]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_64_mmu_radix.c
Merge tag 'drm-misc-next-fixes-2017-02-27' of git://anongit.freedesktop.org/git/drm...
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20
21 /*
22  * Supported radix tree geometry.
23  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
24  * for a page size of 64k or 4k.
25  */
26 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
27
28 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
29                            struct kvmppc_pte *gpte, bool data, bool iswrite)
30 {
31         struct kvm *kvm = vcpu->kvm;
32         u32 pid;
33         int ret, level, ps;
34         __be64 prte, rpte;
35         unsigned long root, pte, index;
36         unsigned long rts, bits, offset;
37         unsigned long gpa;
38         unsigned long proc_tbl_size;
39
40         /* Work out effective PID */
41         switch (eaddr >> 62) {
42         case 0:
43                 pid = vcpu->arch.pid;
44                 break;
45         case 3:
46                 pid = 0;
47                 break;
48         default:
49                 return -EINVAL;
50         }
51         proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
52         if (pid * 16 >= proc_tbl_size)
53                 return -EINVAL;
54
55         /* Read partition table to find root of tree for effective PID */
56         ret = kvm_read_guest(kvm, kvm->arch.process_table + pid * 16,
57                              &prte, sizeof(prte));
58         if (ret)
59                 return ret;
60
61         root = be64_to_cpu(prte);
62         rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
63                 ((root & RTS2_MASK) >> RTS2_SHIFT);
64         bits = root & RPDS_MASK;
65         root = root & RPDB_MASK;
66
67         /* P9 DD1 interprets RTS (radix tree size) differently */
68         offset = rts + 31;
69         if (cpu_has_feature(CPU_FTR_POWER9_DD1))
70                 offset -= 3;
71
72         /* current implementations only support 52-bit space */
73         if (offset != 52)
74                 return -EINVAL;
75
76         for (level = 3; level >= 0; --level) {
77                 if (level && bits != p9_supported_radix_bits[level])
78                         return -EINVAL;
79                 if (level == 0 && !(bits == 5 || bits == 9))
80                         return -EINVAL;
81                 offset -= bits;
82                 index = (eaddr >> offset) & ((1UL << bits) - 1);
83                 /* check that low bits of page table base are zero */
84                 if (root & ((1UL << (bits + 3)) - 1))
85                         return -EINVAL;
86                 ret = kvm_read_guest(kvm, root + index * 8,
87                                      &rpte, sizeof(rpte));
88                 if (ret)
89                         return ret;
90                 pte = __be64_to_cpu(rpte);
91                 if (!(pte & _PAGE_PRESENT))
92                         return -ENOENT;
93                 if (pte & _PAGE_PTE)
94                         break;
95                 bits = pte & 0x1f;
96                 root = pte & 0x0fffffffffffff00ul;
97         }
98         /* need a leaf at lowest level; 512GB pages not supported */
99         if (level < 0 || level == 3)
100                 return -EINVAL;
101
102         /* offset is now log base 2 of the page size */
103         gpa = pte & 0x01fffffffffff000ul;
104         if (gpa & ((1ul << offset) - 1))
105                 return -EINVAL;
106         gpa += eaddr & ((1ul << offset) - 1);
107         for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
108                 if (offset == mmu_psize_defs[ps].shift)
109                         break;
110         gpte->page_size = ps;
111
112         gpte->eaddr = eaddr;
113         gpte->raddr = gpa;
114
115         /* Work out permissions */
116         gpte->may_read = !!(pte & _PAGE_READ);
117         gpte->may_write = !!(pte & _PAGE_WRITE);
118         gpte->may_execute = !!(pte & _PAGE_EXEC);
119         if (kvmppc_get_msr(vcpu) & MSR_PR) {
120                 if (pte & _PAGE_PRIVILEGED) {
121                         gpte->may_read = 0;
122                         gpte->may_write = 0;
123                         gpte->may_execute = 0;
124                 }
125         } else {
126                 if (!(pte & _PAGE_PRIVILEGED)) {
127                         /* Check AMR/IAMR to see if strict mode is in force */
128                         if (vcpu->arch.amr & (1ul << 62))
129                                 gpte->may_read = 0;
