]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_64_mmu_radix.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20
21 /*
22  * Supported radix tree geometry.
23  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
24  * for a page size of 64k or 4k.
25  */
26 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
27
28 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
29                            struct kvmppc_pte *gpte, bool data, bool iswrite)
30 {
31         struct kvm *kvm = vcpu->kvm;
32         u32 pid;
33         int ret, level, ps;
34         __be64 prte, rpte;
35         unsigned long ptbl;
36         unsigned long root, pte, index;
37         unsigned long rts, bits, offset;
38         unsigned long gpa;
39         unsigned long proc_tbl_size;
40
41         /* Work out effective PID */
42         switch (eaddr >> 62) {
43         case 0:
44                 pid = vcpu->arch.pid;
45                 break;
46         case 3:
47                 pid = 0;
48                 break;
49         default:
50                 return -EINVAL;
51         }
52         proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
53         if (pid * 16 >= proc_tbl_size)
54                 return -EINVAL;
55
56         /* Read partition table to find root of tree for effective PID */
57         ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
58         ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
59         if (ret)
60                 return ret;
61
62         root = be64_to_cpu(prte);
63         rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
64                 ((root & RTS2_MASK) >> RTS2_SHIFT);
65         bits = root & RPDS_MASK;
66         root = root & RPDB_MASK;
67
68         /* P9 DD1 interprets RTS (radix tree size) differently */
69         offset = rts + 31;
70         if (cpu_has_feature(CPU_FTR_POWER9_DD1))
71                 offset -= 3;
72
73         /* current implementations only support 52-bit space */
74         if (offset != 52)
75                 return -EINVAL;
76
77         for (level = 3; level >= 0; --level) {
78                 if (level && bits != p9_supported_radix_bits[level])
79                         return -EINVAL;
80                 if (level == 0 && !(bits == 5 || bits == 9))
81                         return -EINVAL;
82                 offset -= bits;
83                 index = (eaddr >> offset) & ((1UL << bits) - 1);
84                 /* check that low bits of page table base are zero */
85                 if (root & ((1UL << (bits + 3)) - 1))
86                         return -EINVAL;
87                 ret = kvm_read_guest(kvm, root + index * 8,
88                                      &rpte, sizeof(rpte));
89                 if (ret)
90                         return ret;
91                 pte = __be64_to_cpu(rpte);
92                 if (!(pte & _PAGE_PRESENT))
93                         return -ENOENT;
94                 if (pte & _PAGE_PTE)
95                         break;
96                 bits = pte & 0x1f;
97                 root = pte & 0x0fffffffffffff00ul;
98         }
99         /* need a leaf at lowest level; 512GB pages not supported */
100         if (level < 0 || level == 3)
101                 return -EINVAL;
102
103         /* offset is now log base 2 of the page size */
104         gpa = pte & 0x01fffffffffff000ul;
105         if (gpa & ((1ul << offset) - 1))
106                 return -EINVAL;
107         gpa += eaddr & ((1ul << offset) - 1);
108         for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
109                 if (offset == mmu_psize_defs[ps].shift)
110                         break;
111         gpte->page_size = ps;
112
113         gpte->eaddr = eaddr;
114         gpte->raddr = gpa;
115
116         /* Work out permissions */
117         gpte->may_read = !!(pte & _PAGE_READ);
118         gpte->may_write = !!(pte & _PAGE_WRITE);
119         gpte->may_execute = !!(pte & _PAGE_EXEC);
120         if (kvmppc_get_msr(vcpu) & MSR_PR) {
121                 if (pte & _PAGE_PRIVILEGED) {
122                         gpte->may_read = 0;
123                         gpte->may_write = 0;
124                         gpte->may_execute = 0;
125                 }
126         } else {
127                 if (!(pte & _PAGE_PRIVILEGED)) {
128                         /* Check AMR/IAMR to see if strict mode is in force */
129                         if (vcpu->arch.amr & (1ul << 62))
130                                 gpte->may_read = 0;
131                         if (vcpu->arch.amr & (1ul << 63))
