]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'v3.5-rc7' into late/soc
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <asm/switch_to.h>
49 #include <linux/gfp.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63         struct kvmppc_vcore *vc = vcpu->arch.vcore;
64
65         local_paca->kvm_hstate.kvm_vcpu = vcpu;
66         local_paca->kvm_hstate.kvm_vcore = vc;
67         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
68                 vc->stolen_tb += mftb() - vc->preempt_tb;
69 }
70
71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
72 {
73         struct kvmppc_vcore *vc = vcpu->arch.vcore;
74
75         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
76                 vc->preempt_tb = mftb();
77 }
78
79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 {
81         vcpu->arch.shregs.msr = msr;
82         kvmppc_end_cede(vcpu);
83 }
84
85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 {
87         vcpu->arch.pvr = pvr;
88 }
89
90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 {
92         int r;
93
94         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
95         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
96                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
97         for (r = 0; r < 16; ++r)
98                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
99                        r, kvmppc_get_gpr(vcpu, r),
100                        r+16, kvmppc_get_gpr(vcpu, r+16));
101         pr_err("ctr = %.16lx  lr  = %.16lx\n",
102                vcpu->arch.ctr, vcpu->arch.lr);
103         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
104                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
105         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
106                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
107         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
108                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
109         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
110                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
111         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
112         pr_err("fault dar = %.16lx dsisr = %.8x\n",
113                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
114         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
115         for (r = 0; r < vcpu->arch.slb_max; ++r)
116                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
117                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
118         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120                vcpu->arch.last_inst);
121 }
122
123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 {
125         int r;
126         struct kvm_vcpu *v, *ret = NULL;
127
128         mutex_lock(&kvm->lock);
129         kvm_for_each_vcpu(r, v, kvm) {
130                 if (v->vcpu_id == id) {
131                         ret = v;
132                         break;
133                 }
134         }
135         mutex_unlock(&kvm->lock);
136         return ret;
137 }
138
139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 {
141         vpa->shared_proc = 1;
142         vpa->yield_count = 1;
143 }
144
145 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
146 struct reg_vpa {
147         u32 dummy;
148         union {
149                 u16 hword;
150                 u32 word;
151         } length;
152 };
153
154 static int vpa_is_registered(struct kvmppc_vpa *vpap)
155 {
156         if (vpap->update_pending)
157                 return vpap->next_gpa != 0;
158         return vpap->pinned_addr != NULL;
159 }
160
161 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
162                                        unsigned long flags,
163                                        unsigned long vcpuid, unsigned long vpa)
164 {
165         struct kvm *kvm = vcpu->kvm;
166         unsigned long len, nb;
167         void *va;
168         struct kvm_vcpu *tvcpu;
169         int err;
170         int subfunc;
171         struct kvmppc_vpa *vpap;
172
173         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
174         if (!tvcpu)
175                 return H_PARAMETER;
176
177         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
178         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
179             subfunc == H_VPA_REG_SLB) {
180                 /* Registering new area - address must be cache-line aligned */
181                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
182                         return H_PARAMETER;
183
184                 /* convert logical addr to kernel addr and read length */
185                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
186                 if (va == NULL)
187                         return H_PARAMETER;
188                 if (subfunc == H_VPA_REG_VPA)
189                         len = ((struct reg_vpa *)va)->length.hword;
190                 else
191                         len = ((struct reg_vpa *)va)->length.word;
192                 kvmppc_unpin_guest_page(kvm, va);
193
194                 /* Check length */
195                 if (len > nb || len < sizeof(struct reg_vpa))
196                         return H_PARAMETER;
197         } else {
198                 vpa = 0;
199                 len = 0;
200         }
201
202         err = H_PARAMETER;
203         vpap = NULL;
204         spin_lock(&tvcpu->arch.vpa_update_lock);
205
206         switch (subfunc) {
207         case H_VPA_REG_VPA:             /* register VPA */
208                 if (len < sizeof(struct lppaca))
209                         break;
210                 vpap = &tvcpu->arch.vpa;
211                 err = 0;
212                 break;
213
214         case H_VPA_REG_DTL:             /* register DTL */
215                 if (len < sizeof(struct dtl_entry))
216                         break;
217                 len -= len % sizeof(struct dtl_entry);
218
219                 /* Check that they have previously registered a VPA */
220                 err = H_RESOURCE;
221                 if (!vpa_is_registered(&tvcpu->arch.vpa))
222                         break;
223
224                 vpap = &tvcpu->arch.dtl;
225                 err = 0;
226                 break;
227
228         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
229                 /* Check that they have previously registered a VPA */
230                 err = H_RESOURCE;
231                 if (!vpa_is_registered(&tvcpu->arch.vpa))
232                         break;
233
234                 vpap = &tvcpu->arch.slb_shadow;
235                 err = 0;
236                 break;
237
238         case H_VPA_DEREG_VPA:           /* deregister VPA */
239                 /* Check they don't still have a DTL or SLB buf registered */
240                 err = H_RESOURCE;
241                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
242                     vpa_is_registered(&tvcpu->arch.slb_shadow))
243                         break;
244
245                 vpap = &tvcpu->arch.vpa;
246                 err = 0;
247                 break;
248
249         case H_VPA_DEREG_DTL:           /* deregister DTL */
250                 vpap = &tvcpu->arch.dtl;
251                 err = 0;
252                 break;
253
254         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
255                 vpap = &tvcpu->arch.slb_shadow;
256                 err = 0;
257                 break;
258         }
259
260         if (vpap) {
261                 vpap->next_gpa = vpa;
262                 vpap->len = len;
263                 vpap->update_pending = 1;
264         }
265
266         spin_unlock(&tvcpu->arch.vpa_update_lock);
267
268         return err;
269 }
270
271 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
272 {
273         struct kvm *kvm = vcpu->kvm;
274         void *va;
275         unsigned long nb;
276         unsigned long gpa;
277
278         /*
279          * We need to pin the page pointed to by vpap->next_gpa,
280          * but we can't call kvmppc_pin_guest_page under the lock
281          * as it does get_user_pages() and down_read().  So we
282          * have to drop the lock, pin the page, then get the lock
283          * again and check that a new area didn't get registered
284          * in the meantime.
