEC,       "VEC"},
1262         {MSR_VSX,       "VSX"},
1263 #ifdef CONFIG_BOOKE
1264         {MSR_CE,        "CE"},
1265 #endif
1266         {MSR_EE,        "EE"},
1267         {MSR_PR,        "PR"},
1268         {MSR_FP,        "FP"},
1269         {MSR_ME,        "ME"},
1270 #ifdef CONFIG_BOOKE
1271         {MSR_DE,        "DE"},
1272 #else
1273         {MSR_SE,        "SE"},
1274         {MSR_BE,        "BE"},
1275 #endif
1276         {MSR_IR,        "IR"},
1277         {MSR_DR,        "DR"},
1278         {MSR_PMM,       "PMM"},
1279 #ifndef CONFIG_BOOKE
1280         {MSR_RI,        "RI"},
1281         {MSR_LE,        "LE"},
1282 #endif
1283         {0,             NULL}
1284 };
1285
1286 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1287 {
1288         const char *s = "";
1289
1290         for (; bits->bit; ++bits)
1291                 if (val & bits->bit) {
1292                         pr_cont("%s%s", s, bits->name);
1293                         s = sep;
1294                 }
1295 }
1296
1297 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1298 static struct regbit msr_tm_bits[] = {
1299         {MSR_TS_T,      "T"},
1300         {MSR_TS_S,      "S"},
1301         {MSR_TM,        "E"},
1302         {0,             NULL}
1303 };
1304
1305 static void print_tm_bits(unsigned long val)
1306 {
1307 /*
1308  * This only prints something if at least one of the TM bit is set.
1309  * Inside the TM[], the output means:
1310  *   E: Enabled         (bit 32)
1311  *   S: Suspended       (bit 33)
1312  *   T: Transactional   (bit 34)
1313  */
1314         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1315                 pr_cont(",TM[");
1316                 print_bits(val, msr_tm_bits, "");
1317                 pr_cont("]");
1318         }
1319 }
1320 #else
1321 static void print_tm_bits(unsigned long val) {}
1322 #endif
1323
1324 static void print_msr_bits(unsigned long val)
1325 {
1326         pr_cont("<");
1327         print_bits(val, msr_bits, ",");
1328         print_tm_bits(val);
1329         pr_cont(">");
1330 }
1331
1332 #ifdef CONFIG_PPC64
1333 #define REG             "%016lx"
1334 #define REGS_PER_LINE   4
1335 #define LAST_VOLATILE   13
1336 #else
1337 #define REG             "%08lx"
1338 #define REGS_PER_LINE   8
1339 #define LAST_VOLATILE   12
1340 #endif
1341
1342 void show_regs(struct pt_regs * regs)
1343 {
1344         int i, trap;
1345
1346         show_regs_print_info(KERN_DEFAULT);
1347
1348         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1349                regs->nip, regs->link, regs->ctr);
1350         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1351                regs, regs->trap, print_tainted(), init_utsname()->release);
1352         printk("MSR: "REG" ", regs->msr);
1353         print_msr_bits(regs->msr);
1354         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1355         trap = TRAP(regs);
1356         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1357                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1358         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1359 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1360                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1361 #else
1362                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1363 #endif
1364 #ifdef CONFIG_PPC64
1365         pr_cont("SOFTE: %ld ", regs->softe);
1366 #endif
1367 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1368         if (MSR_TM_ACTIVE(regs->msr))
1369                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1370 #endif
1371
1372         for (i = 0;  i < 32;  i++) {
1373                 if ((i % REGS_PER_LINE) == 0)
1374                         pr_cont("\nGPR%02d: ", i);
1375                 pr_cont(REG " ", regs->gpr[i]);
1376                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1377                         break;
1378         }
1379         pr_cont("\n");
1380 #ifdef CONFIG_KALLSYMS
1381         /*
1382          * Lookup NIP late so we have the best change of getting the
1383          * above info out without failing
1384          */
1385         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1386         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1387 #endif
1388         show_stack(current, (unsigned long *) regs->gpr[1]);
1389         if (!user_mode(regs))
1390                 show_instructions(regs);
1391 }
1392
1393 void flush_thread(void)
1394 {
1395 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1396         flush_ptrace_hw_breakpoint(current);
1397 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1398         set_debug_reg_defaults(&current->thread);
1399 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1400 }
1401
1402 void
1403 release_thread(struct task_struct *t)
1404 {
1405 }
1406
1407 /*
1408  * this gets called so that we can store coprocessor state into memory and
1409  * copy the current task into the new thread.
