]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
[mv-sheeva.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <linux/gfp.h>
49 #include <linux/sched.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63         local_paca->kvm_hstate.kvm_vcpu = vcpu;
64         local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
65 }
66
67 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
68 {
69 }
70
71 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
72 {
73         vcpu->arch.shregs.msr = msr;
74         kvmppc_end_cede(vcpu);
75 }
76
77 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
78 {
79         vcpu->arch.pvr = pvr;
80 }
81
82 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
83 {
84         int r;
85
86         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
87         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
88                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
89         for (r = 0; r < 16; ++r)
90                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
91                        r, kvmppc_get_gpr(vcpu, r),
92                        r+16, kvmppc_get_gpr(vcpu, r+16));
93         pr_err("ctr = %.16lx  lr  = %.16lx\n",
94                vcpu->arch.ctr, vcpu->arch.lr);
95         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
96                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
97         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
98                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
99         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
100                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
101         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
102                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
103         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
104         pr_err("fault dar = %.16lx dsisr = %.8x\n",
105                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
106         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
107         for (r = 0; r < vcpu->arch.slb_max; ++r)
108                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
109                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
110         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
111                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
112                vcpu->arch.last_inst);
113 }
114
115 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
116 {
117         int r;
118         struct kvm_vcpu *v, *ret = NULL;
119
120         mutex_lock(&kvm->lock);
121         kvm_for_each_vcpu(r, v, kvm) {
122                 if (v->vcpu_id == id) {
123                         ret = v;
124                         break;
125                 }
126         }
127         mutex_unlock(&kvm->lock);
128         return ret;
129 }
130
131 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
132 {
133         vpa->shared_proc = 1;
134         vpa->yield_count = 1;
135 }
136
137 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
138                                        unsigned long flags,
139                                        unsigned long vcpuid, unsigned long vpa)
140 {
141         struct kvm *kvm = vcpu->kvm;
142         unsigned long len, nb;
143         void *va;
144         struct kvm_vcpu *tvcpu;
145         int err = H_PARAMETER;
146
147         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
148         if (!tvcpu)
149                 return H_PARAMETER;
150
151         flags >>= 63 - 18;
152         flags &= 7;
153         if (flags == 0 || flags == 4)
154                 return H_PARAMETER;
155         if (flags < 4) {
156                 if (vpa & 0x7f)
157                         return H_PARAMETER;
158                 if (flags >= 2 && !tvcpu->arch.vpa)
159                         return H_RESOURCE;
160                 /* registering new area; convert logical addr to real */
161                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
162                 if (va == NULL)
163                         return H_PARAMETER;
164                 if (flags <= 1)
165                         len = *(unsigned short *)(va + 4);
166                 else
167                         len = *(unsigned int *)(va + 4);
168                 if (len > nb)
169                         goto out_unpin;
170                 switch (flags) {
171                 case 1:         /* register VPA */
172                         if (len < 640)
173                                 goto out_unpin;
174                         if (tvcpu->arch.vpa)
175                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.vpa);
176                         tvcpu->arch.vpa = va;
177                         init_vpa(vcpu, va);
178                         break;
179                 case 2:         /* register DTL */
180                         if (len < 48)
181                                 goto out_unpin;
182                         len -= len % 48;
183                         if (tvcpu->arch.dtl)
184                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.dtl);
185                         tvcpu->arch.dtl = va;
186                         tvcpu->arch.dtl_end = va + len;
187                         break;
188                 case 3:         /* register SLB shadow buffer */
189                         if (len < 16)
190                                 goto out_unpin;
191                         if (tvcpu->arch.slb_shadow)
192                                 kvmppc_unpin_guest_page(kvm, vcpu->arch.slb_shadow);
193                         tvcpu->arch.slb_shadow = va;
194                         break;
195                 }
196         } else {
197                 switch (flags) {
198                 case 5:         /* unregister VPA */
199                         if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
200                                 return H_RESOURCE;
201                         if (!tvcpu->arch.vpa)
202                                 break;
203                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.vpa);
