]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/renesas...
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <asm/switch_to.h>
49 #include <linux/gfp.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu);
60
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63         struct kvmppc_vcore *vc = vcpu->arch.vcore;
64
65         local_paca->kvm_hstate.kvm_vcpu = vcpu;
66         local_paca->kvm_hstate.kvm_vcore = vc;
67         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
68                 vc->stolen_tb += mftb() - vc->preempt_tb;
69 }
70
71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
72 {
73         struct kvmppc_vcore *vc = vcpu->arch.vcore;
74
75         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
76                 vc->preempt_tb = mftb();
77 }
78
79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 {
81         vcpu->arch.shregs.msr = msr;
82         kvmppc_end_cede(vcpu);
83 }
84
85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 {
87         vcpu->arch.pvr = pvr;
88 }
89
90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 {
92         int r;
93
94         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
95         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
96                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
97         for (r = 0; r < 16; ++r)
98                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
99                        r, kvmppc_get_gpr(vcpu, r),
100                        r+16, kvmppc_get_gpr(vcpu, r+16));
101         pr_err("ctr = %.16lx  lr  = %.16lx\n",
102                vcpu->arch.ctr, vcpu->arch.lr);
103         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
104                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
105         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
106                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
107         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
108                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
109         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
110                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
111         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
112         pr_err("fault dar = %.16lx dsisr = %.8x\n",
113                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
114         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
115         for (r = 0; r < vcpu->arch.slb_max; ++r)
116                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
117                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
118         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120                vcpu->arch.last_inst);
121 }
122
123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 {
125         int r;
126         struct kvm_vcpu *v, *ret = NULL;
127
128         mutex_lock(&kvm->lock);
129         kvm_for_each_vcpu(r, v, kvm) {
130                 if (v->vcpu_id == id) {
131                         ret = v;
132                         break;
133                 }
134         }
135         mutex_unlock(&kvm->lock);
136         return ret;
137 }
138
139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 {
141         vpa->shared_proc = 1;
142         vpa->yield_count = 1;
143 }
144
145 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
146 struct reg_vpa {
147         u32 dummy;
148         union {
149                 u16 hword;
150                 u32 word;
151         } length;
152 };
153
154 static int vpa_is_registered(struct kvmppc_vpa *vpap)
155 {
156         if (vpap->update_pending)
157                 return vpap->next_gpa != 0;
158         return vpap->pinned_addr != NULL;
159 }
160
161 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
162                                        unsigned long flags,
163                                        unsigned long vcpuid, unsigned long vpa)
164 {
165         struct kvm *kvm = vcpu->kvm;
166         unsigned long len, nb;
167         void *va;
168         struct kvm_vcpu *tvcpu;
169         int err;
170         int subfunc;
171         struct kvmppc_vpa *vpap;
172
173         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
174         if (!tvcpu)
175                 return H_PARAMETER;
176
177         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
178         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
179             subfunc == H_VPA_REG_SLB) {
180                 /* Registering new area - address must be cache-line aligned */
181                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
182                         return H_PARAMETER;
183
184                 /* convert logical addr to kernel addr and read length */
185                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
186                 if (va == NULL)
187                         return H_PARAMETER;
188                 if (subfunc == H_VPA_REG_VPA)
189                         len = ((struct reg_vpa *)va)->length.hword;
190                 else
191                         len = ((struct reg_vpa *)va)->length.word;
192                 kvmppc_unpin_guest_page(kvm, va);
193
194                 /* Check length */
195                 if (len > nb || len < sizeof(struct reg_vpa))