1410  */
1411 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1412 {
1413         flush_all_to_thread(src);
1414         /*
1415          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1416          * flush but it removes the checkpointed state from the current CPU and
1417          * transitions the CPU out of TM mode.  Hence we need to call
1418          * tm_recheckpoint_new_task() (on the same task) to restore the
1419          * checkpointed state back and the TM mode.
1420          *
1421          * Can't pass dst because it isn't ready. Doesn't matter, passing
1422          * dst is only important for __switch_to()
1423          */
1424         __switch_to_tm(src, src);
1425
1426         *dst = *src;
1427
1428         clear_task_ebb(dst);
1429
1430         return 0;
1431 }
1432
1433 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1434 {
1435 #ifdef CONFIG_PPC_STD_MMU_64
1436         unsigned long sp_vsid;
1437         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1438
1439         if (radix_enabled())
1440                 return;
1441
1442         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1443                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1444                         << SLB_VSID_SHIFT_1T;
1445         else
1446                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1447                         << SLB_VSID_SHIFT;
1448         sp_vsid |= SLB_VSID_KERNEL | llp;
1449         p->thread.ksp_vsid = sp_vsid;
1450 #endif
1451 }
1452
1453 /*
1454  * Copy a thread..
1455  */
1456
1457 /*
1458  * Copy architecture-specific thread state
1459  */
1460 int copy_thread(unsigned long clone_flags, unsigned long usp,
1461                 unsigned long kthread_arg, struct task_struct *p)
1462 {
1463         struct pt_regs *childregs, *kregs;
1464         extern void ret_from_fork(void);
1465         extern void ret_from_kernel_thread(void);
1466         void (*f)(void);
1467         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1468         struct thread_info *ti = task_thread_info(p);
1469
1470         klp_init_thread_info(ti);
1471
1472         /* Copy registers */
1473         sp -= sizeof(struct pt_regs);
1474         childregs = (struct pt_regs *) sp;
1475         if (unlikely(p->flags & PF_KTHREAD)) {
1476                 /* kernel thread */
1477                 memset(childregs, 0, sizeof(struct pt_regs));
1478                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1479                 /* function */
1480                 if (usp)
1481                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1482 #ifdef CONFIG_PPC64
1483                 clear_tsk_thread_flag(p, TIF_32BIT);
1484                 childregs->softe = 1;
1485 #endif
1486                 childregs->gpr[15] = kthread_arg;
1487                 p->thread.regs = NULL;  /* no user register state */
1488                 ti->flags |= _TIF_RESTOREALL;
1489                 f = ret_from_kernel_thread;
1490         } else {
1491                 /* user thread */
1492                 struct pt_regs *regs = current_pt_regs();
1493                 CHECK_FULL_REGS(regs);
1494                 *childregs = *regs;
1495                 if (usp)
1496                         childregs->gpr[1] = usp;
1497                 p->thread.regs = childregs;
1498                 childregs->gpr[3] = 0;  /* Result from fork() */
1499                 if (clone_flags & CLONE_SETTLS) {
1500 #ifdef CONFIG_PPC64
1501                         if (!is_32bit_task())
1502                                 childregs->gpr[13] = childregs->gpr[6];
1503                         else
1504 #endif
1505                                 childregs->gpr[2] = childregs->gpr[6];
1506                 }
1507
1508                 f = ret_from_fork;
1509         }
1510         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1511         sp -= STACK_FRAME_OVERHEAD;
1512
1513         /*
1514          * The way this works is that at some point in the future
1515          * some task will call _switch to switch to the new task.
