]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/prom.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[karo-tx-linux.git] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/export.h>
31 #include <linux/kexec.h>
32 #include <linux/irq.h>
33 #include <linux/memblock.h>
34 #include <linux/of.h>
35 #include <linux/of_fdt.h>
36 #include <linux/libfdt.h>
37 #include <linux/cpu.h>
38
39 #include <asm/prom.h>
40 #include <asm/rtas.h>
41 #include <asm/page.h>
42 #include <asm/processor.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/kdump.h>
46 #include <asm/smp.h>
47 #include <asm/mmu.h>
48 #include <asm/paca.h>
49 #include <asm/pgtable.h>
50 #include <asm/iommu.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/kexec.h>
56 #include <asm/opal.h>
57 #include <asm/fadump.h>
58 #include <asm/epapr_hcalls.h>
59 #include <asm/firmware.h>
60
61 #include <mm/mmu_decl.h>
62
63 #ifdef DEBUG
64 #define DBG(fmt...) printk(KERN_ERR fmt)
65 #else
66 #define DBG(fmt...)
67 #endif
68
69 #ifdef CONFIG_PPC64
70 int __initdata iommu_is_off;
71 int __initdata iommu_force_on;
72 unsigned long tce_alloc_start, tce_alloc_end;
73 u64 ppc64_rma_size;
74 #endif
75 static phys_addr_t first_memblock_size;
76 static int __initdata boot_cpu_count;
77
78 static int __init early_parse_mem(char *p)
79 {
80         if (!p)
81                 return 1;
82
83         memory_limit = PAGE_ALIGN(memparse(p, &p));
84         DBG("memory limit = 0x%llx\n", memory_limit);
85
86         return 0;
87 }
88 early_param("mem", early_parse_mem);
89
90 /*
91  * overlaps_initrd - check for overlap with page aligned extension of
92  * initrd.
93  */
94 static inline int overlaps_initrd(unsigned long start, unsigned long size)
95 {
96 #ifdef CONFIG_BLK_DEV_INITRD
97         if (!initrd_start)
98                 return 0;
99
100         return  (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
101                         start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
102 #else
103         return 0;
104 #endif
105 }
106
107 /**
108  * move_device_tree - move tree to an unused area, if needed.
109  *
110  * The device tree may be allocated beyond our memory limit, or inside the
111  * crash kernel region for kdump, or within the page aligned range of initrd.
112  * If so, move it out of the way.
113  */
114 static void __init move_device_tree(void)
115 {
116         unsigned long start, size;
117         void *p;
118
119         DBG("-> move_device_tree\n");
120
121         start = __pa(initial_boot_params);
122         size = fdt_totalsize(initial_boot_params);
123
124         if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
125                         overlaps_crashkernel(start, size) ||
126                         overlaps_initrd(start, size)) {
127                 p = __va(memblock_alloc(size, PAGE_SIZE));
128                 memcpy(p, initial_boot_params, size);
129                 initial_boot_params = p;
130                 DBG("Moved device tree to 0x%p\n", p);
131         }
132
133         DBG("<- move_device_tree\n");
134 }
135
136 /*
137  * ibm,pa-features is a per-cpu property that contains a string of
138  * attribute descriptors, each of which has a 2 byte header plus up
139  * to 254 bytes worth of processor attribute bits.  First header
140  * byte specifies the number of bytes following the header.
141  * Second header byte is an "attribute-specifier" type, of which
142  * zero is the only currently-defined value.
143  * Implementation:  Pass in the byte and bit offset for the feature
144  * that we are interested in.  The function will return -1 if the
145  * pa-features property is missing, or a 1/0 to indicate if the feature
146  * is supported/not supported.  Note that the bit numbers are
147  * big-endian to match the definition in PAPR.
148  */
149 static struct ibm_pa_feature {
150         unsigned long   cpu_features;   /* CPU_FTR_xxx bit */
151         unsigned long   mmu_features;   /* MMU_FTR_xxx bit */
152         unsigned int    cpu_user_ftrs;  /* PPC_FEATURE_xxx bit */
153         unsigned int    cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
154         unsigned char   pabyte;         /* byte number in ibm,pa-features */
155         unsigned char   pabit;          /* bit number (big-endian) */
156         unsigned char   invert;         /* if 1, pa bit set => clear feature */
157 } ibm_pa_features[] __initdata = {
158         { .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
159         { .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
160         { .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
161         { .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
162         { .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
163         { .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX },
164         { .pabyte = 1,  .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
165         { .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
166                                     .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
167         /*
168          * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
169          * we don't want to turn on TM here, so we use the *_COMP versions
170          * which are 0 if the kernel doesn't support TM.