132                                 gpte->may_write = 0;
133                         if (vcpu->arch.iamr & (1ul << 62))
134                                 gpte->may_execute = 0;
135                 }
136         }
137
138         return 0;
139 }
140
141 #ifdef CONFIG_PPC_64K_PAGES
142 #define MMU_BASE_PSIZE  MMU_PAGE_64K
143 #else
144 #define MMU_BASE_PSIZE  MMU_PAGE_4K
145 #endif
146
147 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
148                                     unsigned int pshift)
149 {
150         int psize = MMU_BASE_PSIZE;
151
152         if (pshift >= PMD_SHIFT)
153                 psize = MMU_PAGE_2M;
154         addr &= ~0xfffUL;
155         addr |= mmu_psize_defs[psize].ap << 5;
156         asm volatile("ptesync": : :"memory");
157         asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
158                      : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
159         asm volatile("ptesync": : :"memory");
160 }
161
162 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
163                                       unsigned long clr, unsigned long set,
164                                       unsigned long addr, unsigned int shift)
165 {
166         unsigned long old = 0;
167
168         if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
169             pte_present(*ptep)) {
170                 /* have to invalidate it first */
171                 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
172                 kvmppc_radix_tlbie_page(kvm, addr, shift);
173                 set |= _PAGE_PRESENT;
174                 old &= _PAGE_PRESENT;
175         }
176         return __radix_pte_update(ptep, clr, set) | old;
177 }
178
179 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
180                              pte_t *ptep, pte_t pte)
181 {
182         radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
183 }
184
185 static struct kmem_cache *kvm_pte_cache;
186
187 static pte_t *kvmppc_pte_alloc(void)
188 {
189         return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
190 }
191
192 static void kvmppc_pte_free(pte_t *ptep)
193 {
194         kmem_cache_free(kvm_pte_cache, ptep);
195 }
196
197 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
198                              unsigned int level, unsigned long mmu_seq)
199 {
200         pgd_t *pgd;
201         pud_t *pud, *new_pud = NULL;
202         pmd_t *pmd, *new_pmd = NULL;
203         pte_t *ptep, *new_ptep = NULL;
204         unsigned long old;
205         int ret;
206
207         /* Traverse the guest's 2nd-level tree, allocate new levels needed */
208         pgd = kvm->arch.pgtable + pgd_index(gpa);
209         pud = NULL;
210         if (pgd_present(*pgd))
211                 pud = pud_offset(pgd, gpa);
212         else
213                 new_pud = pud_alloc_one(kvm->mm, gpa);
214
215         pmd = NULL;
216         if (pud && pud_present(*pud))
217                 pmd = pmd_offset(pud, gpa);
218         else
219                 new_pmd = pmd_alloc_one(kvm->mm, gpa);
220
221         if (level == 0 && !(pmd && pmd_present(*pmd)))
222                 new_ptep = kvmppc_pte_alloc();
223
224         /* Check if we might have been invalidated; let the guest retry if so */
225         spin_lock(&kvm->mmu_lock);
226         ret = -EAGAIN;
227         if (mmu_notifier_retry(kvm, mmu_seq))
228                 goto out_unlock;
229
230         /* Now traverse again under the lock and change the tree */
231         ret = -ENOMEM;
232         if (pgd_none(*pgd)) {
233                 if (!new_pud)
234                         goto out_unlock;
235                 pgd_populate(kvm->mm, pgd, new_pud);
236                 new_pud = NULL;
237         }
238         pud = pud_offset(pgd, gpa);
239         if (pud_none(*pud)) {
240                 if (!new_pmd)
241                         goto out_unlock;
242                 pud_populate(kvm->mm, pud, new_pmd);
243                 new_pmd = NULL;
244         }
245         pmd = pmd_offset(pud, gpa);
246         if (pmd_large(*pmd)) {
247                 /* Someone else has instantiated a large page here; retry */
248                 ret = -EAGAIN;
249                 goto out_unlock;
250         }
251         if (level == 1 && !pmd_none(*pmd)) {
252                 /*
253                  * There's a page table page here, but we wanted
254                  * to install a large page.  Tell the caller and let
255                  * it try installing a normal page if it wants.