1516          * That will pop off the stack frame created below and start
1517          * the new task running at ret_from_fork.  The new task will
1518          * do some house keeping and then return from the fork or clone
1519          * system call, using the stack frame created above.
1520          */
1521         ((unsigned long *)sp)[0] = 0;
1522         sp -= sizeof(struct pt_regs);
1523         kregs = (struct pt_regs *) sp;
1524         sp -= STACK_FRAME_OVERHEAD;
1525         p->thread.ksp = sp;
1526 #ifdef CONFIG_PPC32
1527         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1528                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1529 #endif
1530 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1531         p->thread.ptrace_bps[0] = NULL;
1532 #endif
1533
1534         p->thread.fp_save_area = NULL;
1535 #ifdef CONFIG_ALTIVEC
1536         p->thread.vr_save_area = NULL;
1537 #endif
1538
1539         setup_ksp_vsid(p, sp);
1540
1541 #ifdef CONFIG_PPC64 
1542         if (cpu_has_feature(CPU_FTR_DSCR)) {
1543                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1544                 p->thread.dscr = mfspr(SPRN_DSCR);
1545         }
1546         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1547                 p->thread.ppr = INIT_PPR;
1548 #endif
1549         kregs->nip = ppc_function_entry(f);
1550         return 0;
1551 }
1552
1553 /*
1554  * Set up a thread for executing a new program
1555  */
1556 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1557 {
1558 #ifdef CONFIG_PPC64
1559         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1560 #endif
1561
1562         /*
1563          * If we exec out of a kernel thread then thread.regs will not be
1564          * set.  Do it now.
1565          */
1566         if (!current->thread.regs) {
1567                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1568                 current->thread.regs = regs - 1;
1569         }
1570
1571 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1572         /*
1573          * Clear any transactional state, we're exec()ing. The cause is
1574          * not important as there will never be a recheckpoint so it's not
1575          * user visible.
1576          */
1577         if (MSR_TM_SUSPENDED(mfmsr()))
1578                 tm_reclaim_current(0);
1579 #endif
1580
1581         memset(regs->gpr, 0, sizeof(regs->gpr));
1582         regs->ctr = 0;
1583         regs->link = 0;
1584         regs->xer = 0;
1585         regs->ccr = 0;
1586         regs->gpr[1] = sp;
1587
1588         /*
1589          * We have just cleared all the nonvolatile GPRs, so make
1590          * FULL_REGS(regs) return true.  This is necessary to allow
1591          * ptrace to examine the thread immediately after exec.
1592          */
1593         regs->trap &= ~1UL;
1594
1595 #ifdef CONFIG_PPC32
1596         regs->mq = 0;
1597         regs->nip = start;
1598         regs->msr = MSR_USER;
1599 #else
1600         if (!is_32bit_task()) {
1601                 unsigned long entry;
1602
1603                 if (is_elf2_task()) {
1604                         /* Look ma, no function descriptors! */
1605                         entry = start;
1606
1607                         /*
1608                          * Ulrich says:
1609                          *   The latest iteration of the ABI requires that when
1610                          *   calling a function (at its global entry point),
1611                          *   the caller must ensure r12 holds the entry point
1612                          *   address (so that the function can quickly
1613                          *   establish addressability).
1614                          */
1615                         regs->gpr[12] = start;
1616                         /* Make sure that's restored on entry to userspace. */
1617                         set_thread_flag(TIF_RESTOREALL);
1618                 } else {
1619                         unsigned long toc;
1620
1621                         /* start is a relocated pointer to the function
1622                          * descriptor for the elf _start routine.  The first
1623                          * entry in the function descriptor is the entry
1624                          * address of _start and the second entry is the TOC
1625                          * value we need to use.
1626                          */
1627                         __get_user(entry, (unsigned long __user *)start);
1628                         __get_user(toc, (unsigned long __user *)start+1);
1629
1630                         /* Check whether the e_entry function descriptor entries
1631                          * need to be relocated before we can use them.