204                         tvcpu->arch.vpa = NULL;
205                         break;
206                 case 6:         /* unregister DTL */
207                         if (!tvcpu->arch.dtl)
208                                 break;
209                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.dtl);
210                         tvcpu->arch.dtl = NULL;
211                         break;
212                 case 7:         /* unregister SLB shadow buffer */
213                         if (!tvcpu->arch.slb_shadow)
214                                 break;
215                         kvmppc_unpin_guest_page(kvm, tvcpu->arch.slb_shadow);
216                         tvcpu->arch.slb_shadow = NULL;
217                         break;
218                 }
219         }
220         return H_SUCCESS;
221
222  out_unpin:
223         kvmppc_unpin_guest_page(kvm, va);
224         return err;
225 }
226
227 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
228 {
229         unsigned long req = kvmppc_get_gpr(vcpu, 3);
230         unsigned long target, ret = H_SUCCESS;
231         struct kvm_vcpu *tvcpu;
232
233         switch (req) {
234         case H_ENTER:
235                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
236                                               kvmppc_get_gpr(vcpu, 5),
237                                               kvmppc_get_gpr(vcpu, 6),
238                                               kvmppc_get_gpr(vcpu, 7));
239                 break;
240         case H_CEDE:
241                 break;
242         case H_PROD:
243                 target = kvmppc_get_gpr(vcpu, 4);
244                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
245                 if (!tvcpu) {
246                         ret = H_PARAMETER;
247                         break;
248                 }
249                 tvcpu->arch.prodded = 1;
250                 smp_mb();
251                 if (vcpu->arch.ceded) {
252                         if (waitqueue_active(&vcpu->wq)) {
253                                 wake_up_interruptible(&vcpu->wq);
254                                 vcpu->stat.halt_wakeup++;
255                         }
256                 }
257                 break;
258         case H_CONFER:
259                 break;
260         case H_REGISTER_VPA:
261                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
262                                         kvmppc_get_gpr(vcpu, 5),
263                                         kvmppc_get_gpr(vcpu, 6));
264                 break;
265         default:
266                 return RESUME_HOST;
267         }
268         kvmppc_set_gpr(vcpu, 3, ret);
269         vcpu->arch.hcall_needed = 0;
270         return RESUME_GUEST;
271 }
272
273 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
274                               struct task_struct *tsk)
275 {
276         int r = RESUME_HOST;
277
278         vcpu->stat.sum_exits++;
279
280         run->exit_reason = KVM_EXIT_UNKNOWN;
281         run->ready_for_interrupt_injection = 1;
282         switch (vcpu->arch.trap) {
283         /* We're good on these - the host merely wanted to get our attention */
284         case BOOK3S_INTERRUPT_HV_DECREMENTER:
285                 vcpu->stat.dec_exits++;
286                 r = RESUME_GUEST;
287                 break;
288         case BOOK3S_INTERRUPT_EXTERNAL:
289                 vcpu->stat.ext_intr_exits++;
290                 r = RESUME_GUEST;
291                 break;
292         case BOOK3S_INTERRUPT_PERFMON:
293                 r = RESUME_GUEST;
294                 break;
295         case BOOK3S_INTERRUPT_PROGRAM:
296         {
297                 ulong flags;
298                 /*
299                  * Normally program interrupts are delivered directly
300                  * to the guest by the hardware, but we can get here
301                  * as a result of a hypervisor emulation interrupt
302                  * (e40) getting turned into a 700 by BML RTAS.
303                  */
304                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
305                 kvmppc_core_queue_program(vcpu, flags);
306                 r = RESUME_GUEST;
307                 break;
308         }
309         case BOOK3S_INTERRUPT_SYSCALL:
310         {
311                 /* hcall - punt to userspace */
312                 int i;
313
314                 if (vcpu->arch.shregs.msr & MSR_PR) {
315                         /* sc 1 from userspace - reflect to guest syscall */
316                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
317                         r = RESUME_GUEST;
318                         break;
319                 }
320                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
321                 for (i = 0; i < 9; ++i)
322                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
323                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
324                 vcpu->arch.hcall_needed = 1;
325                 r = RESUME_HOST;
326                 break;
327         }
328         /*
329          * We get this if the guest accesses a page which it thinks
330          * it has mapped but which is not actually present, because
331          * it is for an emulated I/O device.
332          * Any other HDSI interrupt has been handled already.
333          */
334         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
335                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
336                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
337                 break;
338         case BOOK3S_INTERRUPT_H_INST_STORAGE:
339                 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
340                                         vcpu->arch.shregs.msr & 0x58000000);
341                 r = RESUME_GUEST;
342                 break;
343         /*
344          * This occurs if the guest executes an illegal instruction.
345          * We just generate a program interrupt to the guest, since
346          * we don't emulate any guest instructions at this stage.