285          */
286         for (;;) {
287                 gpa = vpap->next_gpa;
288                 spin_unlock(&vcpu->arch.vpa_update_lock);
289                 va = NULL;
290                 nb = 0;
291                 if (gpa)
292                         va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
293                 spin_lock(&vcpu->arch.vpa_update_lock);
294                 if (gpa == vpap->next_gpa)
295                         break;
296                 /* sigh... unpin that one and try again */
297                 if (va)
298                         kvmppc_unpin_guest_page(kvm, va);
299         }
300
301         vpap->update_pending = 0;
302         if (va && nb < vpap->len) {
303                 /*
304                  * If it's now too short, it must be that userspace
305                  * has changed the mappings underlying guest memory,
306                  * so unregister the region.
307                  */
308                 kvmppc_unpin_guest_page(kvm, va);
309                 va = NULL;
310         }
311         if (vpap->pinned_addr)
312                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
313         vpap->pinned_addr = va;
314         if (va)
315                 vpap->pinned_end = va + vpap->len;
316 }
317
318 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
319 {
320         spin_lock(&vcpu->arch.vpa_update_lock);
321         if (vcpu->arch.vpa.update_pending) {
322                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
323                 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
324         }
325         if (vcpu->arch.dtl.update_pending) {
326                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
327                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
328                 vcpu->arch.dtl_index = 0;
329         }
330         if (vcpu->arch.slb_shadow.update_pending)
331                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
332         spin_unlock(&vcpu->arch.vpa_update_lock);
333 }
334
335 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
336                                     struct kvmppc_vcore *vc)
337 {
338         struct dtl_entry *dt;
339         struct lppaca *vpa;
340         unsigned long old_stolen;
341
342         dt = vcpu->arch.dtl_ptr;
343         vpa = vcpu->arch.vpa.pinned_addr;
344         old_stolen = vcpu->arch.stolen_logged;
345         vcpu->arch.stolen_logged = vc->stolen_tb;
346         if (!dt || !vpa)
347                 return;
348         memset(dt, 0, sizeof(struct dtl_entry));
349         dt->dispatch_reason = 7;
350         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
351         dt->timebase = mftb();
352         dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
353         dt->srr0 = kvmppc_get_pc(vcpu);
354         dt->srr1 = vcpu->arch.shregs.msr;
355         ++dt;
356         if (dt == vcpu->arch.dtl.pinned_end)
357                 dt = vcpu->arch.dtl.pinned_addr;
358         vcpu->arch.dtl_ptr = dt;
359         /* order writing *dt vs. writing vpa->dtl_idx */
360         smp_wmb();
361         vpa->dtl_idx = ++vcpu->arch.dtl_index;
362 }
363
364 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
365 {
366         unsigned long req = kvmppc_get_gpr(vcpu, 3);
367         unsigned long target, ret = H_SUCCESS;
368         struct kvm_vcpu *tvcpu;
369
370         switch (req) {
371         case H_ENTER:
372                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
373                                               kvmppc_get_gpr(vcpu, 5),
374                                               kvmppc_get_gpr(vcpu, 6),
375                                               kvmppc_get_gpr(vcpu, 7));
376                 break;
377         case H_CEDE:
378                 break;
379         case H_PROD:
380                 target = kvmppc_get_gpr(vcpu, 4);
381                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
382                 if (!tvcpu) {
383                         ret = H_PARAMETER;
384                         break;
385                 }
386                 tvcpu->arch.prodded = 1;
387                 smp_mb();
388                 if (vcpu->arch.ceded) {
389                         if (waitqueue_active(&vcpu->wq)) {
390                                 wake_up_interruptible(&vcpu->wq);
391                                 vcpu->stat.halt_wakeup++;
392                         }
393                 }
394                 break;
395         case H_CONFER:
396                 break;
397         case H_REGISTER_VPA:
398                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
399                                         kvmppc_get_gpr(vcpu, 5),
400                                         kvmppc_get_gpr(vcpu, 6));
401                 break;
402         default:
403                 return RESUME_HOST;
404         }
405         kvmppc_set_gpr(vcpu, 3, ret);
406         vcpu->arch.hcall_needed = 0;
407         return RESUME_GUEST;
408 }
409
410 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
411                               struct task_struct *tsk)
412 {
413         int r = RESUME_HOST;
414
415         vcpu->stat.sum_exits++;
416
417         run->exit_reason = KVM_EXIT_UNKNOWN;
418         run->ready_for_interrupt_injection = 1;
419         switch (vcpu->arch.trap) {
420         /* We're good on these - the host merely wanted to get our attention */
421         case BOOK3S_INTERRUPT_HV_DECREMENTER:
422                 vcpu->stat.dec_exits++;
423                 r = RESUME_GUEST;
424                 break;
425         case BOOK3S_INTERRUPT_EXTERNAL:
426                 vcpu->stat.ext_intr_exits++;
427                 r = RESUME_GUEST;
428                 break;
429         case BOOK3S_INTERRUPT_PERFMON:
430                 r = RESUME_GUEST;
431                 break;
432         case BOOK3S_INTERRUPT_PROGRAM:
433         {
434                 ulong flags;
435                 /*
436                  * Normally program interrupts are delivered directly
437                  * to the guest by the hardware, but we can get here
438                  * as a result of a hypervisor emulation interrupt
439                  * (e40) getting turned into a 700 by BML RTAS.