130                         if (vcpu->arch.amr & (1ul << 63))
131                                 gpte->may_write = 0;
132                         if (vcpu->arch.iamr & (1ul << 62))
133                                 gpte->may_execute = 0;
134                 }
135         }
136
137         return 0;
138 }
139
140 #ifdef CONFIG_PPC_64K_PAGES
141 #define MMU_BASE_PSIZE  MMU_PAGE_64K
142 #else
143 #define MMU_BASE_PSIZE  MMU_PAGE_4K
144 #endif
145
146 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
147                                     unsigned int pshift)
148 {
149         int psize = MMU_BASE_PSIZE;
150
151         if (pshift >= PMD_SHIFT)
152                 psize = MMU_PAGE_2M;
153         addr &= ~0xfffUL;
154         addr |= mmu_psize_defs[psize].ap << 5;
155         asm volatile("ptesync": : :"memory");
156         asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
157                      : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
158         asm volatile("ptesync": : :"memory");
159 }
160
161 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
162                                       unsigned long clr, unsigned long set,
163                                       unsigned long addr, unsigned int shift)
164 {
165         unsigned long old = 0;
166
167         if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
168             pte_present(*ptep)) {
169                 /* have to invalidate it first */
170                 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
171                 kvmppc_radix_tlbie_page(kvm, addr, shift);
172                 set |= _PAGE_PRESENT;
173                 old &= _PAGE_PRESENT;
174         }
175         return __radix_pte_update(ptep, clr, set) | old;
176 }
177
178 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
179                              pte_t *ptep, pte_t pte)
180 {
181         radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
182 }
183
184 static struct kmem_cache *kvm_pte_cache;
185
186 static pte_t *kvmppc_pte_alloc(void)
187 {
188         return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
189 }
190
191 static void kvmppc_pte_free(pte_t *ptep)
192 {
193         kmem_cache_free(kvm_pte_cache, ptep);
194 }
195
196 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
197                              unsigned int level, unsigned long mmu_seq)
198 {
199         pgd_t *pgd;
200         pud_t *pud, *new_pud = NULL;
201         pmd_t *pmd, *new_pmd = NULL;
202         pte_t *ptep, *new_ptep = NULL;
203         unsigned long old;
204         int ret;
205
206         /* Traverse the guest's 2nd-level tree, allocate new levels needed */
207         pgd = kvm->arch.pgtable + pgd_index(gpa);
208         pud = NULL;
209         if (pgd_present(*pgd))
210                 pud = pud_offset(pgd, gpa);
211         else
212                 new_pud = pud_alloc_one(kvm->mm, gpa);
213
214         pmd = NULL;
215         if (pud && pud_present(*pud))
216                 pmd = pmd_offset(pud, gpa);
217         else
218                 new_pmd = pmd_alloc_one(kvm->mm, gpa);
219
220         if (level == 0 && !(pmd && pmd_present(*pmd)))
221                 new_ptep = kvmppc_pte_alloc();
222
223         /* Check if we might have been invalidated; let the guest retry if so */
224         spin_lock(&kvm->mmu_lock);
225         ret = -EAGAIN;
226         if (mmu_notifier_retry(kvm, mmu_seq))
227                 goto out_unlock;
228
229         /* Now traverse again under the lock and change the tree */
230         ret = -ENOMEM;
231         if (pgd_none(*pgd)) {
232                 if (!new_pud)
233                         goto out_unlock;
234                 pgd_populate(kvm->mm, pgd, new_pud);
235                 new_pud = NULL;
236         }
237         pud = pud_offset(pgd, gpa);
238         if (pud_none(*pud)) {
239                 if (!new_pmd)
240                         goto out_unlock;
241                 pud_populate(kvm->mm, pud, new_pmd);
242                 new_pmd = NULL;
243         }
244         pmd = pmd_offset(pud, gpa);
245         if (pmd_large(*pmd)) {
246                 /* Someone else has instantiated a large page here; retry */
247                 ret = -EAGAIN;
248                 goto out_unlock;
249         }
250         if (level == 1 && !pmd_none(*pmd)) {
251                 /*
252                  * There's a page table page here, but we wanted
253                  * to install a large page.  Tell the caller and let
254                  * it try installing a normal page if it wants.