1632                          */
1633                         if (load_addr != 0) {
1634                                 entry += load_addr;
1635                                 toc   += load_addr;
1636                         }
1637                         regs->gpr[2] = toc;
1638                 }
1639                 regs->nip = entry;
1640                 regs->msr = MSR_USER64;
1641         } else {
1642                 regs->nip = start;
1643                 regs->gpr[2] = 0;
1644                 regs->msr = MSR_USER32;
1645         }
1646 #endif
1647 #ifdef CONFIG_VSX
1648         current->thread.used_vsr = 0;
1649 #endif
1650         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1651         current->thread.fp_save_area = NULL;
1652 #ifdef CONFIG_ALTIVEC
1653         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1654         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1655         current->thread.vr_save_area = NULL;
1656         current->thread.vrsave = 0;
1657         current->thread.used_vr = 0;
1658 #endif /* CONFIG_ALTIVEC */
1659 #ifdef CONFIG_SPE
1660         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1661         current->thread.acc = 0;
1662         current->thread.spefscr = 0;
1663         current->thread.used_spe = 0;
1664 #endif /* CONFIG_SPE */
1665 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1666         current->thread.tm_tfhar = 0;
1667         current->thread.tm_texasr = 0;
1668         current->thread.tm_tfiar = 0;
1669 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1670 }
1671 EXPORT_SYMBOL(start_thread);
1672
1673 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1674                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1675
1676 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1677 {
1678         struct pt_regs *regs = tsk->thread.regs;
1679
1680         /* This is a bit hairy.  If we are an SPE enabled  processor
1681          * (have embedded fp) we store the IEEE exception enable flags in
1682          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1683          * mode (asyn, precise, disabled) for 'Classic' FP. */
1684         if (val & PR_FP_EXC_SW_ENABLE) {
1685 #ifdef CONFIG_SPE
1686                 if (cpu_has_feature(CPU_FTR_SPE)) {
1687                         /*
1688                          * When the sticky exception bits are set
1689                          * directly by userspace, it must call prctl
1690                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1691                          * in the existing prctl settings) or
1692                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1693                          * the bits being set).  <fenv.h> functions
1694                          * saving and restoring the whole
1695                          * floating-point environment need to do so
1696                          * anyway to restore the prctl settings from
1697                          * the saved environment.
1698                          */
1699                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1700                         tsk->thread.fpexc_mode = val &
1701                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1702                         return 0;
1703                 } else {
1704                         return -EINVAL;
1705                 }
1706 #else
1707                 return -EINVAL;
1708 #endif
1709         }
1710
1711         /* on a CONFIG_SPE this does not hurt us.  The bits that
1712          * __pack_fe01 use do not overlap with bits used for
1713          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1714          * on CONFIG_SPE implementations are reserved so writing to
1715          * them does not change anything */
1716         if (val > PR_FP_EXC_PRECISE)
1717                 return -EINVAL;
1718         tsk->thread.fpexc_mode = __pack_fe01(val);
1719         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1720                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1721                         | tsk->thread.fpexc_mode;
1722         return 0;
1723 }
1724
1725 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1726 {
1727         unsigned int val;
1728
1729         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1730 #ifdef CONFIG_SPE
1731                 if (cpu_has_feature(CPU_FTR_SPE)) {
1732                         /*
1733                          * When the sticky exception bits are set
1734                          * directly by userspace, it must call prctl
1735                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1736                          * in the existing prctl settings) or
1737                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1738                          * the bits being set).  <fenv.h> functions
1739                          * saving and restoring the whole
1740                          * floating-point environment need to do so
1741                          * anyway to restore the prctl settings from
1742                          * the saved environment.