440                  */
441                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
442                 kvmppc_core_queue_program(vcpu, flags);
443                 r = RESUME_GUEST;
444                 break;
445         }
446         case BOOK3S_INTERRUPT_SYSCALL:
447         {
448                 /* hcall - punt to userspace */
449                 int i;
450
451                 if (vcpu->arch.shregs.msr & MSR_PR) {
452                         /* sc 1 from userspace - reflect to guest syscall */
453                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
454                         r = RESUME_GUEST;
455                         break;
456                 }
457                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
458                 for (i = 0; i < 9; ++i)
459                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
460                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
461                 vcpu->arch.hcall_needed = 1;
462                 r = RESUME_HOST;
463                 break;
464         }
465         /*
466          * We get these next two if the guest accesses a page which it thinks
467          * it has mapped but which is not actually present, either because
468          * it is for an emulated I/O device or because the corresonding
469          * host page has been paged out.  Any other HDSI/HISI interrupts
470          * have been handled already.
471          */
472         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
473                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
474                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
475                 break;
476         case BOOK3S_INTERRUPT_H_INST_STORAGE:
477                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
478                                 kvmppc_get_pc(vcpu), 0);
479                 break;
480         /*
481          * This occurs if the guest executes an illegal instruction.
482          * We just generate a program interrupt to the guest, since
483          * we don't emulate any guest instructions at this stage.
484          */
485         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
486                 kvmppc_core_queue_program(vcpu, 0x80000);
487                 r = RESUME_GUEST;
488                 break;
489         default:
490                 kvmppc_dump_regs(vcpu);
491                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
492                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
493                         vcpu->arch.shregs.msr);
494                 r = RESUME_HOST;
495                 BUG();
496                 break;
497         }
498
499         return r;
500 }
501
502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
503                                   struct kvm_sregs *sregs)
504 {
505         int i;
506
507         sregs->pvr = vcpu->arch.pvr;
508
509         memset(sregs, 0, sizeof(struct kvm_sregs));
510         for (i = 0; i < vcpu->arch.slb_max; i++) {
511                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
512                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
513         }
514
515         return 0;
516 }
517
518 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
519                                   struct kvm_sregs *sregs)
520 {
521         int i, j;
522
523         kvmppc_set_pvr(vcpu, sregs->pvr);
524
525         j = 0;
526         for (i = 0; i < vcpu->arch.slb_nr; i++) {
527                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
528                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
529                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
530                         ++j;
531                 }
532         }
533         vcpu->arch.slb_max = j;
534
535         return 0;
536 }
537
538 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
539 {
540         int r = -EINVAL;
541
542         switch (reg->id) {
543         case KVM_REG_PPC_HIOR:
544                 r = put_user(0, (u64 __user *)reg->addr);
545                 break;
546         default:
547                 break;
548         }
549
550         return r;
551 }
552
553 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
554 {
555         int r = -EINVAL;
556
557         switch (reg->id) {
558         case KVM_REG_PPC_HIOR:
559         {
560                 u64 hior;
561                 /* Only allow this to be set to zero */
562                 r = get_user(hior, (u64 __user *)reg->addr);
563                 if (!r && (hior != 0))
564                         r = -EINVAL;
565                 break;
566         }
567         default:
568                 break;
569         }
570
571         return r;
572 }
573
574 int kvmppc_core_check_processor_compat(void)
575 {
576         if (cpu_has_feature(CPU_FTR_HVMODE))
577                 return 0;
578         return -EIO;
579 }
580
581 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
582 {
583         struct kvm_vcpu *vcpu;
584         int err = -EINVAL;
585         int core;
586         struct kvmppc_vcore *vcore;
587
588         core = id / threads_per_core;
589         if (core >= KVM_MAX_VCORES)
590                 goto out;
591
592         err = -ENOMEM;
593         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
594         if (!vcpu)
595                 goto out;
596
597         err = kvm_vcpu_init(vcpu, kvm, id);
598         if (err)
599                 goto free_vcpu;
600
601         vcpu->arch.shared = &vcpu->arch.shregs;
602         vcpu->arch.last_cpu = -1;
603         vcpu->arch.mmcr[0] = MMCR0_FC;
604         vcpu->arch.ctrl = CTRL_RUNLATCH;
605         /* default to host PVR, since we can't spoof it */
606         vcpu->arch.pvr = mfspr(SPRN_PVR);
607         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
608         spin_lock_init(&vcpu->arch.vpa_update_lock);
609
610         kvmppc_mmu_book3s_hv_init(vcpu);
611
612         /*
613          * We consider the vcpu stopped until we see the first run ioctl for it.