347          */
348         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
349                 kvmppc_core_queue_program(vcpu, 0x80000);
350                 r = RESUME_GUEST;
351                 break;
352         default:
353                 kvmppc_dump_regs(vcpu);
354                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
355                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
356                         vcpu->arch.shregs.msr);
357                 r = RESUME_HOST;
358                 BUG();
359                 break;
360         }
361
362         return r;
363 }
364
365 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
366                                   struct kvm_sregs *sregs)
367 {
368         int i;
369
370         sregs->pvr = vcpu->arch.pvr;
371
372         memset(sregs, 0, sizeof(struct kvm_sregs));
373         for (i = 0; i < vcpu->arch.slb_max; i++) {
374                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
375                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
376         }
377
378         return 0;
379 }
380
381 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
382                                   struct kvm_sregs *sregs)
383 {
384         int i, j;
385
386         kvmppc_set_pvr(vcpu, sregs->pvr);
387
388         j = 0;
389         for (i = 0; i < vcpu->arch.slb_nr; i++) {
390                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
391                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
392                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
393                         ++j;
394                 }
395         }
396         vcpu->arch.slb_max = j;
397
398         return 0;
399 }
400
401 int kvmppc_core_check_processor_compat(void)
402 {
403         if (cpu_has_feature(CPU_FTR_HVMODE))
404                 return 0;
405         return -EIO;
406 }
407
408 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
409 {
410         struct kvm_vcpu *vcpu;
411         int err = -EINVAL;
412         int core;
413         struct kvmppc_vcore *vcore;
414
415         core = id / threads_per_core;
416         if (core >= KVM_MAX_VCORES)
417                 goto out;
418
419         err = -ENOMEM;
420         vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
421         if (!vcpu)
422                 goto out;
423
424         err = kvm_vcpu_init(vcpu, kvm, id);
425         if (err)
426                 goto free_vcpu;
427
428         vcpu->arch.shared = &vcpu->arch.shregs;
429         vcpu->arch.last_cpu = -1;
430         vcpu->arch.mmcr[0] = MMCR0_FC;
431         vcpu->arch.ctrl = CTRL_RUNLATCH;
432         /* default to host PVR, since we can't spoof it */
433         vcpu->arch.pvr = mfspr(SPRN_PVR);
434         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
435
436         kvmppc_mmu_book3s_hv_init(vcpu);
437
438         /*
439          * We consider the vcpu stopped until we see the first run ioctl for it.
440          */
441         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
442
443         init_waitqueue_head(&vcpu->arch.cpu_run);
444
445         mutex_lock(&kvm->lock);
446         vcore = kvm->arch.vcores[core];
447         if (!vcore) {
448                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
449                 if (vcore) {
450                         INIT_LIST_HEAD(&vcore->runnable_threads);
451                         spin_lock_init(&vcore->lock);
452                         init_waitqueue_head(&vcore->wq);
453                 }
454                 kvm->arch.vcores[core] = vcore;
455         }
456         mutex_unlock(&kvm->lock);
457
458         if (!vcore)
459                 goto free_vcpu;
460
461         spin_lock(&vcore->lock);
462         ++vcore->num_threads;
463         spin_unlock(&vcore->lock);
464         vcpu->arch.vcore = vcore;
465
466         vcpu->arch.cpu_type = KVM_CPU_3S_64;
467         kvmppc_sanity_check(vcpu);
468
469         return vcpu;
470
471 free_vcpu:
472         kfree(vcpu);
473 out:
474         return ERR_PTR(err);
475 }
476
477 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
478 {
479         if (vcpu->arch.dtl)
480                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl);
481         if (vcpu->arch.slb_shadow)
482                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow);
483         if (vcpu->arch.vpa)
484                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa);
485         kvm_vcpu_uninit(vcpu);
486         kfree(vcpu);
487 }
488
489 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
490 {
491         unsigned long dec_nsec, now;
492
493         now = get_tb();
494         if (now > vcpu->arch.dec_expires) {
495                 /* decrementer has already gone negative */
496                 kvmppc_core_queue_dec(vcpu);
497                 kvmppc_core_prepare_to_enter(vcpu);
498                 return;
499         }
500         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
501                    / tb_ticks_per_sec;
502         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
503                       HRTIMER_MODE_REL);
504         vcpu->arch.timer_running = 1;
505 }
506
507 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
508 {
509         vcpu->arch.ceded = 0;
510         if (vcpu->arch.timer_running) {
511                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
512                 vcpu->arch.timer_running = 0;
513         }
514 }
515
516 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
517 extern void xics_wake_cpu(int cpu);
518
519 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
520                                    struct kvm_vcpu *vcpu)
521 {
522         struct kvm_vcpu *v;
523
524         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
525                 return;
526         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
527         --vc->n_runnable;
528         ++vc->n_busy;
529         /* decrement the physical thread id of each following vcpu */
530         v = vcpu;
531         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
532                 --v->arch.ptid;
533         list_del(&vcpu->arch.run_list);
534 }
535
536 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
537 {
538         int cpu;
539         struct paca_struct *tpaca;
540         struct kvmppc_vcore *vc = vcpu->arch.vcore;
541
542         if (vcpu->arch.timer_running) {
543                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
544                 vcpu->arch.timer_running = 0;
545         }
546         cpu = vc->pcpu + vcpu->arch.ptid;
547         tpaca = &paca[cpu];
548         tpaca->kvm_hstate.kvm_vcpu = vcpu;
549         tpaca->kvm_hstate.kvm_vcore = vc;
550         tpaca->kvm_hstate.napping = 0;
551         vcpu->cpu = vc->pcpu;
552         smp_wmb();
553 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
554         if (vcpu->arch.ptid) {
555                 tpaca->cpu_start = 0x80;
556                 wmb();
557                 xics_wake_cpu(cpu);
558                 ++vc->n_woken;
559         }
560 #endif
561 }
562
563 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
564 {
565         int i;
566
567         HMT_low();
568         i = 0;
569         while (vc->nap_count < vc->n_woken) {
570                 if (++i >= 1000000) {
571                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
572                                vc->nap_count, vc->n_woken);
573                         break;
574                 }
575                 cpu_relax();
576         }
577         HMT_medium();
578 }
579
580 /*
581  * Check that we are on thread 0 and that any other threads in
582  * this core are off-line.