196                         return H_PARAMETER;
197         } else {
198                 vpa = 0;
199                 len = 0;
200         }
201
202         err = H_PARAMETER;
203         vpap = NULL;
204         spin_lock(&tvcpu->arch.vpa_update_lock);
205
206         switch (subfunc) {
207         case H_VPA_REG_VPA:             /* register VPA */
208                 if (len < sizeof(struct lppaca))
209                         break;
210                 vpap = &tvcpu->arch.vpa;
211                 err = 0;
212                 break;
213
214         case H_VPA_REG_DTL:             /* register DTL */
215                 if (len < sizeof(struct dtl_entry))
216                         break;
217                 len -= len % sizeof(struct dtl_entry);
218
219                 /* Check that they have previously registered a VPA */
220                 err = H_RESOURCE;
221                 if (!vpa_is_registered(&tvcpu->arch.vpa))
222                         break;
223
224                 vpap = &tvcpu->arch.dtl;
225                 err = 0;
226                 break;
227
228         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
229                 /* Check that they have previously registered a VPA */
230                 err = H_RESOURCE;
231                 if (!vpa_is_registered(&tvcpu->arch.vpa))
232                         break;
233
234                 vpap = &tvcpu->arch.slb_shadow;
235                 err = 0;
236                 break;
237
238         case H_VPA_DEREG_VPA:           /* deregister VPA */
239                 /* Check they don't still have a DTL or SLB buf registered */
240                 err = H_RESOURCE;
241                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
242                     vpa_is_registered(&tvcpu->arch.slb_shadow))
243                         break;
244
245                 vpap = &tvcpu->arch.vpa;
246                 err = 0;
247                 break;
248
249         case H_VPA_DEREG_DTL:           /* deregister DTL */
250                 vpap = &tvcpu->arch.dtl;
251                 err = 0;
252                 break;
253
254         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
255                 vpap = &tvcpu->arch.slb_shadow;
256                 err = 0;
257                 break;
258         }
259
260         if (vpap) {
261                 vpap->next_gpa = vpa;
262                 vpap->len = len;
263                 vpap->update_pending = 1;
264         }
265
266         spin_unlock(&tvcpu->arch.vpa_update_lock);
267
268         return err;
269 }
270
271 static void kvmppc_update_vpa(struct kvm *kvm, struct kvmppc_vpa *vpap)
272 {
273         void *va;
274         unsigned long nb;
275
276         vpap->update_pending = 0;
277         va = NULL;
278         if (vpap->next_gpa) {
279                 va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
280                 if (nb < vpap->len) {
281                         /*
282                          * If it's now too short, it must be that userspace
283                          * has changed the mappings underlying guest memory,
284                          * so unregister the region.
285                          */
286                         kvmppc_unpin_guest_page(kvm, va);
287                         va = NULL;
288                 }
289         }
290         if (vpap->pinned_addr)
291                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
292         vpap->pinned_addr = va;
293         if (va)
294                 vpap->pinned_end = va + vpap->len;
295 }
296
297 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
298 {
299         struct kvm *kvm = vcpu->kvm;
300
301         spin_lock(&vcpu->arch.vpa_update_lock);
302         if (vcpu->arch.vpa.update_pending) {
303                 kvmppc_update_vpa(kvm, &vcpu->arch.vpa);
304                 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
305         }
306         if (vcpu->arch.dtl.update_pending) {
307                 kvmppc_update_vpa(kvm, &vcpu->arch.dtl);
308                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
309                 vcpu->arch.dtl_index = 0;
310         }
311         if (vcpu->arch.slb_shadow.update_pending)
312                 kvmppc_update_vpa(kvm, &vcpu->arch.slb_shadow);
313         spin_unlock(&vcpu->arch.vpa_update_lock);
314 }
315
316 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
317                                     struct kvmppc_vcore *vc)
318 {
319         struct dtl_entry *dt;
320         struct lppaca *vpa;
321         unsigned long old_stolen;
322
323         dt = vcpu->arch.dtl_ptr;
324         vpa = vcpu->arch.vpa.pinned_addr;
325         old_stolen = vcpu->arch.stolen_logged;
326         vcpu->arch.stolen_logged = vc->stolen_tb;
327         if (!dt || !vpa)
328                 return;
329         memset(dt, 0, sizeof(struct dtl_entry));
330         dt->dispatch_reason = 7;
331         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
332         dt->timebase = mftb();
333         dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
334         dt->srr0 = kvmppc_get_pc(vcpu);
335         dt->srr1 = vcpu->arch.shregs.msr;
336         ++dt;
337         if (dt == vcpu->arch.dtl.pinned_end)
338                 dt = vcpu->arch.dtl.pinned_addr;
339         vcpu->arch.dtl_ptr = dt;
340         /* order writing *dt vs. writing vpa->dtl_idx */