614          */
615         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
616
617         init_waitqueue_head(&vcpu->arch.cpu_run);
618
619         mutex_lock(&kvm->lock);
620         vcore = kvm->arch.vcores[core];
621         if (!vcore) {
622                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
623                 if (vcore) {
624                         INIT_LIST_HEAD(&vcore->runnable_threads);
625                         spin_lock_init(&vcore->lock);
626                         init_waitqueue_head(&vcore->wq);
627                         vcore->preempt_tb = mftb();
628                 }
629                 kvm->arch.vcores[core] = vcore;
630         }
631         mutex_unlock(&kvm->lock);
632
633         if (!vcore)
634                 goto free_vcpu;
635
636         spin_lock(&vcore->lock);
637         ++vcore->num_threads;
638         spin_unlock(&vcore->lock);
639         vcpu->arch.vcore = vcore;
640         vcpu->arch.stolen_logged = vcore->stolen_tb;
641
642         vcpu->arch.cpu_type = KVM_CPU_3S_64;
643         kvmppc_sanity_check(vcpu);
644
645         return vcpu;
646
647 free_vcpu:
648         kmem_cache_free(kvm_vcpu_cache, vcpu);
649 out:
650         return ERR_PTR(err);
651 }
652
653 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
654 {
655         spin_lock(&vcpu->arch.vpa_update_lock);
656         if (vcpu->arch.dtl.pinned_addr)
657                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
658         if (vcpu->arch.slb_shadow.pinned_addr)
659                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
660         if (vcpu->arch.vpa.pinned_addr)
661                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
662         spin_unlock(&vcpu->arch.vpa_update_lock);
663         kvm_vcpu_uninit(vcpu);
664         kmem_cache_free(kvm_vcpu_cache, vcpu);
665 }
666
667 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
668 {
669         unsigned long dec_nsec, now;
670
671         now = get_tb();
672         if (now > vcpu->arch.dec_expires) {
673                 /* decrementer has already gone negative */
674                 kvmppc_core_queue_dec(vcpu);
675                 kvmppc_core_prepare_to_enter(vcpu);
676                 return;
677         }
678         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
679                    / tb_ticks_per_sec;
680         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
681                       HRTIMER_MODE_REL);
682         vcpu->arch.timer_running = 1;
683 }
684
685 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
686 {
687         vcpu->arch.ceded = 0;
688         if (vcpu->arch.timer_running) {
689                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
690                 vcpu->arch.timer_running = 0;
691         }
692 }
693
694 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
695 extern void xics_wake_cpu(int cpu);
696
697 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
698                                    struct kvm_vcpu *vcpu)
699 {
700         struct kvm_vcpu *v;
701
702         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
703                 return;
704         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
705         --vc->n_runnable;
706         ++vc->n_busy;
707         /* decrement the physical thread id of each following vcpu */
708         v = vcpu;
709         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
710                 --v->arch.ptid;
711         list_del(&vcpu->arch.run_list);
712 }
713
714 static int kvmppc_grab_hwthread(int cpu)
715 {
716         struct paca_struct *tpaca;
717         long timeout = 1000;
718
719         tpaca = &paca[cpu];
720
721         /* Ensure the thread won't go into the kernel if it wakes */
722         tpaca->kvm_hstate.hwthread_req = 1;
723
724         /*
725          * If the thread is already executing in the kernel (e.g. handling
726          * a stray interrupt), wait for it to get back to nap mode.
727          * The smp_mb() is to ensure that our setting of hwthread_req
728          * is visible before we look at hwthread_state, so if this
729          * races with the code at system_reset_pSeries and the thread
730          * misses our setting of hwthread_req, we are sure to see its
731          * setting of hwthread_state, and vice versa.
732          */
733         smp_mb();
734         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
735                 if (--timeout <= 0) {
736                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
737                         return -EBUSY;
738                 }
739                 udelay(1);
740         }
741         return 0;
742 }
743
744 static void kvmppc_release_hwthread(int cpu)
745 {
746         struct paca_struct *tpaca;
747
748         tpaca = &paca[cpu];
749         tpaca->kvm_hstate.hwthread_req = 0;
750         tpaca->kvm_hstate.kvm_vcpu = NULL;
751 }
752
753 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
754 {
755         int cpu;
756         struct paca_struct *tpaca;
757         struct kvmppc_vcore *vc = vcpu->arch.vcore;
758
759         if (vcpu->arch.timer_running) {
760                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
761                 vcpu->arch.timer_running = 0;
762         }
763         cpu = vc->pcpu + vcpu->arch.ptid;
764         tpaca = &paca[cpu];
765         tpaca->kvm_hstate.kvm_vcpu = vcpu;
766         tpaca->kvm_hstate.kvm_vcore = vc;
767         tpaca->kvm_hstate.napping = 0;
768         vcpu->cpu = vc->pcpu;
769         smp_wmb();
770 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
771         if (vcpu->arch.ptid) {
772                 kvmppc_grab_hwthread(cpu);
773                 xics_wake_cpu(cpu);
774                 ++vc->n_woken;
775         }
776 #endif
777 }
778
779 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
780 {
781         int i;
782
783         HMT_low();
784         i = 0;
785         while (vc->nap_count < vc->n_woken) {
786                 if (++i >= 1000000) {
787                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
788                                vc->nap_count, vc->n_woken);
789                         break;
790                 }
791                 cpu_relax();
792         }
793         HMT_medium();
794 }
795
796 /*
797  * Check that we are on thread 0 and that any other threads in
798  * this core are off-line.
799  */
800 static int on_primary_thread(void)
801 {
802         int cpu = smp_processor_id();
803         int thr = cpu_thread_in_core(cpu);
804
805         if (thr)
806                 return 0;
807         while (++thr < threads_per_core)
808                 if (cpu_online(cpu + thr))
809                         return 0;
810         return 1;
811 }
812
813 /*
814  * Run a set of guest threads on a physical core.
815  * Called with vc->lock held.
816  */
817 static int kvmppc_run_core(struct kvmppc_vcore *vc)
818 {
819         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
820         long ret;
821         u64 now;
822         int ptid, i, need_vpa_update;
823
824         /* don't start if any threads have a signal pending */
825         need_vpa_update = 0;
826         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
827                 if (signal_pending(vcpu->arch.run_task))
828                         return 0;
829                 need_vpa_update |= vcpu->arch.vpa.update_pending |
830                         vcpu->arch.slb_shadow.update_pending |
831                         vcpu->arch.dtl.update_pending;
832         }
833
834         /*
835          * Initialize *vc, in particular vc->vcore_state, so we can
836          * drop the vcore lock if necessary.