256                  */
257                 ret = -EBUSY;
258                 goto out_unlock;
259         }
260         if (level == 0) {
261                 if (pmd_none(*pmd)) {
262                         if (!new_ptep)
263                                 goto out_unlock;
264                         pmd_populate(kvm->mm, pmd, new_ptep);
265                         new_ptep = NULL;
266                 }
267                 ptep = pte_offset_kernel(pmd, gpa);
268                 if (pte_present(*ptep)) {
269                         /* PTE was previously valid, so invalidate it */
270                         old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
271                                                       0, gpa, 0);
272                         kvmppc_radix_tlbie_page(kvm, gpa, 0);
273                         if (old & _PAGE_DIRTY)
274                                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
275                 }
276                 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
277         } else {
278                 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
279         }
280         ret = 0;
281
282  out_unlock:
283         spin_unlock(&kvm->mmu_lock);
284         if (new_pud)
285                 pud_free(kvm->mm, new_pud);
286         if (new_pmd)
287                 pmd_free(kvm->mm, new_pmd);
288         if (new_ptep)
289                 kvmppc_pte_free(new_ptep);
290         return ret;
291 }
292
293 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
294                                    unsigned long ea, unsigned long dsisr)
295 {
296         struct kvm *kvm = vcpu->kvm;
297         unsigned long mmu_seq, pte_size;
298         unsigned long gpa, gfn, hva, pfn;
299         struct kvm_memory_slot *memslot;
300         struct page *page = NULL, *pages[1];
301         long ret, npages, ok;
302         unsigned int writing;
303         struct vm_area_struct *vma;
304         unsigned long flags;
305         pte_t pte, *ptep;
306         unsigned long pgflags;
307         unsigned int shift, level;
308
309         /* Check for unusual errors */
310         if (dsisr & DSISR_UNSUPP_MMU) {
311                 pr_err("KVM: Got unsupported MMU fault\n");
312                 return -EFAULT;
313         }
314         if (dsisr & DSISR_BADACCESS) {
315                 /* Reflect to the guest as DSI */
316                 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
317                 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
318                 return RESUME_GUEST;
319         }
320
321         /* Translate the logical address and get the page */
322         gpa = vcpu->arch.fault_gpa & ~0xfffUL;
323         gpa &= ~0xF000000000000000ul;
324         gfn = gpa >> PAGE_SHIFT;
325         if (!(dsisr & DSISR_PGDIRFAULT))
326                 gpa |= ea & 0xfff;
327         memslot = gfn_to_memslot(kvm, gfn);
328
329         /* No memslot means it's an emulated MMIO region */
330         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
331                 if (dsisr & (DSISR_PGDIRFAULT | DSISR_BADACCESS |
332                              DSISR_SET_RC)) {
333                         /*
334                          * Bad address in guest page table tree, or other
335                          * unusual error - reflect it to the guest as DSI.
336                          */
337                         kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
338                         return RESUME_GUEST;
339                 }
340                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
341                                               dsisr & DSISR_ISSTORE);
342         }
343
344         /* used to check for invalidations in progress */
345         mmu_seq = kvm->mmu_notifier_seq;
346         smp_rmb();
347
348         writing = (dsisr & DSISR_ISSTORE) != 0;
349         hva = gfn_to_hva_memslot(memslot, gfn);
350         if (dsisr & DSISR_SET_RC) {
351                 /*
352                  * Need to set an R or C bit in the 2nd-level tables;
353                  * if the relevant bits aren't already set in the linux
354                  * page tables, fall through to do the gup_fast to
355                  * set them in the linux page tables too.
356                  */
357                 ok = 0;
358                 pgflags = _PAGE_ACCESSED;
359                 if (writing)
360                         pgflags |= _PAGE_DIRTY;
361                 local_irq_save(flags);
362                 ptep = __find_linux_pte_or_hugepte(current->mm->pgd, hva,
363                                                    NULL, NULL);
364                 if (ptep) {
365                         pte = READ_ONCE(*ptep);
366                         if (pte_present(pte) &&
367                             (pte_val(pte) & pgflags) == pgflags)
368                                 ok = 1;
369                 }
370                 local_irq_restore(flags);
371                 if (ok) {
372                         spin_lock(&kvm->mmu_lock);
373                         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
374                                 spin_unlock(&kvm->mmu_lock);
375                                 return RESUME_GUEST;
376                         }
377                         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable,
378                                                         gpa, NULL, &shift);
379                         if (ptep && pte_present(*ptep)) {
380                                 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
381                                                         gpa, shift);
382                                 spin_unlock(&kvm->mmu_lock);
383                                 return RESUME_GUEST;
384                         }
385                         spin_unlock(&kvm->mmu_lock);
386                 }
387         }
388
389         ret = -EFAULT;
390         pfn = 0;
391         pte_size = PAGE_SIZE;
392         pgflags = _PAGE_READ | _PAGE_EXEC;
393         level = 0;
394         npages = get_user_pages_fast(hva, 1, writing, pages);
395         if (npages < 1) {
396                 /* Check if it's an I/O mapping */
397                 down_read(&current->mm->mmap_sem);
398                 vma = find_vma(current->mm, hva);
399                 if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
400                     (vma->vm_flags & VM_PFNMAP)) {
401                         pfn = vma->vm_pgoff +
402                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
403                         pgflags = pgprot_val(vma->vm_page_prot);
404                 }
405                 up_read(&current->mm->mmap_sem);
406                 if (!pfn)
407                         return -EFAULT;
408         } else {
409                 page = pages[0];
410                 pfn = page_to_pfn(page);
411                 if (PageHuge(page)) {
412                         page = compound_head(page);
413                         pte_size <<= compound_order(page);
414                         /* See if we can insert a 2MB large-page PTE here */
415                         if (pte_size >= PMD_SIZE &&
416                             (gpa & PMD_MASK & PAGE_MASK) ==
417                             (hva & PMD_MASK & PAGE_MASK)) {
418                                 level = 1;
419                                 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
420                         }
421                 }
422                 /* See if we can provide write access */
423                 if (writing) {
424                         /*
425                          * We assume gup_fast has set dirty on the host PTE.