583  */
584 static int on_primary_thread(void)
585 {
586         int cpu = smp_processor_id();
587         int thr = cpu_thread_in_core(cpu);
588
589         if (thr)
590                 return 0;
591         while (++thr < threads_per_core)
592                 if (cpu_online(cpu + thr))
593                         return 0;
594         return 1;
595 }
596
597 /*
598  * Run a set of guest threads on a physical core.
599  * Called with vc->lock held.
600  */
601 static int kvmppc_run_core(struct kvmppc_vcore *vc)
602 {
603         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
604         long ret;
605         u64 now;
606         int ptid;
607
608         /* don't start if any threads have a signal pending */
609         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
610                 if (signal_pending(vcpu->arch.run_task))
611                         return 0;
612
613         /*
614          * Make sure we are running on thread 0, and that
615          * secondary threads are offline.
616          * XXX we should also block attempts to bring any
617          * secondary threads online.
618          */
619         if (threads_per_core > 1 && !on_primary_thread()) {
620                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
621                         vcpu->arch.ret = -EBUSY;
622                 goto out;
623         }
624
625         /*
626          * Assign physical thread IDs, first to non-ceded vcpus
627          * and then to ceded ones.
628          */
629         ptid = 0;
630         vcpu0 = NULL;
631         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
632                 if (!vcpu->arch.ceded) {
633                         if (!ptid)
634                                 vcpu0 = vcpu;
635                         vcpu->arch.ptid = ptid++;
636                 }
637         }
638         if (!vcpu0)
639                 return 0;               /* nothing to run */
640         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
641                 if (vcpu->arch.ceded)
642                         vcpu->arch.ptid = ptid++;
643
644         vc->n_woken = 0;
645         vc->nap_count = 0;
646         vc->entry_exit_count = 0;
647         vc->vcore_state = VCORE_RUNNING;
648         vc->in_guest = 0;
649         vc->pcpu = smp_processor_id();
650         vc->napping_threads = 0;
651         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
652                 kvmppc_start_thread(vcpu);
653
654         preempt_disable();
655         spin_unlock(&vc->lock);
656
657         kvm_guest_enter();
658         __kvmppc_vcore_entry(NULL, vcpu0);
659
660         spin_lock(&vc->lock);
661         /* disable sending of IPIs on virtual external irqs */
662         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
663                 vcpu->cpu = -1;
664         /* wait for secondary threads to finish writing their state to memory */
665         if (vc->nap_count < vc->n_woken)
666                 kvmppc_wait_for_nap(vc);
667         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
668         vc->vcore_state = VCORE_EXITING;
669         spin_unlock(&vc->lock);
670
671         /* make sure updates to secondary vcpu structs are visible now */
672         smp_mb();
673         kvm_guest_exit();
674
675         preempt_enable();
676         kvm_resched(vcpu);
677
678         now = get_tb();
679         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
680                 /* cancel pending dec exception if dec is positive */
681                 if (now < vcpu->arch.dec_expires &&
682                     kvmppc_core_pending_dec(vcpu))
683                         kvmppc_core_dequeue_dec(vcpu);
684
685                 ret = RESUME_GUEST;
686                 if (vcpu->arch.trap)
687                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
688                                                  vcpu->arch.run_task);
689
690                 vcpu->arch.ret = ret;
691                 vcpu->arch.trap = 0;
692
693                 if (vcpu->arch.ceded) {
694                         if (ret != RESUME_GUEST)
695                                 kvmppc_end_cede(vcpu);
696                         else
697                                 kvmppc_set_timer(vcpu);
698                 }
699         }
700
701         spin_lock(&vc->lock);
702  out:
703         vc->vcore_state = VCORE_INACTIVE;
704         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
705                                  arch.run_list) {
706                 if (vcpu->arch.ret != RESUME_GUEST) {
707                         kvmppc_remove_runnable(vc, vcpu);
708                         wake_up(&vcpu->arch.cpu_run);
709                 }
710         }
711
712         return 1;
713 }
714
715 /*
716  * Wait for some other vcpu thread to execute us, and
717  * wake us up when we need to handle something in the host.