171          */
172         { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
173           .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
174 };
175
176 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
177                                  unsigned long tablelen,
178                                  struct ibm_pa_feature *fp,
179                                  unsigned long ft_size)
180 {
181         unsigned long i, len, bit;
182
183         /* find descriptor with type == 0 */
184         for (;;) {
185                 if (tablelen < 3)
186                         return;
187                 len = 2 + ftrs[0];
188                 if (tablelen < len)
189                         return;         /* descriptor 0 not found */
190                 if (ftrs[1] == 0)
191                         break;
192                 tablelen -= len;
193                 ftrs += len;
194         }
195
196         /* loop over bits we know about */
197         for (i = 0; i < ft_size; ++i, ++fp) {
198                 if (fp->pabyte >= ftrs[0])
199                         continue;
200                 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
201                 if (bit ^ fp->invert) {
202                         cur_cpu_spec->cpu_features |= fp->cpu_features;
203                         cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
204                         cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
205                         cur_cpu_spec->mmu_features |= fp->mmu_features;
206                 } else {
207                         cur_cpu_spec->cpu_features &= ~fp->cpu_features;
208                         cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
209                         cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
210                         cur_cpu_spec->mmu_features &= ~fp->mmu_features;
211                 }
212         }
213 }
214
215 static void __init check_cpu_pa_features(unsigned long node)
216 {
217         const unsigned char *pa_ftrs;
218         int tablelen;
219
220         pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
221         if (pa_ftrs == NULL)
222                 return;
223
224         scan_features(node, pa_ftrs, tablelen,
225                       ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
226 }
227
228 #ifdef CONFIG_PPC_STD_MMU_64
229 static void __init init_mmu_slb_size(unsigned long node)
230 {
231         const __be32 *slb_size_ptr;
232
233         slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
234                         of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
235
236         if (slb_size_ptr)
237                 mmu_slb_size = be32_to_cpup(slb_size_ptr);
238 }
239 #else
240 #define init_mmu_slb_size(node) do { } while(0)
241 #endif
242
243 static struct feature_property {
244         const char *name;
245         u32 min_value;
246         unsigned long cpu_feature;
247         unsigned long cpu_user_ftr;
248 } feature_properties[] __initdata = {
249 #ifdef CONFIG_ALTIVEC
250         {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
251         {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
252 #endif /* CONFIG_ALTIVEC */
253 #ifdef CONFIG_VSX
254         /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
255         {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
256 #endif /* CONFIG_VSX */
257 #ifdef CONFIG_PPC64
258         {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
259         {"ibm,purr", 1, CPU_FTR_PURR, 0},
260         {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
261 #endif /* CONFIG_PPC64 */
262 };
263
264 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
265 static inline void identical_pvr_fixup(unsigned long node)
266 {
267         unsigned int pvr;
268         const char *model = of_get_flat_dt_prop(node, "model", NULL);
269
270         /*
271          * Since 440GR(x)/440EP(x) processors have the same pvr,
272          * we check the node path and set bit 28 in the cur_cpu_spec
273          * pvr for EP(x) processor version. This bit is always 0 in
274          * the "real" pvr. Then we call identify_cpu again with
275          * the new logical pvr to enable FPU support.