837          */
838         vc->n_woken = 0;
839         vc->nap_count = 0;
840         vc->entry_exit_count = 0;
841         vc->vcore_state = VCORE_RUNNING;
842         vc->in_guest = 0;
843         vc->napping_threads = 0;
844
845         /*
846          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
847          * which can't be called with any spinlocks held.
848          */
849         if (need_vpa_update) {
850                 spin_unlock(&vc->lock);
851                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
852                         kvmppc_update_vpas(vcpu);
853                 spin_lock(&vc->lock);
854         }
855
856         /*
857          * Make sure we are running on thread 0, and that
858          * secondary threads are offline.
859          * XXX we should also block attempts to bring any
860          * secondary threads online.
861          */
862         if (threads_per_core > 1 && !on_primary_thread()) {
863                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
864                         vcpu->arch.ret = -EBUSY;
865                 goto out;
866         }
867
868         /*
869          * Assign physical thread IDs, first to non-ceded vcpus
870          * and then to ceded ones.
871          */
872         ptid = 0;
873         vcpu0 = NULL;
874         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
875                 if (!vcpu->arch.ceded) {
876                         if (!ptid)
877                                 vcpu0 = vcpu;
878                         vcpu->arch.ptid = ptid++;
879                 }
880         }
881         if (!vcpu0)
882                 return 0;               /* nothing to run */
883         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
884                 if (vcpu->arch.ceded)
885                         vcpu->arch.ptid = ptid++;
886
887         vc->stolen_tb += mftb() - vc->preempt_tb;
888         vc->pcpu = smp_processor_id();
889         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
890                 kvmppc_start_thread(vcpu);
891                 kvmppc_create_dtl_entry(vcpu, vc);
892         }
893         /* Grab any remaining hw threads so they can't go into the kernel */
894         for (i = ptid; i < threads_per_core; ++i)
895                 kvmppc_grab_hwthread(vc->pcpu + i);
896
897         preempt_disable();
898         spin_unlock(&vc->lock);
899
900         kvm_guest_enter();
901         __kvmppc_vcore_entry(NULL, vcpu0);
902         for (i = 0; i < threads_per_core; ++i)
903                 kvmppc_release_hwthread(vc->pcpu + i);
904
905         spin_lock(&vc->lock);
906         /* disable sending of IPIs on virtual external irqs */
907         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
908                 vcpu->cpu = -1;
909         /* wait for secondary threads to finish writing their state to memory */
910         if (vc->nap_count < vc->n_woken)
911                 kvmppc_wait_for_nap(vc);
912         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
913         vc->vcore_state = VCORE_EXITING;
914         spin_unlock(&vc->lock);
915
916         /* make sure updates to secondary vcpu structs are visible now */
917         smp_mb();
918         kvm_guest_exit();
919
920         preempt_enable();
921         kvm_resched(vcpu);
922
923         now = get_tb();
924         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
925                 /* cancel pending dec exception if dec is positive */
926                 if (now < vcpu->arch.dec_expires &&
927                     kvmppc_core_pending_dec(vcpu))
928                         kvmppc_core_dequeue_dec(vcpu);
929
930                 ret = RESUME_GUEST;
931                 if (vcpu->arch.trap)
932                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
933                                                  vcpu->arch.run_task);
934
935                 vcpu->arch.ret = ret;
936                 vcpu->arch.trap = 0;
937
938                 if (vcpu->arch.ceded) {
939                         if (ret != RESUME_GUEST)
940                                 kvmppc_end_cede(vcpu);
941                         else
942                                 kvmppc_set_timer(vcpu);
943                 }
944         }
945
946         spin_lock(&vc->lock);
947  out:
948         vc->vcore_state = VCORE_INACTIVE;
949         vc->preempt_tb = mftb();
950         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
951                                  arch.run_list) {
952                 if (vcpu->arch.ret != RESUME_GUEST) {
953                         kvmppc_remove_runnable(vc, vcpu);
954                         wake_up(&vcpu->arch.cpu_run);
955                 }
956         }
957
958         return 1;
959 }
960
961 /*
962  * Wait for some other vcpu thread to execute us, and
963  * wake us up when we need to handle something in the host.
964  */
965 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
966 {
967         DEFINE_WAIT(wait);
968
969         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
970         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
971                 schedule();
972         finish_wait(&vcpu->arch.cpu_run, &wait);
973 }
974
975 /*
976  * All the vcpus in this vcore are idle, so wait for a decrementer
977  * or external interrupt to one of the vcpus.  vc->lock is held.
978  */
979 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
980 {
981         DEFINE_WAIT(wait);
982         struct kvm_vcpu *v;
983         int all_idle = 1;
984
985         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
986         vc->vcore_state = VCORE_SLEEPING;
987         spin_unlock(&vc->lock);
988         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
989                 if (!v->arch.ceded || v->arch.pending_exceptions) {
990                         all_idle = 0;
991                         break;
992                 }
993         }
994         if (all_idle)
995                 schedule();
996         finish_wait(&vc->wq, &wait);
997         spin_lock(&vc->lock);
998         vc->vcore_state = VCORE_INACTIVE;
999 }
1000
1001 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1002 {
1003         int n_ceded;
1004         int prev_state;
1005         struct kvmppc_vcore *vc;
1006         struct kvm_vcpu *v, *vn;
1007
1008         kvm_run->exit_reason = 0;
1009         vcpu->arch.ret = RESUME_GUEST;
1010         vcpu->arch.trap = 0;
1011
1012         /*
1013          * Synchronize with other threads in this virtual core
1014          */
1015         vc = vcpu->arch.vcore;
1016         spin_lock(&vc->lock);
1017         vcpu->arch.ceded = 0;
1018         vcpu->arch.run_task = current;
1019         vcpu->arch.kvm_run = kvm_run;
1020         prev_state = vcpu->arch.state;
1021         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1022         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1023         ++vc->n_runnable;
1024
1025         /*
1026          * This happens the first time this is called for a vcpu.