341         smp_wmb();
342         vpa->dtl_idx = ++vcpu->arch.dtl_index;
343 }
344
345 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
346 {
347         unsigned long req = kvmppc_get_gpr(vcpu, 3);
348         unsigned long target, ret = H_SUCCESS;
349         struct kvm_vcpu *tvcpu;
350
351         switch (req) {
352         case H_ENTER:
353                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
354                                               kvmppc_get_gpr(vcpu, 5),
355                                               kvmppc_get_gpr(vcpu, 6),
356                                               kvmppc_get_gpr(vcpu, 7));
357                 break;
358         case H_CEDE:
359                 break;
360         case H_PROD:
361                 target = kvmppc_get_gpr(vcpu, 4);
362                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
363                 if (!tvcpu) {
364                         ret = H_PARAMETER;
365                         break;
366                 }
367                 tvcpu->arch.prodded = 1;
368                 smp_mb();
369                 if (vcpu->arch.ceded) {
370                         if (waitqueue_active(&vcpu->wq)) {
371                                 wake_up_interruptible(&vcpu->wq);
372                                 vcpu->stat.halt_wakeup++;
373                         }
374                 }
375                 break;
376         case H_CONFER:
377                 break;
378         case H_REGISTER_VPA:
379                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
380                                         kvmppc_get_gpr(vcpu, 5),
381                                         kvmppc_get_gpr(vcpu, 6));
382                 break;
383         default:
384                 return RESUME_HOST;
385         }
386         kvmppc_set_gpr(vcpu, 3, ret);
387         vcpu->arch.hcall_needed = 0;
388         return RESUME_GUEST;
389 }
390
391 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
392                               struct task_struct *tsk)
393 {
394         int r = RESUME_HOST;
395
396         vcpu->stat.sum_exits++;
397
398         run->exit_reason = KVM_EXIT_UNKNOWN;
399         run->ready_for_interrupt_injection = 1;
400         switch (vcpu->arch.trap) {
401         /* We're good on these - the host merely wanted to get our attention */
402         case BOOK3S_INTERRUPT_HV_DECREMENTER:
403                 vcpu->stat.dec_exits++;
404                 r = RESUME_GUEST;
405                 break;
406         case BOOK3S_INTERRUPT_EXTERNAL:
407                 vcpu->stat.ext_intr_exits++;
408                 r = RESUME_GUEST;
409                 break;
410         case BOOK3S_INTERRUPT_PERFMON:
411                 r = RESUME_GUEST;
412                 break;
413         case BOOK3S_INTERRUPT_PROGRAM:
414         {
415                 ulong flags;
416                 /*
417                  * Normally program interrupts are delivered directly
418                  * to the guest by the hardware, but we can get here
419                  * as a result of a hypervisor emulation interrupt
420                  * (e40) getting turned into a 700 by BML RTAS.
421                  */
422                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
423                 kvmppc_core_queue_program(vcpu, flags);
424                 r = RESUME_GUEST;
425                 break;
426         }
427         case BOOK3S_INTERRUPT_SYSCALL:
428         {
429                 /* hcall - punt to userspace */
430                 int i;
431
432                 if (vcpu->arch.shregs.msr & MSR_PR) {
433                         /* sc 1 from userspace - reflect to guest syscall */
434                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
435                         r = RESUME_GUEST;
436                         break;
437                 }
438                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
439                 for (i = 0; i < 9; ++i)
440                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
441                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
442                 vcpu->arch.hcall_needed = 1;
443                 r = RESUME_HOST;
444                 break;
445         }
446         /*
447          * We get these next two if the guest accesses a page which it thinks
448          * it has mapped but which is not actually present, either because
449          * it is for an emulated I/O device or because the corresonding
450          * host page has been paged out.  Any other HDSI/HISI interrupts
451          * have been handled already.
452          */
453         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
454                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
455                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
456                 break;
457         case BOOK3S_INTERRUPT_H_INST_STORAGE:
458                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
459                                 kvmppc_get_pc(vcpu), 0);
460                 break;
461         /*
462          * This occurs if the guest executes an illegal instruction.
463          * We just generate a program interrupt to the guest, since
464          * we don't emulate any guest instructions at this stage.