426                          */
427                         pgflags |= _PAGE_WRITE;
428                 } else {
429                         local_irq_save(flags);
430                         ptep = __find_linux_pte_or_hugepte(current->mm->pgd,
431                                                         hva, NULL, NULL);
432                         if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
433                                 pgflags |= _PAGE_WRITE;
434                         local_irq_restore(flags);
435                 }
436         }
437
438         /*
439          * Compute the PTE value that we need to insert.
440          */
441         pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
442         if (pgflags & _PAGE_WRITE)
443                 pgflags |= _PAGE_DIRTY;
444         pte = pfn_pte(pfn, __pgprot(pgflags));
445
446         /* Allocate space in the tree and write the PTE */
447         ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
448         if (ret == -EBUSY) {
449                 /*
450                  * There's already a PMD where wanted to install a large page;
451                  * for now, fall back to installing a small page.
452                  */
453                 level = 0;
454                 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
455                 pte = pfn_pte(pfn, __pgprot(pgflags));
456                 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
457         }
458         if (ret == 0 || ret == -EAGAIN)
459                 ret = RESUME_GUEST;
460
461         if (page) {
462                 /*
463                  * We drop pages[0] here, not page because page might
464                  * have been set to the head page of a compound, but
465                  * we have to drop the reference on the correct tail
466                  * page to match the get inside gup()
467                  */
468                 put_page(pages[0]);
469         }
470         return ret;
471 }
472
473 static void mark_pages_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot,
474                              unsigned long gfn, unsigned int order)
475 {
476         unsigned long i, limit;
477         unsigned long *dp;
478
479         if (!memslot->dirty_bitmap)
480                 return;
481         limit = 1ul << order;
482         if (limit < BITS_PER_LONG) {
483                 for (i = 0; i < limit; ++i)
484                         mark_page_dirty(kvm, gfn + i);
485                 return;
486         }
487         dp = memslot->dirty_bitmap + (gfn - memslot->base_gfn);
488         limit /= BITS_PER_LONG;
489         for (i = 0; i < limit; ++i)
490                 *dp++ = ~0ul;
491 }
492
493 /* Called with kvm->lock held */
494 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
495                     unsigned long gfn)
496 {
497         pte_t *ptep;
498         unsigned long gpa = gfn << PAGE_SHIFT;
499         unsigned int shift;
500         unsigned long old;
501
502         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
503                                            NULL, &shift);
504         if (ptep && pte_present(*ptep)) {
505                 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
506                                               gpa, shift);
507                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
508                 if (old & _PAGE_DIRTY) {
509                         if (!shift)
510                                 mark_page_dirty(kvm, gfn);
511                         else
512                                 mark_pages_dirty(kvm, memslot,
513                                                  gfn, shift - PAGE_SHIFT);
514                 }
515         }
516         return 0;                               
517 }
518
519 /* Called with kvm->lock held */
520 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
521                   unsigned long gfn)
522 {
523         pte_t *ptep;
524         unsigned long gpa = gfn << PAGE_SHIFT;
525         unsigned int shift;
526         int ref = 0;
527
528         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
529                                            NULL, &shift);
530         if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
531                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
532                                         gpa, shift);
533                 /* XXX need to flush tlb here? */
534                 ref = 1;
535         }
536         return ref;
537 }
538
539 /* Called with kvm->lock held */
540 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
541                        unsigned long gfn)
542 {
543         pte_t *ptep;
544         unsigned long gpa = gfn << PAGE_SHIFT;
545         unsigned int shift;
546         int ref = 0;
547
548         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
549                                            NULL, &shift);
550         if (ptep && pte_present(*ptep) && pte_young(*ptep))
551                 ref = 1;
552         return ref;
553 }
554
555 /* Returns the number of PAGE_SIZE pages that are dirty */
556 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
557                                 struct kvm_memory_slot *memslot, int pagenum)
558 {
559         unsigned long gfn = memslot->base_gfn + pagenum;
560         unsigned long gpa = gfn << PAGE_SHIFT;
561         pte_t *ptep;
562         unsigned int shift;
563         int ret = 0;
564
565         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
566                                            NULL, &shift);
567         if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
568                 ret = 1;
569                 if (shift)
570                         ret = 1 << (shift - PAGE_SHIFT);
571                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
572                                         gpa, shift);
573                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
574         }
575         return ret;
576 }
577
578 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
579                         struct kvm_memory_slot *memslot, unsigned long *map)
580 {
581         unsigned long i, j;
582         unsigned long n, *p;
583         int npages;
584
585         /*
586          * Radix accumulates dirty bits in the first half of the
587          * memslot's dirty_bitmap area, for when pages are paged
588          * out or modified by the host directly.  Pick up these
589          * bits and add them to the map.