1027          * If the vcore is already running, we may be able to start
1028          * this thread straight away and have it join in.
1029          */
1030         if (prev_state == KVMPPC_VCPU_STOPPED) {
1031                 if (vc->vcore_state == VCORE_RUNNING &&
1032                     VCORE_EXIT_COUNT(vc) == 0) {
1033                         vcpu->arch.ptid = vc->n_runnable - 1;
1034                         kvmppc_start_thread(vcpu);
1035                 }
1036
1037         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1038                 --vc->n_busy;
1039
1040         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1041                !signal_pending(current)) {
1042                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1043                         spin_unlock(&vc->lock);
1044                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1045                         spin_lock(&vc->lock);
1046                         continue;
1047                 }
1048                 vc->runner = vcpu;
1049                 n_ceded = 0;
1050                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1051                         n_ceded += v->arch.ceded;
1052                 if (n_ceded == vc->n_runnable)
1053                         kvmppc_vcore_blocked(vc);
1054                 else
1055                         kvmppc_run_core(vc);
1056
1057                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1058                                          arch.run_list) {
1059                         kvmppc_core_prepare_to_enter(v);
1060                         if (signal_pending(v->arch.run_task)) {
1061                                 kvmppc_remove_runnable(vc, v);
1062                                 v->stat.signal_exits++;
1063                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1064                                 v->arch.ret = -EINTR;
1065                                 wake_up(&v->arch.cpu_run);
1066                         }
1067                 }
1068                 vc->runner = NULL;
1069         }
1070
1071         if (signal_pending(current)) {
1072                 if (vc->vcore_state == VCORE_RUNNING ||
1073                     vc->vcore_state == VCORE_EXITING) {
1074                         spin_unlock(&vc->lock);
1075                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1076                         spin_lock(&vc->lock);
1077                 }
1078                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1079                         kvmppc_remove_runnable(vc, vcpu);
1080                         vcpu->stat.signal_exits++;
1081                         kvm_run->exit_reason = KVM_EXIT_INTR;
1082                         vcpu->arch.ret = -EINTR;
1083                 }
1084         }
1085
1086         spin_unlock(&vc->lock);
1087         return vcpu->arch.ret;
1088 }
1089
1090 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1091 {
1092         int r;
1093
1094         if (!vcpu->arch.sane) {
1095                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1096                 return -EINVAL;
1097         }
1098
1099         kvmppc_core_prepare_to_enter(vcpu);
1100
1101         /* No need to go into the guest when all we'll do is come back out */
1102         if (signal_pending(current)) {
1103                 run->exit_reason = KVM_EXIT_INTR;
1104                 return -EINTR;
1105         }
1106
1107         /* On the first time here, set up VRMA or RMA */
1108         if (!vcpu->kvm->arch.rma_setup_done) {
1109                 r = kvmppc_hv_setup_rma(vcpu);
1110                 if (r)
1111                         return r;
1112         }
1113
1114         flush_fp_to_thread(current);
1115         flush_altivec_to_thread(current);
1116         flush_vsx_to_thread(current);
1117         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1118         vcpu->arch.pgdir = current->mm->pgd;
1119
1120         do {
1121                 r = kvmppc_run_vcpu(run, vcpu);
1122
1123                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1124                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1125                         r = kvmppc_pseries_do_hcall(vcpu);
1126                         kvmppc_core_prepare_to_enter(vcpu);
1127                 }
1128         } while (r == RESUME_GUEST);
1129         return r;
1130 }
1131
1132
1133 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1134    Assumes POWER7 or PPC970. */
1135 static inline int lpcr_rmls(unsigned long rma_size)
1136 {
1137         switch (rma_size) {
1138         case 32ul << 20:        /* 32 MB */
1139                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1140                         return 8;       /* only supported on POWER7 */
1141                 return -1;
1142         case 64ul << 20:        /* 64 MB */
1143                 return 3;
1144         case 128ul << 20:       /* 128 MB */
1145                 return 7;
1146         case 256ul << 20:       /* 256 MB */
1147                 return 4;
1148         case 1ul << 30:         /* 1 GB */
1149                 return 2;
1150         case 16ul << 30:        /* 16 GB */
1151                 return 1;
1152         case 256ul << 30:       /* 256 GB */
1153                 return 0;
1154         default:
1155                 return -1;
1156         }
1157 }
1158
1159 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1160 {
1161         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1162         struct page *page;
1163
1164         if (vmf->pgoff >= ri->npages)
1165                 return VM_FAULT_SIGBUS;
1166
1167         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1168         get_page(page);
1169         vmf->page = page;
1170         return 0;
1171 }
1172
1173 static const struct vm_operations_struct kvm_rma_vm_ops = {
1174         .fault = kvm_rma_fault,
1175 };
1176
1177 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1178 {
1179         vma->vm_flags |= VM_RESERVED;
1180         vma->vm_ops = &kvm_rma_vm_ops;
1181         return 0;
1182 }
1183
1184 static int kvm_rma_release(struct inode *inode, struct file *filp)
1185 {
1186         struct kvmppc_linear_info *ri = filp->private_data;
1187
1188         kvm_release_rma(ri);
1189         return 0;
1190 }
1191
1192 static struct file_operations kvm_rma_fops = {
1193         .mmap           = kvm_rma_mmap,
1194         .release        = kvm_rma_release,
1195 };
1196
1197 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1198 {
1199         struct kvmppc_linear_info *ri;
1200         long fd;
1201
1202         ri = kvm_alloc_rma();
1203         if (!ri)
1204                 return -ENOMEM;
1205
1206         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1207         if (fd < 0)
1208                 kvm_release_rma(ri);
1209
1210         ret->rma_size = ri->npages << PAGE_SHIFT;
1211         return fd;
1212 }
1213
1214 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1215                                      int linux_psize)
1216 {
1217         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1218
1219         if (!def->shift)
1220                 return;
1221         (*sps)->page_shift = def->shift;
1222         (*sps)->slb_enc = def->sllp;
1223         (*sps)->enc[0].page_shift = def->shift;
1224         (*sps)->enc[0].pte_enc = def->penc;
1225         (*sps)++;
1226 }
1227
1228 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1229 {
1230         struct kvm_ppc_one_seg_page_size *sps;
1231
1232         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1233         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1234                 info->flags |= KVM_PPC_1T_SEGMENTS;
1235         info->slb_size = mmu_slb_size;
1236
1237         /* We only support these sizes for now, and no muti-size segments */
1238         sps = &info->sps[0];
1239         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1240         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1241         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1242
1243         return 0;
1244 }
1245
1246 /*
1247  * Get (and clear) the dirty memory log for a memory slot.