465          */
466         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
467                 kvmppc_core_queue_program(vcpu, 0x80000);
468                 r = RESUME_GUEST;
469                 break;
470         default:
471                 kvmppc_dump_regs(vcpu);
472                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
473                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
474                         vcpu->arch.shregs.msr);
475                 r = RESUME_HOST;
476                 BUG();
477                 break;
478         }
479
480         return r;
481 }
482
483 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
484                                   struct kvm_sregs *sregs)
485 {
486         int i;
487
488         sregs->pvr = vcpu->arch.pvr;
489
490         memset(sregs, 0, sizeof(struct kvm_sregs));
491         for (i = 0; i < vcpu->arch.slb_max; i++) {
492                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
493                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
494         }
495
496         return 0;
497 }
498
499 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
500                                   struct kvm_sregs *sregs)
501 {
502         int i, j;
503
504         kvmppc_set_pvr(vcpu, sregs->pvr);
505
506         j = 0;
507         for (i = 0; i < vcpu->arch.slb_nr; i++) {
508                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
509                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
510                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
511                         ++j;
512                 }
513         }
514         vcpu->arch.slb_max = j;
515
516         return 0;
517 }
518
519 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
520 {
521         int r = -EINVAL;
522
523         switch (reg->id) {
524         case KVM_REG_PPC_HIOR:
525                 r = put_user(0, (u64 __user *)reg->addr);
526                 break;
527         default:
528                 break;
529         }
530
531         return r;
532 }
533
534 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
535 {
536         int r = -EINVAL;
537
538         switch (reg->id) {
539         case KVM_REG_PPC_HIOR:
540         {
541                 u64 hior;
542                 /* Only allow this to be set to zero */
543                 r = get_user(hior, (u64 __user *)reg->addr);
544                 if (!r && (hior != 0))
545                         r = -EINVAL;
546                 break;
547         }
548         default:
549                 break;
550         }
551
552         return r;
553 }
554
555 int kvmppc_core_check_processor_compat(void)
556 {
557         if (cpu_has_feature(CPU_FTR_HVMODE))
558                 return 0;
559         return -EIO;
560 }
561
562 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
563 {
564         struct kvm_vcpu *vcpu;
565         int err = -EINVAL;
566         int core;
567         struct kvmppc_vcore *vcore;
568
569         core = id / threads_per_core;
570         if (core >= KVM_MAX_VCORES)
571                 goto out;
572
573         err = -ENOMEM;
574         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
575         if (!vcpu)
576                 goto out;
577
578         err = kvm_vcpu_init(vcpu, kvm, id);
579         if (err)
580                 goto free_vcpu;
581
582         vcpu->arch.shared = &vcpu->arch.shregs;
583         vcpu->arch.last_cpu = -1;
584         vcpu->arch.mmcr[0] = MMCR0_FC;
585         vcpu->arch.ctrl = CTRL_RUNLATCH;
586         /* default to host PVR, since we can't spoof it */
587         vcpu->arch.pvr = mfspr(SPRN_PVR);
588         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
589         spin_lock_init(&vcpu->arch.vpa_update_lock);
590
591         kvmppc_mmu_book3s_hv_init(vcpu);
592
593         /*
594          * We consider the vcpu stopped until we see the first run ioctl for it.
595          */
596         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
597
598         init_waitqueue_head(&vcpu->arch.cpu_run);
599
600         mutex_lock(&kvm->lock);
601         vcore = kvm->arch.vcores[core];
602         if (!vcore) {
603                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
604                 if (vcore) {
605                         INIT_LIST_HEAD(&vcore->runnable_threads);
606                         spin_lock_init(&vcore->lock);
607                         init_waitqueue_head(&vcore->wq);
608                         vcore->preempt_tb = mftb();
609                 }
610                 kvm->arch.vcores[core] = vcore;
611         }
612         mutex_unlock(&kvm->lock);
613
614         if (!vcore)
615                 goto free_vcpu;
616
617         spin_lock(&vcore->lock);
618         ++vcore->num_threads;
619         spin_unlock(&vcore->lock);
620         vcpu->arch.vcore = vcore;
621         vcpu->arch.stolen_logged = vcore->stolen_tb;
622
623         vcpu->arch.cpu_type = KVM_CPU_3S_64;
624         kvmppc_sanity_check(vcpu);
625
626         return vcpu;
627
628 free_vcpu:
629         kmem_cache_free(kvm_vcpu_cache, vcpu);
630 out:
631         return ERR_PTR(err);
632 }
633