718  */
719 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
720 {
721         DEFINE_WAIT(wait);
722
723         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
724         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
725                 schedule();
726         finish_wait(&vcpu->arch.cpu_run, &wait);
727 }
728
729 /*
730  * All the vcpus in this vcore are idle, so wait for a decrementer
731  * or external interrupt to one of the vcpus.  vc->lock is held.
732  */
733 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
734 {
735         DEFINE_WAIT(wait);
736         struct kvm_vcpu *v;
737         int all_idle = 1;
738
739         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
740         vc->vcore_state = VCORE_SLEEPING;
741         spin_unlock(&vc->lock);
742         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
743                 if (!v->arch.ceded || v->arch.pending_exceptions) {
744                         all_idle = 0;
745                         break;
746                 }
747         }
748         if (all_idle)
749                 schedule();
750         finish_wait(&vc->wq, &wait);
751         spin_lock(&vc->lock);
752         vc->vcore_state = VCORE_INACTIVE;
753 }
754
755 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
756 {
757         int n_ceded;
758         int prev_state;
759         struct kvmppc_vcore *vc;
760         struct kvm_vcpu *v, *vn;
761
762         kvm_run->exit_reason = 0;
763         vcpu->arch.ret = RESUME_GUEST;
764         vcpu->arch.trap = 0;
765
766         /*
767          * Synchronize with other threads in this virtual core
768          */
769         vc = vcpu->arch.vcore;
770         spin_lock(&vc->lock);
771         vcpu->arch.ceded = 0;
772         vcpu->arch.run_task = current;
773         vcpu->arch.kvm_run = kvm_run;
774         prev_state = vcpu->arch.state;
775         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
776         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
777         ++vc->n_runnable;
778
779         /*
780          * This happens the first time this is called for a vcpu.
781          * If the vcore is already running, we may be able to start
782          * this thread straight away and have it join in.
783          */
784         if (prev_state == KVMPPC_VCPU_STOPPED) {
785                 if (vc->vcore_state == VCORE_RUNNING &&
786                     VCORE_EXIT_COUNT(vc) == 0) {
787                         vcpu->arch.ptid = vc->n_runnable - 1;
788                         kvmppc_start_thread(vcpu);
789                 }
790
791         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
792                 --vc->n_busy;
793
794         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
795                !signal_pending(current)) {
796                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
797                         spin_unlock(&vc->lock);
798                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
799                         spin_lock(&vc->lock);
800                         continue;
801                 }
802                 n_ceded = 0;
803                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
804                         n_ceded += v->arch.ceded;
805                 if (n_ceded == vc->n_runnable)
806                         kvmppc_vcore_blocked(vc);
807                 else
808                         kvmppc_run_core(vc);
809
810                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
811                                          arch.run_list) {
812                         kvmppc_core_prepare_to_enter(v);
813                         if (signal_pending(v->arch.run_task)) {
814                                 kvmppc_remove_runnable(vc, v);
815                                 v->stat.signal_exits++;
816                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
817                                 v->arch.ret = -EINTR;
818                                 wake_up(&v->arch.cpu_run);
819                         }
820                 }
821         }
822
823         if (signal_pending(current)) {
824                 if (vc->vcore_state == VCORE_RUNNING ||
825                     vc->vcore_state == VCORE_EXITING) {
826                         spin_unlock(&vc->lock);
827                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
828                         spin_lock(&vc->lock);
829                 }
830                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
831                         kvmppc_remove_runnable(vc, vcpu);
832                         vcpu->stat.signal_exits++;
833                         kvm_run->exit_reason = KVM_EXIT_INTR;
834                         vcpu->arch.ret = -EINTR;
835                 }
836         }
837
838         spin_unlock(&vc->lock);
839         return vcpu->arch.ret;
840 }
841
842 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
843 {
844         int r;
845
846         if (!vcpu->arch.sane) {
847                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
848                 return -EINVAL;
849         }
850
851         kvmppc_core_prepare_to_enter(vcpu);
852
853         /* No need to go into the guest when all we'll do is come back out */
854         if (signal_pending(current)) {
855                 run->exit_reason = KVM_EXIT_INTR;
856                 return -EINTR;
857         }
858
859         /* On the first time here, set up VRMA or RMA */
860         if (!vcpu->kvm->arch.rma_setup_done) {
861                 r = kvmppc_hv_setup_rma(vcpu);
862                 if (r)
863                         return r;
864         }
865
866         flush_fp_to_thread(current);
867         flush_altivec_to_thread(current);