1248  */
1249 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1250 {
1251         struct kvm_memory_slot *memslot;
1252         int r;
1253         unsigned long n;
1254
1255         mutex_lock(&kvm->slots_lock);
1256
1257         r = -EINVAL;
1258         if (log->slot >= KVM_MEMORY_SLOTS)
1259                 goto out;
1260
1261         memslot = id_to_memslot(kvm->memslots, log->slot);
1262         r = -ENOENT;
1263         if (!memslot->dirty_bitmap)
1264                 goto out;
1265
1266         n = kvm_dirty_bitmap_bytes(memslot);
1267         memset(memslot->dirty_bitmap, 0, n);
1268
1269         r = kvmppc_hv_get_dirty_log(kvm, memslot);
1270         if (r)
1271                 goto out;
1272
1273         r = -EFAULT;
1274         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1275                 goto out;
1276
1277         r = 0;
1278 out:
1279         mutex_unlock(&kvm->slots_lock);
1280         return r;
1281 }
1282
1283 static unsigned long slb_pgsize_encoding(unsigned long psize)
1284 {
1285         unsigned long senc = 0;
1286
1287         if (psize > 0x1000) {
1288                 senc = SLB_VSID_L;
1289                 if (psize == 0x10000)
1290                         senc |= SLB_VSID_LP_01;
1291         }
1292         return senc;
1293 }
1294
1295 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1296                                 struct kvm_userspace_memory_region *mem)
1297 {
1298         unsigned long npages;
1299         unsigned long *phys;
1300
1301         /* Allocate a slot_phys array */
1302         phys = kvm->arch.slot_phys[mem->slot];
1303         if (!kvm->arch.using_mmu_notifiers && !phys) {
1304                 npages = mem->memory_size >> PAGE_SHIFT;
1305                 phys = vzalloc(npages * sizeof(unsigned long));
1306                 if (!phys)
1307                         return -ENOMEM;
1308                 kvm->arch.slot_phys[mem->slot] = phys;
1309                 kvm->arch.slot_npages[mem->slot] = npages;
1310         }
1311
1312         return 0;
1313 }
1314
1315 static void unpin_slot(struct kvm *kvm, int slot_id)
1316 {
1317         unsigned long *physp;
1318         unsigned long j, npages, pfn;
1319         struct page *page;
1320
1321         physp = kvm->arch.slot_phys[slot_id];
1322         npages = kvm->arch.slot_npages[slot_id];
1323         if (physp) {
1324                 spin_lock(&kvm->arch.slot_phys_lock);
1325                 for (j = 0; j < npages; j++) {
1326                         if (!(physp[j] & KVMPPC_GOT_PAGE))
1327                                 continue;
1328                         pfn = physp[j] >> PAGE_SHIFT;
1329                         page = pfn_to_page(pfn);
1330                         SetPageDirty(page);
1331                         put_page(page);
1332                 }
1333                 kvm->arch.slot_phys[slot_id] = NULL;
1334                 spin_unlock(&kvm->arch.slot_phys_lock);
1335                 vfree(physp);
1336         }
1337 }
1338
1339 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1340                                 struct kvm_userspace_memory_region *mem)
1341 {
1342 }
1343
1344 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1345 {
1346         int err = 0;
1347         struct kvm *kvm = vcpu->kvm;
1348         struct kvmppc_linear_info *ri = NULL;
1349         unsigned long hva;
1350         struct kvm_memory_slot *memslot;
1351         struct vm_area_struct *vma;
1352         unsigned long lpcr, senc;
1353         unsigned long psize, porder;
1354         unsigned long rma_size;
1355         unsigned long rmls;
1356         unsigned long *physp;
1357         unsigned long i, npages;
1358
1359         mutex_lock(&kvm->lock);
1360         if (kvm->arch.rma_setup_done)
1361                 goto out;       /* another vcpu beat us to it */
1362
1363         /* Look up the memslot for guest physical address 0 */
1364         memslot = gfn_to_memslot(kvm, 0);
1365
1366         /* We must have some memory at 0 by now */
1367         err = -EINVAL;
1368         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1369                 goto out;
1370
1371         /* Look up the VMA for the start of this memory slot */
1372         hva = memslot->userspace_addr;
1373         down_read(&current->mm->mmap_sem);
1374         vma = find_vma(current->mm, hva);
1375         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1376                 goto up_out;
1377
1378         psize = vma_kernel_pagesize(vma);
1379         porder = __ilog2(psize);
1380
1381         /* Is this one of our preallocated RMAs? */
1382         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1383             hva == vma->vm_start)
1384                 ri = vma->vm_file->private_data;
1385
1386         up_read(&current->mm->mmap_sem);
1387
1388         if (!ri) {
1389                 /* On POWER7, use VRMA; on PPC970, give up */
1390                 err = -EPERM;
1391                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1392                         pr_err("KVM: CPU requires an RMO\n");
1393                         goto out;
1394                 }
1395
1396                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1397                 err = -EINVAL;
1398                 if (!(psize == 0x1000 || psize == 0x10000 ||
1399                       psize == 0x1000000))
1400                         goto out;
1401
1402                 /* Update VRMASD field in the LPCR */
1403                 senc = slb_pgsize_encoding(psize);
1404                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1405                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1406                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1407                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1408                 kvm->arch.lpcr = lpcr;
1409
1410                 /* Create HPTEs in the hash page table for the VRMA */