634 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
635 {
636         spin_lock(&vcpu->arch.vpa_update_lock);
637         if (vcpu->arch.dtl.pinned_addr)
638                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
639         if (vcpu->arch.slb_shadow.pinned_addr)
640                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
641         if (vcpu->arch.vpa.pinned_addr)
642                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
643         spin_unlock(&vcpu->arch.vpa_update_lock);
644         kvm_vcpu_uninit(vcpu);
645         kmem_cache_free(kvm_vcpu_cache, vcpu);
646 }
647
648 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
649 {
650         unsigned long dec_nsec, now;
651
652         now = get_tb();
653         if (now > vcpu->arch.dec_expires) {
654                 /* decrementer has already gone negative */
655                 kvmppc_core_queue_dec(vcpu);
656                 kvmppc_core_prepare_to_enter(vcpu);
657                 return;
658         }
659         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
660                    / tb_ticks_per_sec;
661         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
662                       HRTIMER_MODE_REL);
663         vcpu->arch.timer_running = 1;
664 }
665
666 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
667 {
668         vcpu->arch.ceded = 0;
669         if (vcpu->arch.timer_running) {
670                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
671                 vcpu->arch.timer_running = 0;
672         }
673 }
674
675 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
676 extern void xics_wake_cpu(int cpu);
677
678 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
679                                    struct kvm_vcpu *vcpu)
680 {
681         struct kvm_vcpu *v;
682
683         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
684                 return;
685         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
686         --vc->n_runnable;
687         ++vc->n_busy;
688         /* decrement the physical thread id of each following vcpu */
689         v = vcpu;
690         list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
691                 --v->arch.ptid;
692         list_del(&vcpu->arch.run_list);
693 }
694
695 static int kvmppc_grab_hwthread(int cpu)
696 {
697         struct paca_struct *tpaca;
698         long timeout = 1000;
699
700         tpaca = &paca[cpu];
701
702         /* Ensure the thread won't go into the kernel if it wakes */
703         tpaca->kvm_hstate.hwthread_req = 1;
704
705         /*
706          * If the thread is already executing in the kernel (e.g. handling
707          * a stray interrupt), wait for it to get back to nap mode.
708          * The smp_mb() is to ensure that our setting of hwthread_req
709          * is visible before we look at hwthread_state, so if this
710          * races with the code at system_reset_pSeries and the thread
711          * misses our setting of hwthread_req, we are sure to see its
712          * setting of hwthread_state, and vice versa.
713          */
714         smp_mb();
715         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
716                 if (--timeout <= 0) {
717                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
718                         return -EBUSY;
719                 }
720                 udelay(1);
721         }
722         return 0;
723 }
724
725 static void kvmppc_release_hwthread(int cpu)
726 {
727         struct paca_struct *tpaca;
728
729         tpaca = &paca[cpu];
730         tpaca->kvm_hstate.hwthread_req = 0;
731         tpaca->kvm_hstate.kvm_vcpu = NULL;
732 }
733
734 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
735 {
736         int cpu;
737         struct paca_struct *tpaca;
738         struct kvmppc_vcore *vc = vcpu->arch.vcore;
739
740         if (vcpu->arch.timer_running) {
741                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
742                 vcpu->arch.timer_running = 0;
743         }
744         cpu = vc->pcpu + vcpu->arch.ptid;
745         tpaca = &paca[cpu];
746         tpaca->kvm_hstate.kvm_vcpu = vcpu;
747         tpaca->kvm_hstate.kvm_vcore = vc;
748         tpaca->kvm_hstate.napping = 0;
749         vcpu->cpu = vc->pcpu;
750         smp_wmb();
751 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
752         if (vcpu->arch.ptid) {
753                 kvmppc_grab_hwthread(cpu);
754                 xics_wake_cpu(cpu);
755                 ++vc->n_woken;
756         }
757 #endif
758 }
759
760 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
761 {
762         int i;
763
764         HMT_low();
765         i = 0;
766         while (vc->nap_count < vc->n_woken) {
767                 if (++i >= 1000000) {
768                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
769                                vc->nap_count, vc->n_woken);
770                         break;
771                 }
772                 cpu_relax();
773         }
774         HMT_medium();
775 }
776
777 /*
778  * Check that we are on thread 0 and that any other threads in
779  * this core are off-line.