868         flush_vsx_to_thread(current);
869         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
870
871         do {
872                 r = kvmppc_run_vcpu(run, vcpu);
873
874                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
875                     !(vcpu->arch.shregs.msr & MSR_PR)) {
876                         r = kvmppc_pseries_do_hcall(vcpu);
877                         kvmppc_core_prepare_to_enter(vcpu);
878                 }
879         } while (r == RESUME_GUEST);
880         return r;
881 }
882
883 static long kvmppc_stt_npages(unsigned long window_size)
884 {
885         return ALIGN((window_size >> SPAPR_TCE_SHIFT)
886                      * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
887 }
888
889 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
890 {
891         struct kvm *kvm = stt->kvm;
892         int i;
893
894         mutex_lock(&kvm->lock);
895         list_del(&stt->list);
896         for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
897                 __free_page(stt->pages[i]);
898         kfree(stt);
899         mutex_unlock(&kvm->lock);
900
901         kvm_put_kvm(kvm);
902 }
903
904 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
905 {
906         struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
907         struct page *page;
908
909         if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
910                 return VM_FAULT_SIGBUS;
911
912         page = stt->pages[vmf->pgoff];
913         get_page(page);
914         vmf->page = page;
915         return 0;
916 }
917
918 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
919         .fault = kvm_spapr_tce_fault,
920 };
921
922 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
923 {
924         vma->vm_ops = &kvm_spapr_tce_vm_ops;
925         return 0;
926 }
927
928 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
929 {
930         struct kvmppc_spapr_tce_table *stt = filp->private_data;
931
932         release_spapr_tce_table(stt);
933         return 0;
934 }
935
936 static struct file_operations kvm_spapr_tce_fops = {
937         .mmap           = kvm_spapr_tce_mmap,
938         .release        = kvm_spapr_tce_release,
939 };
940
941 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
942                                    struct kvm_create_spapr_tce *args)
943 {
944         struct kvmppc_spapr_tce_table *stt = NULL;
945         long npages;
946         int ret = -ENOMEM;
947         int i;
948
949         /* Check this LIOBN hasn't been previously allocated */
950         list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
951                 if (stt->liobn == args->liobn)
952                         return -EBUSY;
953         }
954
955         npages = kvmppc_stt_npages(args->window_size);
956
957         stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
958                       GFP_KERNEL);
959         if (!stt)
960                 goto fail;
961
962         stt->liobn = args->liobn;
963         stt->window_size = args->window_size;
964         stt->kvm = kvm;
965
966         for (i = 0; i < npages; i++) {
967                 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
968                 if (!stt->pages[i])
969                         goto fail;
970         }
971
972         kvm_get_kvm(kvm);
973
974         mutex_lock(&kvm->lock);
975         list_add(&stt->list, &kvm->arch.spapr_tce_tables);
976
977         mutex_unlock(&kvm->lock);
978
979         return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
980                                 stt, O_RDWR);
981
982 fail:
983         if (stt) {
984                 for (i = 0; i < npages; i++)
985                         if (stt->pages[i])
986                                 __free_page(stt->pages[i]);
987
988                 kfree(stt);
989         }
990         return ret;
991 }
992
993 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
994    Assumes POWER7 or PPC970. */
995 static inline int lpcr_rmls(unsigned long rma_size)
996 {
997         switch (rma_size) {
998         case 32ul << 20:        /* 32 MB */
999                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1000                         return 8;       /* only supported on POWER7 */
1001                 return -1;
1002         case 64ul << 20:        /* 64 MB */
1003                 return 3;
1004         case 128ul << 20:       /* 128 MB */
1005                 return 7;
1006         case 256ul << 20:       /* 256 MB */
1007                 return 4;
1008         case 1ul << 30:         /* 1 GB */
1009                 return 2;
1010         case 16ul << 30:        /* 16 GB */
1011                 return 1;
1012         case 256ul << 30:       /* 256 GB */
1013                 return 0;
1014         default:
1015                 return -1;
1016         }
1017 }
1018
1019 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020 {
1021         struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1022         struct page *page;
1023
1024         if (vmf->pgoff >= ri->npages)
1025                 return VM_FAULT_SIGBUS;
1026
1027         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1028         get_page(page);
1029         vmf->page = page;
1030         return 0;
1031 }
1032
1033 static const struct vm_operations_struct kvm_rma_vm_ops = {
1034         .fault = kvm_rma_fault,
1035 };
1036
1037 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1038 {
1039         vma->vm_flags |= VM_RESERVED;
1040         vma->vm_ops = &kvm_rma_vm_ops;
1041         return 0;
1042 }
1043
1044 static int kvm_rma_release(struct inode *inode, struct file *filp)
1045 {
1046         struct kvmppc_rma_info *ri = filp->private_data;
1047
1048         kvm_release_rma(ri);
1049         return 0;