1743                          */
1744                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1745                         val = tsk->thread.fpexc_mode;
1746                 } else
1747                         return -EINVAL;
1748 #else
1749                 return -EINVAL;
1750 #endif
1751         else
1752                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1753         return put_user(val, (unsigned int __user *) adr);
1754 }
1755
1756 int set_endian(struct task_struct *tsk, unsigned int val)
1757 {
1758         struct pt_regs *regs = tsk->thread.regs;
1759
1760         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1761             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1762                 return -EINVAL;
1763
1764         if (regs == NULL)
1765                 return -EINVAL;
1766
1767         if (val == PR_ENDIAN_BIG)
1768                 regs->msr &= ~MSR_LE;
1769         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1770                 regs->msr |= MSR_LE;
1771         else
1772                 return -EINVAL;
1773
1774         return 0;
1775 }
1776
1777 int get_endian(struct task_struct *tsk, unsigned long adr)
1778 {
1779         struct pt_regs *regs = tsk->thread.regs;
1780         unsigned int val;
1781
1782         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1783             !cpu_has_feature(CPU_FTR_REAL_LE))
1784                 return -EINVAL;
1785
1786         if (regs == NULL)
1787                 return -EINVAL;
1788
1789         if (regs->msr & MSR_LE) {
1790                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1791                         val = PR_ENDIAN_LITTLE;
1792                 else
1793                         val = PR_ENDIAN_PPC_LITTLE;
1794         } else
1795                 val = PR_ENDIAN_BIG;
1796
1797         return put_user(val, (unsigned int __user *)adr);
1798 }
1799
1800 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1801 {
1802         tsk->thread.align_ctl = val;
1803         return 0;
1804 }
1805
1806 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1807 {
1808         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1809 }
1810
1811 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1812                                   unsigned long nbytes)
1813 {
1814         unsigned long stack_page;
1815         unsigned long cpu = task_cpu(p);
1816
1817         /*
1818          * Avoid crashing if the stack has overflowed and corrupted
1819          * task_cpu(p), which is in the thread_info struct.
1820          */
1821         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1822                 stack_page = (unsigned long) hardirq_ctx[cpu];
1823                 if (sp >= stack_page + sizeof(struct thread_struct)
1824                     && sp <= stack_page + THREAD_SIZE - nbytes)
1825                         return 1;
1826
1827                 stack_page = (unsigned long) softirq_ctx[cpu];
1828                 if (sp >= stack_page + sizeof(struct thread_struct)
1829                     && sp <= stack_page + THREAD_SIZE - nbytes)
1830                         return 1;
1831         }
1832         return 0;
1833 }
1834
1835 int validate_sp(unsigned long sp, struct task_struct *p,
1836                        unsigned long nbytes)
1837 {
1838         unsigned long stack_page = (unsigned long)task_stack_page(p);
1839
1840         if (sp >= stack_page + sizeof(struct thread_struct)
1841             && sp <= stack_page + THREAD_SIZE - nbytes)
1842                 return 1;
1843
1844         return valid_irq_stack(sp, p, nbytes);
1845 }
1846
1847 EXPORT_SYMBOL(validate_sp);
1848
1849 unsigned long get_wchan(struct task_struct *p)
1850 {
1851         unsigned long ip, sp;
1852         int count = 0;
1853
1854         if (!p || p == current || p->state == TASK_RUNNING)
1855                 return 0;
1856
1857         sp = p->thread.ksp;
1858         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1859                 return 0;
1860
1861         do {
1862                 sp = *(unsigned long *)sp;
1863                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1864                         return 0;
1865                 if (count > 0) {
1866                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1867                         if (!in_sched_functions(ip))
1868                                 return ip;
1869                 }
1870         } while (count++ < 16);
1871         return 0;
1872 }
1873
1874 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1875
1876 void show_stack(struct task_struct *tsk, unsigned long *stack)
1877 {
1878         unsigned long sp, ip, lr, newsp;
1879         int count = 0;
1880         int firstframe = 1;
1881 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1882         int curr_frame = current->curr_ret_stack;
1883         extern void return_to_handler(void);
1884         unsigned long rth = (unsigned long)return_to_handler;
1885 #endif
1886
1887         sp = (unsigned long) stack;
1888         if (tsk == NULL)
1889                 tsk = current;
1890         if (sp == 0) {
1891                 if (tsk == current)
1892                         sp = current_stack_pointer();
1893                 else
1894                         sp = tsk->thread.ksp;
1895         }
1896
1897         lr = 0;
1898         printk("Call Trace:\n");
1899         do {
1900                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1901                         return;
1902
1903                 stack = (unsigned long *) sp;
1904                 newsp = stack[0];
1905                 ip = stack[STACK_FRAME_LR_SAVE];
1906                 if (!firstframe || ip != lr) {
1907                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1908 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1909                         if ((ip == rth) && curr_frame >= 0) {
1910                                 pr_cont(" (%pS)",
1911                                        (void *)current->ret_stack[curr_frame].ret);
1912                                 curr_frame--;
1913                         }
1914 #endif
1915                         if (firstframe)
1916                                 pr_cont(" (unreliable)");
1917                         pr_cont("\n");
1918                 }
1919                 firstframe = 0;
1920
1921                 /*
1922                  * See if this is an exception frame.