780  */
781 static int on_primary_thread(void)
782 {
783         int cpu = smp_processor_id();
784         int thr = cpu_thread_in_core(cpu);
785
786         if (thr)
787                 return 0;
788         while (++thr < threads_per_core)
789                 if (cpu_online(cpu + thr))
790                         return 0;
791         return 1;
792 }
793
794 /*
795  * Run a set of guest threads on a physical core.
796  * Called with vc->lock held.
797  */
798 static int kvmppc_run_core(struct kvmppc_vcore *vc)
799 {
800         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
801         long ret;
802         u64 now;
803         int ptid, i;
804
805         /* don't start if any threads have a signal pending */
806         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
807                 if (signal_pending(vcpu->arch.run_task))
808                         return 0;
809
810         /*
811          * Make sure we are running on thread 0, and that
812          * secondary threads are offline.
813          * XXX we should also block attempts to bring any
814          * secondary threads online.
815          */
816         if (threads_per_core > 1 && !on_primary_thread()) {
817                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
818                         vcpu->arch.ret = -EBUSY;
819                 goto out;
820         }
821
822         /*
823          * Assign physical thread IDs, first to non-ceded vcpus
824          * and then to ceded ones.
825          */
826         ptid = 0;
827         vcpu0 = NULL;
828         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
829                 if (!vcpu->arch.ceded) {
830                         if (!ptid)
831                                 vcpu0 = vcpu;
832                         vcpu->arch.ptid = ptid++;
833                 }
834         }
835         if (!vcpu0)
836                 return 0;               /* nothing to run */
837         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
838                 if (vcpu->arch.ceded)
839                         vcpu->arch.ptid = ptid++;
840
841         vc->n_woken = 0;
842         vc->nap_count = 0;
843         vc->entry_exit_count = 0;
844         vc->vcore_state = VCORE_RUNNING;
845         vc->stolen_tb += mftb() - vc->preempt_tb;
846         vc->in_guest = 0;
847         vc->pcpu = smp_processor_id();
848         vc->napping_threads = 0;
849         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
850                 kvmppc_start_thread(vcpu);
851                 if (vcpu->arch.vpa.update_pending ||
852                     vcpu->arch.slb_shadow.update_pending ||
853                     vcpu->arch.dtl.update_pending)
854                         kvmppc_update_vpas(vcpu);
855                 kvmppc_create_dtl_entry(vcpu, vc);
856         }
857         /* Grab any remaining hw threads so they can't go into the kernel */
858         for (i = ptid; i < threads_per_core; ++i)
859                 kvmppc_grab_hwthread(vc->pcpu + i);
860
861         preempt_disable();
862         spin_unlock(&vc->lock);
863
864         kvm_guest_enter();
865         __kvmppc_vcore_entry(NULL, vcpu0);
866         for (i = 0; i < threads_per_core; ++i)
867                 kvmppc_release_hwthread(vc->pcpu + i);
868
869         spin_lock(&vc->lock);
870         /* disable sending of IPIs on virtual external irqs */
871         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
872                 vcpu->cpu = -1;
873         /* wait for secondary threads to finish writing their state to memory */
874         if (vc->nap_count < vc->n_woken)
875                 kvmppc_wait_for_nap(vc);
876         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
877         vc->vcore_state = VCORE_EXITING;
878         spin_unlock(&vc->lock);
879
880         /* make sure updates to secondary vcpu structs are visible now */
881         smp_mb();
882         kvm_guest_exit();
883
884         preempt_enable();
885         kvm_resched(vcpu);
886
887         now = get_tb();
888         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
889                 /* cancel pending dec exception if dec is positive */
890                 if (now < vcpu->arch.dec_expires &&
891                     kvmppc_core_pending_dec(vcpu))
892                         kvmppc_core_dequeue_dec(vcpu);
893
894                 ret = RESUME_GUEST;
895                 if (vcpu->arch.trap)
896                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
897                                                  vcpu->arch.run_task);
898
899                 vcpu->arch.ret = ret;
900                 vcpu->arch.trap = 0;
901
902                 if (vcpu->arch.ceded) {
903                         if (ret != RESUME_GUEST)
904                                 kvmppc_end_cede(vcpu);
905                         else
906                                 kvmppc_set_timer(vcpu);
907                 }
908         }
909
910         spin_lock(&vc->lock);
911  out:
912         vc->vcore_state = VCORE_INACTIVE;
913         vc->preempt_tb = mftb();
914         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
915                                  arch.run_list) {
916                 if (vcpu->arch.ret != RESUME_GUEST) {
917                         kvmppc_remove_runnable(vc, vcpu);
918                         wake_up(&vcpu->arch.cpu_run);
919                 }
920         }
921
922         return 1;
923 }
924
925 /*
926  * Wait for some other vcpu thread to execute us, and
927  * wake us up when we need to handle something in the host.