1411                 kvmppc_map_vrma(vcpu, memslot, porder);
1412
1413         } else {
1414                 /* Set up to use an RMO region */
1415                 rma_size = ri->npages;
1416                 if (rma_size > memslot->npages)
1417                         rma_size = memslot->npages;
1418                 rma_size <<= PAGE_SHIFT;
1419                 rmls = lpcr_rmls(rma_size);
1420                 err = -EINVAL;
1421                 if (rmls < 0) {
1422                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1423                         goto out;
1424                 }
1425                 atomic_inc(&ri->use_count);
1426                 kvm->arch.rma = ri;
1427
1428                 /* Update LPCR and RMOR */
1429                 lpcr = kvm->arch.lpcr;
1430                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1431                         /* PPC970; insert RMLS value (split field) in HID4 */
1432                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1433                                   (3ul << HID4_RMLS2_SH));
1434                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1435                                 ((rmls & 3) << HID4_RMLS2_SH);
1436                         /* RMOR is also in HID4 */
1437                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1438                                 << HID4_RMOR_SH;
1439                 } else {
1440                         /* POWER7 */
1441                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1442                         lpcr |= rmls << LPCR_RMLS_SH;
1443                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1444                 }
1445                 kvm->arch.lpcr = lpcr;
1446                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1447                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1448
1449                 /* Initialize phys addrs of pages in RMO */
1450                 npages = ri->npages;
1451                 porder = __ilog2(npages);
1452                 physp = kvm->arch.slot_phys[memslot->id];
1453                 spin_lock(&kvm->arch.slot_phys_lock);
1454                 for (i = 0; i < npages; ++i)
1455                         physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1456                 spin_unlock(&kvm->arch.slot_phys_lock);
1457         }
1458
1459         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1460         smp_wmb();
1461         kvm->arch.rma_setup_done = 1;
1462         err = 0;
1463  out:
1464         mutex_unlock(&kvm->lock);
1465         return err;
1466
1467  up_out:
1468         up_read(&current->mm->mmap_sem);
1469         goto out;
1470 }
1471
1472 int kvmppc_core_init_vm(struct kvm *kvm)
1473 {
1474         long r;
1475         unsigned long lpcr;
1476
1477         /* Allocate hashed page table */
1478         r = kvmppc_alloc_hpt(kvm);
1479         if (r)
1480                 return r;
1481
1482         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1483
1484         kvm->arch.rma = NULL;
1485
1486         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1487
1488         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1489                 /* PPC970; HID4 is effectively the LPCR */
1490                 unsigned long lpid = kvm->arch.lpid;
1491                 kvm->arch.host_lpid = 0;
1492                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1493                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1494                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1495                         ((lpid & 0xf) << HID4_LPID5_SH);
1496         } else {
1497                 /* POWER7; init LPCR for virtual RMA mode */
1498                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1499                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1500                 lpcr &= LPCR_PECE | LPCR_LPES;
1501                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1502                         LPCR_VPM0 | LPCR_VPM1;
1503                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1504                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1505         }
1506         kvm->arch.lpcr = lpcr;
1507
1508         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1509         spin_lock_init(&kvm->arch.slot_phys_lock);
1510         return 0;
1511 }
1512
1513 void kvmppc_core_destroy_vm(struct kvm *kvm)
1514 {
1515         unsigned long i;
1516
1517         if (!kvm->arch.using_mmu_notifiers)
1518                 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1519                         unpin_slot(kvm, i);
1520
1521         if (kvm->arch.rma) {
1522                 kvm_release_rma(kvm->arch.rma);
1523                 kvm->arch.rma = NULL;
1524         }
1525
1526         kvmppc_free_hpt(kvm);
1527         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1528 }
1529
1530 /* These are stubs for now */
1531 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1532 {
1533 }
1534
1535 /* We don't need to emulate any privileged instructions or dcbz */
1536 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1537                            unsigned int inst, int *advance)
1538 {
1539         return EMULATE_FAIL;
1540 }
1541
1542 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1543 {
1544         return EMULATE_FAIL;
1545 }
1546
1547 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1548 {
1549         return EMULATE_FAIL;
1550 }
1551
1552 static int kvmppc_book3s_hv_init(void)
1553 {
1554         int r;
1555
1556         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1557
1558         if (r)
1559                 return r;
1560
1561         r = kvmppc_mmu_hv_init();
1562
1563         return r;
1564 }
1565
1566 static void kvmppc_book3s_hv_exit(void)
1567 {
1568         kvm_exit();
1569 }
1570
1571 module_init(kvmppc_book3s_hv_init);
1572 module_exit(kvmppc_book3s_hv_exit);