1923                  * We look for the "regshere" marker in the current frame.
1924                  */
1925                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1926                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1927                         struct pt_regs *regs = (struct pt_regs *)
1928                                 (sp + STACK_FRAME_OVERHEAD);
1929                         lr = regs->link;
1930                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1931                                regs->trap, (void *)regs->nip, (void *)lr);
1932                         firstframe = 1;
1933                 }
1934
1935                 sp = newsp;
1936         } while (count++ < kstack_depth_to_print);
1937 }
1938
1939 #ifdef CONFIG_PPC64
1940 /* Called with hard IRQs off */
1941 void notrace __ppc64_runlatch_on(void)
1942 {
1943         struct thread_info *ti = current_thread_info();
1944         unsigned long ctrl;
1945
1946         ctrl = mfspr(SPRN_CTRLF);
1947         ctrl |= CTRL_RUNLATCH;
1948         mtspr(SPRN_CTRLT, ctrl);
1949
1950         ti->local_flags |= _TLF_RUNLATCH;
1951 }
1952
1953 /* Called with hard IRQs off */
1954 void notrace __ppc64_runlatch_off(void)
1955 {
1956         struct thread_info *ti = current_thread_info();
1957         unsigned long ctrl;
1958
1959         ti->local_flags &= ~_TLF_RUNLATCH;
1960
1961         ctrl = mfspr(SPRN_CTRLF);
1962         ctrl &= ~CTRL_RUNLATCH;
1963         mtspr(SPRN_CTRLT, ctrl);
1964 }
1965 #endif /* CONFIG_PPC64 */
1966
1967 unsigned long arch_align_stack(unsigned long sp)
1968 {
1969         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1970                 sp -= get_random_int() & ~PAGE_MASK;
1971         return sp & ~0xf;
1972 }
1973
1974 static inline unsigned long brk_rnd(void)
1975 {
1976         unsigned long rnd = 0;
1977
1978         /* 8MB for 32bit, 1GB for 64bit */
1979         if (is_32bit_task())
1980                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1981         else
1982                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1983
1984         return rnd << PAGE_SHIFT;
1985 }
1986
1987 unsigned long arch_randomize_brk(struct mm_struct *mm)
1988 {
1989         unsigned long base = mm->brk;
1990         unsigned long ret;
1991
1992 #ifdef CONFIG_PPC_STD_MMU_64
1993         /*
1994          * If we are using 1TB segments and we are allowed to randomise
1995          * the heap, we can put it above 1TB so it is backed by a 1TB
1996          * segment. Otherwise the heap will be in the bottom 1TB
1997          * which always uses 256MB segments and this may result in a
1998          * performance penalty. We don't need to worry about radix. For
1999          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2000          */
2001         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2002                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2003 #endif
2004
2005         ret = PAGE_ALIGN(base + brk_rnd());
2006
2007         if (ret < mm->brk)
2008                 return mm->brk;
2009
2010         return ret;
2011 }
2012