255                  */
256                 ret = -EBUSY;
257                 goto out_unlock;
258         }
259         if (level == 0) {
260                 if (pmd_none(*pmd)) {
261                         if (!new_ptep)
262                                 goto out_unlock;
263                         pmd_populate(kvm->mm, pmd, new_ptep);
264                         new_ptep = NULL;
265                 }
266                 ptep = pte_offset_kernel(pmd, gpa);
267                 if (pte_present(*ptep)) {
268                         /* PTE was previously valid, so invalidate it */
269                         old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
270                                                       0, gpa, 0);
271                         kvmppc_radix_tlbie_page(kvm, gpa, 0);
272                         if (old & _PAGE_DIRTY)
273                                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
274                 }
275                 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
276         } else {
277                 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
278         }
279         ret = 0;
280
281  out_unlock:
282         spin_unlock(&kvm->mmu_lock);
283         if (new_pud)
284                 pud_free(kvm->mm, new_pud);
285         if (new_pmd)
286                 pmd_free(kvm->mm, new_pmd);
287         if (new_ptep)
288                 kvmppc_pte_free(new_ptep);
289         return ret;
290 }
291
292 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
293                                    unsigned long ea, unsigned long dsisr)
294 {
295         struct kvm *kvm = vcpu->kvm;
296         unsigned long mmu_seq, pte_size;
297         unsigned long gpa, gfn, hva, pfn;
298         struct kvm_memory_slot *memslot;
299         struct page *page = NULL, *pages[1];
300         long ret, npages, ok;
301         unsigned int writing;
302         struct vm_area_struct *vma;
303         unsigned long flags;
304         pte_t pte, *ptep;
305         unsigned long pgflags;
306         unsigned int shift, level;
307
308         /* Check for unusual errors */
309         if (dsisr & DSISR_UNSUPP_MMU) {
310                 pr_err("KVM: Got unsupported MMU fault\n");
311                 return -EFAULT;
312         }
313         if (dsisr & DSISR_BADACCESS) {
314                 /* Reflect to the guest as DSI */
315                 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
316                 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
317                 return RESUME_GUEST;
318         }
319
320         /* Translate the logical address and get the page */
321         gpa = vcpu->arch.fault_gpa & ~0xfffUL;
322         gpa &= ~0xF000000000000000ul;
323         gfn = gpa >> PAGE_SHIFT;
324         if (!(dsisr & DSISR_PGDIRFAULT))
325                 gpa |= ea & 0xfff;
326         memslot = gfn_to_memslot(kvm, gfn);
327
328         /* No memslot means it's an emulated MMIO region */
329         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
330                 if (dsisr & (DSISR_PGDIRFAULT | DSISR_BADACCESS |
331                              DSISR_SET_RC)) {
332                         /*
333                          * Bad address in guest page table tree, or other
334                          * unusual error - reflect it to the guest as DSI.
335                          */
336                         kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
337                         return RESUME_GUEST;
338                 }
339                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
340                                               dsisr & DSISR_ISSTORE);
341         }
342
343         /* used to check for invalidations in progress */
344         mmu_seq = kvm->mmu_notifier_seq;
345         smp_rmb();
346
347         writing = (dsisr & DSISR_ISSTORE) != 0;
348         hva = gfn_to_hva_memslot(memslot, gfn);
349         if (dsisr & DSISR_SET_RC) {
350                 /*
351                  * Need to set an R or C bit in the 2nd-level tables;
352                  * if the relevant bits aren't already set in the linux
353                  * page tables, fall through to do the gup_fast to
354                  * set them in the linux page tables too.
355                  */
356                 ok = 0;
357                 pgflags = _PAGE_ACCESSED;
358                 if (writing)
359                         pgflags |= _PAGE_DIRTY;
360                 local_irq_save(flags);
361                 ptep = __find_linux_pte_or_hugepte(current->mm->pgd, hva,
362                                                    NULL, NULL);
363                 if (ptep) {
364                         pte = READ_ONCE(*ptep);
365                         if (pte_present(pte) &&
366                             (pte_val(pte) & pgflags) == pgflags)
367                                 ok = 1;
368                 }
369                 local_irq_restore(flags);
370                 if (ok) {
371                         spin_lock(&kvm->mmu_lock);
372                         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
373                                 spin_unlock(&kvm->mmu_lock);
374                                 return RESUME_GUEST;
375                         }
376                         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable,
377                                                         gpa, NULL, &shift);
378                         if (ptep && pte_present(*ptep)) {
379                                 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
380                                                         gpa, shift);
381                                 spin_unlock(&kvm->mmu_lock);
382                                 return RESUME_GUEST;
383                         }
384                         spin_unlock(&kvm->mmu_lock);
385                 }
386         }
387
388         ret = -EFAULT;
389         pfn = 0;
390         pte_size = PAGE_SIZE;
391         pgflags = _PAGE_READ | _PAGE_EXEC;
392         level = 0;
393         npages = get_user_pages_fast(hva, 1, writing, pages);
394         if (npages < 1) {
395                 /* Check if it's an I/O mapping */
396                 down_read(&current->mm->mmap_sem);
397                 vma = find_vma(current->mm, hva);
398                 if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
399                     (vma->vm_flags & VM_PFNMAP)) {
400                         pfn = vma->vm_pgoff +
401                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
402                         pgflags = pgprot_val(vma->vm_page_prot);
403                 }
404                 up_read(&current->mm->mmap_sem);
405                 if (!pfn)
406                         return -EFAULT;
407         } else {
408                 page = pages[0];
409                 pfn = page_to_pfn(page);
410                 if (PageHuge(page)) {
411                         page = compound_head(page);
412                         pte_size <<= compound_order(page);
413                         /* See if we can insert a 2MB large-page PTE here */
414                         if (pte_size >= PMD_SIZE &&
415                             (gpa & PMD_MASK & PAGE_MASK) ==
416                             (hva & PMD_MASK & PAGE_MASK)) {
417                                 level = 1;
418                                 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
419                         }
420                 }
421                 /* See if we can provide write access */
422                 if (writing) {
423                         /*
424                          * We assume gup_fast has set dirty on the host PTE.