1050 }
1051
1052 static struct file_operations kvm_rma_fops = {
1053         .mmap           = kvm_rma_mmap,
1054         .release        = kvm_rma_release,
1055 };
1056
1057 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1058 {
1059         struct kvmppc_rma_info *ri;
1060         long fd;
1061
1062         ri = kvm_alloc_rma();
1063         if (!ri)
1064                 return -ENOMEM;
1065
1066         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1067         if (fd < 0)
1068                 kvm_release_rma(ri);
1069
1070         ret->rma_size = ri->npages << PAGE_SHIFT;
1071         return fd;
1072 }
1073
1074 static unsigned long slb_pgsize_encoding(unsigned long psize)
1075 {
1076         unsigned long senc = 0;
1077
1078         if (psize > 0x1000) {
1079                 senc = SLB_VSID_L;
1080                 if (psize == 0x10000)
1081                         senc |= SLB_VSID_LP_01;
1082         }
1083         return senc;
1084 }
1085
1086 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1087                                 struct kvm_userspace_memory_region *mem)
1088 {
1089         unsigned long npages;
1090         unsigned long *phys;
1091
1092         /* Allocate a slot_phys array */
1093         npages = mem->memory_size >> PAGE_SHIFT;
1094         phys = kvm->arch.slot_phys[mem->slot];
1095         if (!phys) {
1096                 phys = vzalloc(npages * sizeof(unsigned long));
1097                 if (!phys)
1098                         return -ENOMEM;
1099                 kvm->arch.slot_phys[mem->slot] = phys;
1100                 kvm->arch.slot_npages[mem->slot] = npages;
1101         }
1102
1103         return 0;
1104 }
1105
1106 static void unpin_slot(struct kvm *kvm, int slot_id)
1107 {
1108         unsigned long *physp;
1109         unsigned long j, npages, pfn;
1110         struct page *page;
1111
1112         physp = kvm->arch.slot_phys[slot_id];
1113         npages = kvm->arch.slot_npages[slot_id];
1114         if (physp) {
1115                 spin_lock(&kvm->arch.slot_phys_lock);
1116                 for (j = 0; j < npages; j++) {
1117                         if (!(physp[j] & KVMPPC_GOT_PAGE))
1118                                 continue;
1119                         pfn = physp[j] >> PAGE_SHIFT;
1120                         page = pfn_to_page(pfn);
1121                         if (PageHuge(page))
1122                                 page = compound_head(page);
1123                         SetPageDirty(page);
1124                         put_page(page);
1125                 }
1126                 kvm->arch.slot_phys[slot_id] = NULL;
1127                 spin_unlock(&kvm->arch.slot_phys_lock);
1128                 vfree(physp);
1129         }
1130 }
1131
1132 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1133                                 struct kvm_userspace_memory_region *mem)
1134 {
1135 }
1136
1137 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1138 {
1139         int err = 0;
1140         struct kvm *kvm = vcpu->kvm;
1141         struct kvmppc_rma_info *ri = NULL;
1142         unsigned long hva;
1143         struct kvm_memory_slot *memslot;
1144         struct vm_area_struct *vma;
1145         unsigned long lpcr, senc;
1146         unsigned long psize, porder;
1147         unsigned long rma_size;
1148         unsigned long rmls;
1149         unsigned long *physp;
1150         unsigned long i, npages;
1151
1152         mutex_lock(&kvm->lock);
1153         if (kvm->arch.rma_setup_done)
1154                 goto out;       /* another vcpu beat us to it */
1155
1156         /* Look up the memslot for guest physical address 0 */
1157         memslot = gfn_to_memslot(kvm, 0);
1158
1159         /* We must have some memory at 0 by now */
1160         err = -EINVAL;
1161         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1162                 goto out;
1163
1164         /* Look up the VMA for the start of this memory slot */
1165         hva = memslot->userspace_addr;
1166         down_read(&current->mm->mmap_sem);
1167         vma = find_vma(current->mm, hva);
1168         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1169                 goto up_out;
1170
1171         psize = vma_kernel_pagesize(vma);
1172         porder = __ilog2(psize);
1173
1174         /* Is this one of our preallocated RMAs? */
1175         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1176             hva == vma->vm_start)
1177                 ri = vma->vm_file->private_data;
1178
1179         up_read(&current->mm->mmap_sem);
1180
1181         if (!ri) {
1182                 /* On POWER7, use VRMA; on PPC970, give up */
1183                 err = -EPERM;
1184                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1185                         pr_err("KVM: CPU requires an RMO\n");
1186                         goto out;
1187                 }
1188
1189                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1190                 err = -EINVAL;
1191                 if (!(psize == 0x1000 || psize == 0x10000 ||
1192                       psize == 0x1000000))
1193                         goto out;
1194
1195                 /* Update VRMASD field in the LPCR */
1196                 senc = slb_pgsize_encoding(psize);
1197                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1198                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1199                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1200                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1201                 kvm->arch.lpcr = lpcr;
1202
1203                 /* Create HPTEs in the hash page table for the VRMA */
1204                 kvmppc_map_vrma(vcpu, memslot, porder);
1205
1206         } else {