928  */
929 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
930 {
931         DEFINE_WAIT(wait);
932
933         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
934         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
935                 schedule();
936         finish_wait(&vcpu->arch.cpu_run, &wait);
937 }
938
939 /*
940  * All the vcpus in this vcore are idle, so wait for a decrementer
941  * or external interrupt to one of the vcpus.  vc->lock is held.
942  */
943 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
944 {
945         DEFINE_WAIT(wait);
946         struct kvm_vcpu *v;
947         int all_idle = 1;
948
949         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
950         vc->vcore_state = VCORE_SLEEPING;
951         spin_unlock(&vc->lock);
952         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
953                 if (!v->arch.ceded || v->arch.pending_exceptions) {
954                         all_idle = 0;
955                         break;
956                 }
957         }
958         if (all_idle)
959                 schedule();
960         finish_wait(&vc->wq, &wait);
961         spin_lock(&vc->lock);
962         vc->vcore_state = VCORE_INACTIVE;
963 }
964
965 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
966 {
967         int n_ceded;
968         int prev_state;
969         struct kvmppc_vcore *vc;
970         struct kvm_vcpu *v, *vn;
971
972         kvm_run->exit_reason = 0;
973         vcpu->arch.ret = RESUME_GUEST;
974         vcpu->arch.trap = 0;
975
976         /*
977          * Synchronize with other threads in this virtual core
978          */
979         vc = vcpu->arch.vcore;
980         spin_lock(&vc->lock);
981         vcpu->arch.ceded = 0;
982         vcpu->arch.run_task = current;
983         vcpu->arch.kvm_run = kvm_run;
984         prev_state = vcpu->arch.state;
985         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
986         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
987         ++vc->n_runnable;
988
989         /*
990          * This happens the first time this is called for a vcpu.
991          * If the vcore is already running, we may be able to start
992          * this thread straight away and have it join in.
993          */
994         if (prev_state == KVMPPC_VCPU_STOPPED) {
995                 if (vc->vcore_state == VCORE_RUNNING &&
996                     VCORE_EXIT_COUNT(vc) == 0) {
997                         vcpu->arch.ptid = vc->n_runnable - 1;
998                         kvmppc_start_thread(vcpu);
999                 }
1000
1001         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1002                 --vc->n_busy;
1003
1004         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1005                !signal_pending(current)) {
1006                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1007                         spin_unlock(&vc->lock);
1008                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1009                         spin_lock(&vc->lock);
1010                         continue;
1011                 }
1012                 vc->runner = vcpu;
1013                 n_ceded = 0;
1014                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1015                         n_ceded += v->arch.ceded;
1016                 if (n_ceded == vc->n_runnable)
1017                         kvmppc_vcore_blocked(vc);
1018                 else
1019                         kvmppc_run_core(vc);
1020
1021                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1022                                          arch.run_list) {
1023                         kvmppc_core_prepare_to_enter(v);
1024                         if (signal_pending(v->arch.run_task)) {
1025                                 kvmppc_remove_runnable(vc, v);
1026                                 v->stat.signal_exits++;
1027                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1028                                 v->arch.ret = -EINTR;
1029                                 wake_up(&v->arch.cpu_run);
1030                         }
1031                 }
1032                 vc->runner = NULL;
1033         }
1034
1035         if (signal_pending(current)) {
1036                 if (vc->vcore_state == VCORE_RUNNING ||
1037                     vc->vcore_state == VCORE_EXITING) {
1038                         spin_unlock(&vc->lock);
1039                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1040                         spin_lock(&vc->lock);
1041                 }
1042                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1043                         kvmppc_remove_runnable(vc, vcpu);
1044                         vcpu->stat.signal_exits++;
1045                         kvm_run->exit_reason = KVM_EXIT_INTR;