425                          */
426                         pgflags |= _PAGE_WRITE;
427                 } else {
428                         local_irq_save(flags);
429                         ptep = __find_linux_pte_or_hugepte(current->mm->pgd,
430                                                         hva, NULL, NULL);
431                         if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
432                                 pgflags |= _PAGE_WRITE;
433                         local_irq_restore(flags);
434                 }
435         }
436
437         /*
438          * Compute the PTE value that we need to insert.
439          */
440         pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
441         if (pgflags & _PAGE_WRITE)
442                 pgflags |= _PAGE_DIRTY;
443         pte = pfn_pte(pfn, __pgprot(pgflags));
444
445         /* Allocate space in the tree and write the PTE */
446         ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
447         if (ret == -EBUSY) {
448                 /*
449                  * There's already a PMD where wanted to install a large page;
450                  * for now, fall back to installing a small page.
451                  */
452                 level = 0;
453                 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
454                 pte = pfn_pte(pfn, __pgprot(pgflags));
455                 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
456         }
457         if (ret == 0 || ret == -EAGAIN)
458                 ret = RESUME_GUEST;
459
460         if (page) {
461                 /*
462                  * We drop pages[0] here, not page because page might
463                  * have been set to the head page of a compound, but
464                  * we have to drop the reference on the correct tail
465                  * page to match the get inside gup()
466                  */
467                 put_page(pages[0]);
468         }
469         return ret;
470 }
471
472 static void mark_pages_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot,
473                              unsigned long gfn, unsigned int order)
474 {
475         unsigned long i, limit;
476         unsigned long *dp;
477
478         if (!memslot->dirty_bitmap)
479                 return;
480         limit = 1ul << order;
481         if (limit < BITS_PER_LONG) {
482                 for (i = 0; i < limit; ++i)
483                         mark_page_dirty(kvm, gfn + i);
484                 return;
485         }
486         dp = memslot->dirty_bitmap + (gfn - memslot->base_gfn);
487         limit /= BITS_PER_LONG;
488         for (i = 0; i < limit; ++i)
489                 *dp++ = ~0ul;
490 }
491
492 /* Called with kvm->lock held */
493 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
494                     unsigned long gfn)
495 {
496         pte_t *ptep;
497         unsigned long gpa = gfn << PAGE_SHIFT;
498         unsigned int shift;
499         unsigned long old;
500
501         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
502                                            NULL, &shift);
503         if (ptep && pte_present(*ptep)) {
504                 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
505                                               gpa, shift);
506                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
507                 if (old & _PAGE_DIRTY) {
508                         if (!shift)
509                                 mark_page_dirty(kvm, gfn);
510                         else
511                                 mark_pages_dirty(kvm, memslot,
512                                                  gfn, shift - PAGE_SHIFT);
513                 }
514         }
515         return 0;                               
516 }
517
518 /* Called with kvm->lock held */
519 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
520                   unsigned long gfn)
521 {
522         pte_t *ptep;
523         unsigned long gpa = gfn << PAGE_SHIFT;
524         unsigned int shift;
525         int ref = 0;
526
527         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
528                                            NULL, &shift);
529         if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
530                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
531                                         gpa, shift);
532                 /* XXX need to flush tlb here? */
533                 ref = 1;
534         }
535         return ref;
536 }
537
538 /* Called with kvm->lock held */
539 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
540                        unsigned long gfn)
541 {
542         pte_t *ptep;
543         unsigned long gpa = gfn << PAGE_SHIFT;
544         unsigned int shift;
545         int ref = 0;
546
547         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
548                                            NULL, &shift);
549         if (ptep && pte_present(*ptep) && pte_young(*ptep))
550                 ref = 1;
551         return ref;
552 }
553
554 /* Returns the number of PAGE_SIZE pages that are dirty */
555 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
556                                 struct kvm_memory_slot *memslot, int pagenum)
557 {
558         unsigned long gfn = memslot->base_gfn + pagenum;
559         unsigned long gpa = gfn << PAGE_SHIFT;
560         pte_t *ptep;
561         unsigned int shift;
562         int ret = 0;
563
564         ptep = __find_linux_pte_or_hugepte(kvm->arch.pgtable, gpa,
565                                            NULL, &shift);
566         if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
567                 ret = 1;
568                 if (shift)
569                         ret = 1 << (shift - PAGE_SHIFT);
570                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
571                                         gpa, shift);
572                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
573         }
574         return ret;
575 }
576
577 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
578                         struct kvm_memory_slot *memslot, unsigned long *map)
579 {
580         unsigned long i, j;
581         unsigned long n, *p;
582         int npages;
583
584         /*
585          * Radix accumulates dirty bits in the first half of the
586          * memslot's dirty_bitmap area, for when pages are paged
587          * out or modified by the host directly.  Pick up these
588          * bits and add them to the map.