276          */
277         if (model && strstr(model, "440EP")) {
278                 pvr = cur_cpu_spec->pvr_value | 0x8;
279                 identify_cpu(0, pvr);
280                 DBG("Using logical pvr %x for %s\n", pvr, model);
281         }
282 }
283 #else
284 #define identical_pvr_fixup(node) do { } while(0)
285 #endif
286
287 static void __init check_cpu_feature_properties(unsigned long node)
288 {
289         unsigned long i;
290         struct feature_property *fp = feature_properties;
291         const __be32 *prop;
292
293         for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
294                 prop = of_get_flat_dt_prop(node, fp->name, NULL);
295                 if (prop && be32_to_cpup(prop) >= fp->min_value) {
296                         cur_cpu_spec->cpu_features |= fp->cpu_feature;
297                         cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
298                 }
299         }
300 }
301
302 static int __init early_init_dt_scan_cpus(unsigned long node,
303                                           const char *uname, int depth,
304                                           void *data)
305 {
306         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
307         const __be32 *prop;
308         const __be32 *intserv;
309         int i, nthreads;
310         int len;
311         int found = -1;
312         int found_thread = 0;
313
314         /* We are scanning "cpu" nodes only */
315         if (type == NULL || strcmp(type, "cpu") != 0)
316                 return 0;
317
318         /* Get physical cpuid */
319         intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
320         if (!intserv)
321                 intserv = of_get_flat_dt_prop(node, "reg", &len);
322
323         nthreads = len / sizeof(int);
324
325         /*
326          * Now see if any of these threads match our boot cpu.
327          * NOTE: This must match the parsing done in smp_setup_cpu_maps.
328          */
329         for (i = 0; i < nthreads; i++) {
330                 /*
331                  * version 2 of the kexec param format adds the phys cpuid of
332                  * booted proc.
333                  */
334                 if (fdt_version(initial_boot_params) >= 2) {
335                         if (be32_to_cpu(intserv[i]) ==
336                             fdt_boot_cpuid_phys(initial_boot_params)) {
337                                 found = boot_cpu_count;
338                                 found_thread = i;
339                         }
340                 } else {
341                         /*
342                          * Check if it's the boot-cpu, set it's hw index now,
343                          * unfortunately this format did not support booting
344                          * off secondary threads.
345                          */
346                         if (of_get_flat_dt_prop(node,
347                                         "linux,boot-cpu", NULL) != NULL)
348                                 found = boot_cpu_count;
349                 }
350 #ifdef CONFIG_SMP
351                 /* logical cpu id is always 0 on UP kernels */
352                 boot_cpu_count++;
353 #endif
354         }
355
356         /* Not the boot CPU */
357         if (found < 0)
358                 return 0;
359
360         DBG("boot cpu: logical %d physical %d\n", found,
361             be32_to_cpu(intserv[found_thread]));
362         boot_cpuid = found;
363         set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
364
365         /*
366          * PAPR defines "logical" PVR values for cpus that
367          * meet various levels of the architecture:
368          * 0x0f000001   Architecture version 2.04
369          * 0x0f000002   Architecture version 2.05
370          * If the cpu-version property in the cpu node contains
371          * such a value, we call identify_cpu again with the
372          * logical PVR value in order to use the cpu feature
373          * bits appropriate for the architecture level.
374          *
375          * A POWER6 partition in "POWER6 architected" mode
376          * uses the 0x0f000002 PVR value; in POWER5+ mode
377          * it uses 0x0f000001.
378          */
379         prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
380         if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
381                 identify_cpu(0, be32_to_cpup(prop));
382
383         identical_pvr_fixup(node);
384
385         check_cpu_feature_properties(node);
386         check_cpu_pa_features(node);
387         init_mmu_slb_size(node);
388
389 #ifdef CONFIG_PPC64
390         if (nthreads > 1)
391                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
392         else
393                 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
394 #endif
395         return 0;
396 }
397
398 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
399                                                 const char *uname,
400                                                 int depth, void *data)
401 {
402         const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
403
404         /* Use common scan routine to determine if this is the chosen node */
405         if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
406                 return 0;
407
408 #ifdef CONFIG_PPC64
409         /* check if iommu is forced on or off */
410         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
411                 iommu_is_off = 1;
412         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
413                 iommu_force_on = 1;
414 #endif
415
416         /* mem=x on the command line is the preferred mechanism */
417         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
418         if (lprop)
419                 memory_limit = *lprop;
420
421 #ifdef CONFIG_PPC64
422         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
423         if (lprop)
424                 tce_alloc_start = *lprop;
425         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
426         if (lprop)
427                 tce_alloc_end = *lprop;
428 #endif
429
430 #ifdef CONFIG_KEXEC_CORE
431         lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
432         if (lprop)
433                 crashk_res.start = *lprop;
434
435         lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
436         if (lprop)
437                 crashk_res.end = crashk_res.start + *lprop - 1;
438 #endif
439
440         /* break now */
441         return 1;
442 }
443
444 #ifdef CONFIG_PPC_PSERIES
445 /*
446  * Interpret the ibm,dynamic-memory property in the
447  * /ibm,dynamic-reconfiguration-memory node.