590          */
591         n = kvm_dirty_bitmap_bytes(memslot) / sizeof(long);
592         p = memslot->dirty_bitmap;
593         for (i = 0; i < n; ++i)
594                 map[i] |= xchg(&p[i], 0);
595
596         for (i = 0; i < memslot->npages; i = j) {
597                 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
598
599                 /*
600                  * Note that if npages > 0 then i must be a multiple of npages,
601                  * since huge pages are only used to back the guest at guest
602                  * real addresses that are a multiple of their size.
603                  * Since we have at most one PTE covering any given guest
604                  * real address, if npages > 1 we can skip to i + npages.
605                  */
606                 j = i + 1;
607                 if (npages)
608                         for (j = i; npages; ++j, --npages)
609                                 __set_bit_le(j, map);
610         }
611         return 0;
612 }
613
614 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
615                                  int psize, int *indexp)
616 {
617         if (!mmu_psize_defs[psize].shift)
618                 return;
619         info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
620                 (mmu_psize_defs[psize].ap << 29);
621         ++(*indexp);
622 }
623
624 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
625 {
626         int i;
627
628         if (!radix_enabled())
629                 return -EINVAL;
630         memset(info, 0, sizeof(*info));
631
632         /* 4k page size */
633         info->geometries[0].page_shift = 12;
634         info->geometries[0].level_bits[0] = 9;
635         for (i = 1; i < 4; ++i)
636                 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
637         /* 64k page size */
638         info->geometries[1].page_shift = 16;
639         for (i = 0; i < 4; ++i)
640                 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
641
642         i = 0;
643         add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
644         add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
645         add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
646         add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
647
648         return 0;
649 }
650
651 int kvmppc_init_vm_radix(struct kvm *kvm)
652 {
653         kvm->arch.pgtable = pgd_alloc(kvm->mm);
654         if (!kvm->arch.pgtable)
655                 return -ENOMEM;
656         return 0;
657 }
658
659 void kvmppc_free_radix(struct kvm *kvm)
660 {
661         unsigned long ig, iu, im;
662         pte_t *pte;
663         pmd_t *pmd;
664         pud_t *pud;
665         pgd_t *pgd;
666
667         if (!kvm->arch.pgtable)
668                 return;
669         pgd = kvm->arch.pgtable;
670         for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
671                 if (!pgd_present(*pgd))
672                         continue;
673                 pud = pud_offset(pgd, 0);
674                 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
675                         if (!pud_present(*pud))
676                                 continue;
677                         pmd = pmd_offset(pud, 0);
678                         for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
679                                 if (pmd_huge(*pmd)) {
680                                         pmd_clear(pmd);
681                                         continue;
682                                 }
683                                 if (!pmd_present(*pmd))
684                                         continue;
685                                 pte = pte_offset_map(pmd, 0);
686                                 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
687                                 kvmppc_pte_free(pte);
688                                 pmd_clear(pmd);
689                         }
690                         pmd_free(kvm->mm, pmd_offset(pud, 0));
691                         pud_clear(pud);
692                 }
693                 pud_free(kvm->mm, pud_offset(pgd, 0));
694                 pgd_clear(pgd);
695         }
696         pgd_free(kvm->mm, kvm->arch.pgtable);
697 }
698
699 static void pte_ctor(void *addr)
700 {
701         memset(addr, 0, PTE_TABLE_SIZE);
702 }
703
704 int kvmppc_radix_init(void)
705 {
706         unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
707
708         kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
709         if (!kvm_pte_cache)
710                 return -ENOMEM;
711         return 0;
712 }
713
714 void kvmppc_radix_exit(void)
715 {
716         kmem_cache_destroy(kvm_pte_cache);
717 }