589          */
590         n = kvm_dirty_bitmap_bytes(memslot) / sizeof(long);
591         p = memslot->dirty_bitmap;
592         for (i = 0; i < n; ++i)
593                 map[i] |= xchg(&p[i], 0);
594
595         for (i = 0; i < memslot->npages; i = j) {
596                 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
597
598                 /*
599                  * Note that if npages > 0 then i must be a multiple of npages,
600                  * since huge pages are only used to back the guest at guest
601                  * real addresses that are a multiple of their size.
602                  * Since we have at most one PTE covering any given guest
603                  * real address, if npages > 1 we can skip to i + npages.
604                  */
605                 j = i + 1;
606                 if (npages)
607                         for (j = i; npages; ++j, --npages)
608                                 __set_bit_le(j, map);
609         }
610         return 0;
611 }
612
613 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
614                                  int psize, int *indexp)
615 {
616         if (!mmu_psize_defs[psize].shift)
617                 return;
618         info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
619                 (mmu_psize_defs[psize].ap << 29);
620         ++(*indexp);
621 }
622
623 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
624 {
625         int i;
626
627         if (!radix_enabled())
628                 return -EINVAL;
629         memset(info, 0, sizeof(*info));
630
631         /* 4k page size */
632         info->geometries[0].page_shift = 12;
633         info->geometries[0].level_bits[0] = 9;
634         for (i = 1; i < 4; ++i)
635                 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
636         /* 64k page size */
637         info->geometries[1].page_shift = 16;
638         for (i = 0; i < 4; ++i)
639                 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
640
641         i = 0;
642         add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
643         add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
644         add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
645         add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
646
647         return 0;
648 }
649
650 int kvmppc_init_vm_radix(struct kvm *kvm)
651 {
652         kvm->arch.pgtable = pgd_alloc(kvm->mm);
653         if (!kvm->arch.pgtable)
654                 return -ENOMEM;
655         return 0;
656 }
657
658 void kvmppc_free_radix(struct kvm *kvm)
659 {
660         unsigned long ig, iu, im;
661         pte_t *pte;
662         pmd_t *pmd;
663         pud_t *pud;
664         pgd_t *pgd;
665
666         if (!kvm->arch.pgtable)
667                 return;
668         pgd = kvm->arch.pgtable;
669         for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
670                 if (!pgd_present(*pgd))
671                         continue;
672                 pud = pud_offset(pgd, 0);
673                 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
674                         if (!pud_present(*pud))
675                                 continue;
676                         pmd = pmd_offset(pud, 0);
677                         for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
678                                 if (pmd_huge(*pmd)) {
679                                         pmd_clear(pmd);
680                                         continue;
681                                 }
682                                 if (!pmd_present(*pmd))
683                                         continue;
684                                 pte = pte_offset_map(pmd, 0);
685                                 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
686                                 kvmppc_pte_free(pte);
687                                 pmd_clear(pmd);
688                         }
689                         pmd_free(kvm->mm, pmd_offset(pud, 0));
690                         pud_clear(pud);
691                 }
692                 pud_free(kvm->mm, pud_offset(pgd, 0));
693                 pgd_clear(pgd);
694         }
695         pgd_free(kvm->mm, kvm->arch.pgtable);
696 }
697
698 static void pte_ctor(void *addr)
699 {
700         memset(addr, 0, PTE_TABLE_SIZE);
701 }
702
703 int kvmppc_radix_init(void)
704 {
705         unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
706
707         kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
708         if (!kvm_pte_cache)
709                 return -ENOMEM;
710         return 0;
711 }
712
713 void kvmppc_radix_exit(void)
714 {
715         kmem_cache_destroy(kvm_pte_cache);
716 }