448  * This contains a list of memory blocks along with NUMA affinity
449  * information.
450  */
451 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
452 {
453         const __be32 *dm, *ls, *usm;
454         int l;
455         unsigned long n, flags;
456         u64 base, size, memblock_size;
457         unsigned int is_kexec_kdump = 0, rngs;
458
459         ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
460         if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
461                 return 0;
462         memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
463
464         dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
465         if (dm == NULL || l < sizeof(__be32))
466                 return 0;
467
468         n = of_read_number(dm++, 1);    /* number of entries */
469         if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
470                 return 0;
471
472         /* check if this is a kexec/kdump kernel. */
473         usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
474                                                  &l);
475         if (usm != NULL)
476                 is_kexec_kdump = 1;
477
478         for (; n != 0; --n) {
479                 base = dt_mem_next_cell(dt_root_addr_cells, &dm);
480                 flags = of_read_number(&dm[3], 1);
481                 /* skip DRC index, pad, assoc. list index, flags */
482                 dm += 4;
483                 /* skip this block if the reserved bit is set in flags
484                    or if the block is not assigned to this partition */
485                 if ((flags & DRCONF_MEM_RESERVED) ||
486                                 !(flags & DRCONF_MEM_ASSIGNED))
487                         continue;
488                 size = memblock_size;
489                 rngs = 1;
490                 if (is_kexec_kdump) {
491                         /*
492                          * For each memblock in ibm,dynamic-memory, a corresponding
493                          * entry in linux,drconf-usable-memory property contains
494                          * a counter 'p' followed by 'p' (base, size) duple.
495                          * Now read the counter from
496                          * linux,drconf-usable-memory property
497                          */
498                         rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
499                         if (!rngs) /* there are no (base, size) duple */
500                                 continue;
501                 }
502                 do {
503                         if (is_kexec_kdump) {
504                                 base = dt_mem_next_cell(dt_root_addr_cells,
505                                                          &usm);
506                                 size = dt_mem_next_cell(dt_root_size_cells,
507                                                          &usm);
508                         }
509                         if (iommu_is_off) {
510                                 if (base >= 0x80000000ul)
511                                         continue;
512                                 if ((base + size) > 0x80000000ul)
513                                         size = 0x80000000ul - base;
514                         }
515                         memblock_add(base, size);
516                 } while (--rngs);
517         }
518         memblock_dump_all();
519         return 0;
520 }
521 #else
522 #define early_init_dt_scan_drconf_memory(node)  0
523 #endif /* CONFIG_PPC_PSERIES */
524
525 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
526                                                 const char *uname,
527                                                 int depth, void *data)
528 {
529         if (depth == 1 &&
530             strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
531                 return early_init_dt_scan_drconf_memory(node);
532         
533         return early_init_dt_scan_memory(node, uname, depth, data);
534 }
535
536 /*
537  * For a relocatable kernel, we need to get the memstart_addr first,
538  * then use it to calculate the virtual kernel start address. This has
539  * to happen at a very early stage (before machine_init). In this case,
540  * we just want to get the memstart_address and would not like to mess the
541  * memblock at this stage. So introduce a variable to skip the memblock_add()
542  * for this reason.