1207                 /* Set up to use an RMO region */
1208                 rma_size = ri->npages;
1209                 if (rma_size > memslot->npages)
1210                         rma_size = memslot->npages;
1211                 rma_size <<= PAGE_SHIFT;
1212                 rmls = lpcr_rmls(rma_size);
1213                 err = -EINVAL;
1214                 if (rmls < 0) {
1215                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1216                         goto out;
1217                 }
1218                 atomic_inc(&ri->use_count);
1219                 kvm->arch.rma = ri;
1220
1221                 /* Update LPCR and RMOR */
1222                 lpcr = kvm->arch.lpcr;
1223                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1224                         /* PPC970; insert RMLS value (split field) in HID4 */
1225                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1226                                   (3ul << HID4_RMLS2_SH));
1227                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1228                                 ((rmls & 3) << HID4_RMLS2_SH);
1229                         /* RMOR is also in HID4 */
1230                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1231                                 << HID4_RMOR_SH;
1232                 } else {
1233                         /* POWER7 */
1234                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1235                         lpcr |= rmls << LPCR_RMLS_SH;
1236                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1237                 }
1238                 kvm->arch.lpcr = lpcr;
1239                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1240                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1241
1242                 /* Initialize phys addrs of pages in RMO */
1243                 npages = ri->npages;
1244                 porder = __ilog2(npages);
1245                 physp = kvm->arch.slot_phys[memslot->id];
1246                 spin_lock(&kvm->arch.slot_phys_lock);
1247                 for (i = 0; i < npages; ++i)
1248                         physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1249                 spin_unlock(&kvm->arch.slot_phys_lock);
1250         }
1251
1252         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1253         smp_wmb();
1254         kvm->arch.rma_setup_done = 1;
1255         err = 0;
1256  out:
1257         mutex_unlock(&kvm->lock);
1258         return err;
1259
1260  up_out:
1261         up_read(&current->mm->mmap_sem);
1262         goto out;
1263 }
1264
1265 int kvmppc_core_init_vm(struct kvm *kvm)
1266 {
1267         long r;
1268         unsigned long lpcr;
1269
1270         /* Allocate hashed page table */
1271         r = kvmppc_alloc_hpt(kvm);
1272         if (r)
1273                 return r;
1274
1275         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1276
1277         kvm->arch.rma = NULL;
1278
1279         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1280
1281         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1282                 /* PPC970; HID4 is effectively the LPCR */
1283                 unsigned long lpid = kvm->arch.lpid;
1284                 kvm->arch.host_lpid = 0;
1285                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1286                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1287                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1288                         ((lpid & 0xf) << HID4_LPID5_SH);
1289         } else {
1290                 /* POWER7; init LPCR for virtual RMA mode */
1291                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1292                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1293                 lpcr &= LPCR_PECE | LPCR_LPES;
1294                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1295                         LPCR_VPM0 | LPCR_VPM1;
1296                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1297                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1298         }
1299         kvm->arch.lpcr = lpcr;
1300
1301         spin_lock_init(&kvm->arch.slot_phys_lock);
1302         return 0;
1303 }
1304
1305 void kvmppc_core_destroy_vm(struct kvm *kvm)
1306 {
1307         unsigned long i;
1308
1309         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1310                 unpin_slot(kvm, i);
1311
1312         if (kvm->arch.rma) {
1313                 kvm_release_rma(kvm->arch.rma);
1314                 kvm->arch.rma = NULL;
1315         }
1316
1317         kvmppc_free_hpt(kvm);
1318         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1319 }
1320
1321 /* These are stubs for now */
1322 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1323 {
1324 }
1325
1326 /* We don't need to emulate any privileged instructions or dcbz */
1327 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1328                            unsigned int inst, int *advance)
1329 {
1330         return EMULATE_FAIL;
1331 }
1332
1333 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1334 {
1335         return EMULATE_FAIL;
1336 }
1337
1338 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1339 {
1340         return EMULATE_FAIL;
1341 }
1342
1343 static int kvmppc_book3s_hv_init(void)
1344 {
1345         int r;
1346
1347         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1348
1349         if (r)
1350                 return r;
1351
1352         r = kvmppc_mmu_hv_init();
1353
1354         return r;
1355 }
1356
1357 static void kvmppc_book3s_hv_exit(void)
1358 {
1359         kvm_exit();
1360 }
1361
1362 module_init(kvmppc_book3s_hv_init);
1363 module_exit(kvmppc_book3s_hv_exit);