543  */
544 #ifdef CONFIG_RELOCATABLE
545 static int add_mem_to_memblock = 1;
546 #else
547 #define add_mem_to_memblock 1
548 #endif
549
550 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
551 {
552 #ifdef CONFIG_PPC64
553         if (iommu_is_off) {
554                 if (base >= 0x80000000ul)
555                         return;
556                 if ((base + size) > 0x80000000ul)
557                         size = 0x80000000ul - base;
558         }
559 #endif
560         /* Keep track of the beginning of memory -and- the size of
561          * the very first block in the device-tree as it represents
562          * the RMA on ppc64 server
563          */
564         if (base < memstart_addr) {
565                 memstart_addr = base;
566                 first_memblock_size = size;
567         }
568
569         /* Add the chunk to the MEMBLOCK list */
570         if (add_mem_to_memblock)
571                 memblock_add(base, size);
572 }
573
574 static void __init early_reserve_mem_dt(void)
575 {
576         unsigned long i, dt_root;
577         int len;
578         const __be32 *prop;
579
580         early_init_fdt_reserve_self();
581         early_init_fdt_scan_reserved_mem();
582
583         dt_root = of_get_flat_dt_root();
584
585         prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
586
587         if (!prop)
588                 return;
589
590         DBG("Found new-style reserved-ranges\n");
591
592         /* Each reserved range is an (address,size) pair, 2 cells each,
593          * totalling 4 cells per range. */
594         for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
595                 u64 base, size;
596
597                 base = of_read_number(prop + (i * 4) + 0, 2);
598                 size = of_read_number(prop + (i * 4) + 2, 2);
599
600                 if (size) {
601                         DBG("reserving: %llx -> %llx\n", base, size);
602                         memblock_reserve(base, size);
603                 }
604         }
605 }
606
607 static void __init early_reserve_mem(void)
608 {
609         __be64 *reserve_map;
610
611         reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
612                         fdt_off_mem_rsvmap(initial_boot_params));
613
614         /* Look for the new "reserved-regions" property in the DT */
615         early_reserve_mem_dt();
616
617 #ifdef CONFIG_BLK_DEV_INITRD
618         /* Then reserve the initrd, if any */
619         if (initrd_start && (initrd_end > initrd_start)) {
620                 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
621                         _ALIGN_UP(initrd_end, PAGE_SIZE) -
622                         _ALIGN_DOWN(initrd_start, PAGE_SIZE));
623         }
624 #endif /* CONFIG_BLK_DEV_INITRD */
625
626 #ifdef CONFIG_PPC32
627         /* 
628          * Handle the case where we might be booting from an old kexec
629          * image that setup the mem_rsvmap as pairs of 32-bit values
630          */
631         if (be64_to_cpup(reserve_map) > 0xffffffffull) {
632                 u32 base_32, size_32;
633                 __be32 *reserve_map_32 = (__be32 *)reserve_map;
634
635                 DBG("Found old 32-bit reserve map\n");
636
637                 while (1) {
638                         base_32 = be32_to_cpup(reserve_map_32++);
639                         size_32 = be32_to_cpup(reserve_map_32++);
640                         if (size_32 == 0)
641                                 break;
642                         DBG("reserving: %x -> %x\n", base_32, size_32);
643                         memblock_reserve(base_32, size_32);
644                 }
645                 return;
646         }
647 #endif
648 }
649
650 void __init early_init_devtree(void *params)
651 {
652         phys_addr_t limit;
653
654         DBG(" -> early_init_devtree(%p)\n", params);
655
656         /* Too early to BUG_ON(), do it by hand */
657         if (!early_init_dt_verify(params))
658                 panic("BUG: Failed verifying flat device tree, bad version?");
659
660 #ifdef CONFIG_PPC_RTAS
661         /* Some machines might need RTAS info for debugging, grab it now. */
662         of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
663 #endif
664
665 #ifdef CONFIG_PPC_POWERNV
666         /* Some machines might need OPAL info for debugging, grab it now. */
667         of_scan_flat_dt(early_init_dt_scan_opal, NULL);
668 #endif
669
670 #ifdef CONFIG_FA_DUMP
671         /* scan tree to see if dump is active during last boot */
672         of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
673 #endif
674
675         /* Retrieve various informations from the /chosen node of the
676          * device-tree, including the platform type, initrd location and
677          * size, TCE reserve, and more ...
678          */
679         of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
680
681         /* Scan memory nodes and rebuild MEMBLOCKs */
682         of_scan_flat_dt(early_init_dt_scan_root, NULL);
683         of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
684
685         parse_early_param();
686
687         /* make sure we've parsed cmdline for mem= before this */
688         if (memory_limit)
689                 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
690         setup_initial_memory_limit(memstart_addr, first_memblock_size);
691         /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
692         memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
693         /* If relocatable, reserve first 32k for interrupt vectors etc. */
694         if (PHYSICAL_START > MEMORY_START)
695                 memblock_reserve(MEMORY_START, 0x8000);
696         reserve_kdump_trampoline();
697 #ifdef CONFIG_FA_DUMP
698         /*
699          * If we fail to reserve memory for firmware-assisted dump then
700          * fallback to kexec based kdump.
701          */
702         if (fadump_reserve_mem() == 0)
703 #endif
704                 reserve_crashkernel();
705         early_reserve_mem();
706
707         /* Ensure that total memory size is page-aligned. */
708         limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
709         memblock_enforce_memory_limit(limit);
710
711         memblock_allow_resize();
712         memblock_dump_all();
713
714         DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
715
716         /* We may need to relocate the flat tree, do it now.
717          * FIXME .. and the initrd too? */
718         move_device_tree();
719
720         allocate_pacas();
721
722         DBG("Scanning CPUs ...\n");
723
724         /* Retrieve CPU related informations from the flat tree
725          * (altivec support, boot CPU ID, ...)
726          */
727         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
728         if (boot_cpuid < 0) {
729                 printk("Failed to identify boot CPU !\n");
730                 BUG();
731         }
732
733 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
734         /* We'll later wait for secondaries to check in; there are
735          * NCPUS-1 non-boot CPUs  :-)
736          */
737         spinning_secondaries = boot_cpu_count - 1;
738 #endif
739
740         mmu_early_init_devtree();
741
742 #ifdef CONFIG_PPC_POWERNV
743         /* Scan and build the list of machine check recoverable ranges */
744         of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
745 #endif
746         epapr_paravirt_early_init();
747
748         /* Now try to figure out if we are running on LPAR and so on */
749         pseries_probe_fw_features();
750
751 #ifdef CONFIG_PPC_PS3
752         /* Identify PS3 firmware */
753         if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
754                 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
755 #endif
756
757         DBG(" <- early_init_devtree()\n");
758 }
759
760 #ifdef CONFIG_RELOCATABLE
761 /*
762  * This function run before early_init_devtree, so we have to init
763  * initial_boot_params.
764  */
765 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
766 {
767         /* Setup flat device-tree pointer */
768         initial_boot_params = params;
769
770         /*
771          * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
772          * mess the memblock.
773          */
774         add_mem_to_memblock = 0;
775         of_scan_flat_dt(early_init_dt_scan_root, NULL);
776         of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
777         add_mem_to_memblock = 1;
778
779         if (size)
780                 *size = first_memblock_size;
781 }
782 #endif
783
784 /*******
785  *
786  * New implementation of the OF "find" APIs, return a refcounted
787  * object, call of_node_put() when done.  The device tree and list
788  * are protected by a rw_lock.
789  *
790  * Note that property management will need some locking as well,
791  * this isn't dealt with yet.
792  *
793  *******/
794
795 /**
796  * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
797  * @np: device node of the device
798  *
799  * This looks for a property "ibm,chip-id" in the node or any
800  * of its parents and returns its content, or -1 if it cannot
801  * be found.
802  */
803 int of_get_ibm_chip_id(struct device_node *np)
804 {
805         of_node_get(np);
806         while (np) {
807                 u32 chip_id;
808
809                 /*
810                  * Skiboot may produce memory nodes that contain more than one
811                  * cell in chip-id, we only read the first one here.
812                  */
813                 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
814                         of_node_put(np);
815                         return chip_id;
816                 }
817
818                 np = of_get_next_parent(np);
819         }
820         return -1;
821 }
822 EXPORT_SYMBOL(of_get_ibm_chip_id);
823
824 /**
825  * cpu_to_chip_id - Return the cpus chip-id
826  * @cpu: The logical cpu number.
827  *
828  * Return the value of the ibm,chip-id property corresponding to the given
829  * logical cpu number. If the chip-id can not be found, returns -1.
830  */
831 int cpu_to_chip_id(int cpu)
832 {
833         struct device_node *np;
834
835         np = of_get_cpu_node(cpu, NULL);
836         if (!np)
837                 return -1;
838
839         of_node_put(np);
840         return of_get_ibm_chip_id(np);
841 }
842 EXPORT_SYMBOL(cpu_to_chip_id);
843
844 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
845 {
846         return (int)phys_id == get_hard_smp_processor_id(cpu);
847 }