1046                         vcpu->arch.ret = -EINTR;
1047                 }
1048         }
1049
1050         spin_unlock(&vc->lock);
1051         return vcpu->arch.ret;
1052 }
1053
1054 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1055 {
1056         int r;
1057
1058         if (!vcpu->arch.sane) {
1059                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1060                 return -EINVAL;
1061         }
1062
1063         kvmppc_core_prepare_to_enter(vcpu);
1064
1065         /* No need to go into the guest when all we'll do is come back out */
1066         if (signal_pending(current)) {
1067                 run->exit_reason = KVM_EXIT_INTR;
1068                 return -EINTR;
1069         }
1070
1071         /* On the first time here, set up VRMA or RMA */
1072         if (!vcpu->kvm->arch.rma_setup_done) {
1073                 r = kvmppc_hv_setup_rma(vcpu);
1074                 if (r)
1075                         return r;
1076         }
1077
1078         flush_fp_to_thread(current);
1079         flush_altivec_to_thread(current);
1080         flush_vsx_to_thread(current);
1081         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1082         vcpu->arch.pgdir = current->mm->pgd;
1083
1084         do {
1085                 r = kvmppc_run_vcpu(run, vcpu);
1086
1087                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1088                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1089                         r = kvmppc_pseries_do_hcall(vcpu);
1090                         kvmppc_core_prepare_to_enter(vcpu);
1091                 }
1092         } while (r == RESUME_GUEST);
1093         return r;
1094 }
1095
1096
1097 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1098    Assumes POWER7 or PPC970. */
1099 static inline int lpcr_rmls(unsigned long rma_size)
1100 {
1101         switch (rma_size) {
1102         case 32ul << 20:        /* 32 MB */
1103                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1104                         return 8;       /* only supported on POWER7 */
1105                 return -1;
1106         case 64ul << 20:        /* 64 MB */
1107                 return 3;
1108         case 128ul << 20:       /* 128 MB */
1109                 return 7;
1110         case 256ul << 20:       /* 256 MB */
1111                 return 4;
1112         case 1ul << 30:         /* 1 GB */
1113                 return 2;
1114         case 16ul << 30:        /* 16 GB */
1115                 return 1;
1116         case 256ul << 30:       /* 256 GB */
1117                 return 0;
1118         default:
1119                 return -1;
1120         }
1121 }
1122
1123 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1124 {
1125         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1126         struct page *page;
1127
1128         if (vmf->pgoff >= ri->npages)
1129                 return VM_FAULT_SIGBUS;
1130
1131         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1132         get_page(page);
1133         vmf->page = page;
1134         return 0;
1135 }
1136
1137 static const struct vm_operations_struct kvm_rma_vm_ops = {
1138         .fault = kvm_rma_fault,
1139 };
1140
1141 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1142 {
1143         vma->vm_flags |= VM_RESERVED;
1144         vma->vm_ops = &kvm_rma_vm_ops;
1145         return 0;
1146 }
1147
1148 static int kvm_rma_release(struct inode *inode, struct file *filp)
1149 {
1150         struct kvmppc_linear_info *ri = filp->private_data;
1151
1152         kvm_release_rma(ri);
1153         return 0;
1154 }
1155
1156 static struct file_operations kvm_rma_fops = {
1157         .mmap           = kvm_rma_mmap,
1158         .release        = kvm_rma_release,
1159 };
1160
1161 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1162 {
1163         struct kvmppc_linear_info *ri;
1164         long fd;
1165
1166         ri = kvm_alloc_rma();
1167         if (!ri)
1168                 return -ENOMEM;
1169
1170         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1171         if (fd < 0)
1172                 kvm_release_rma(ri);
1173
1174         ret->rma_size = ri->npages << PAGE_SHIFT;
1175         return fd;
1176 }
1177
1178 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1179                                      int linux_psize)
1180 {
1181         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1182
1183         if (!def->shift)
1184                 return;
1185         (*sps)->page_shift = def->shift;
1186         (*sps)->slb_enc = def->sllp;
1187         (*sps)->enc[0].page_shift = def->shift;
1188         (*sps)->enc[0].pte_enc = def->penc;
1189         (*sps)++;
1190 }
1191
1192 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1193 {
1194         struct kvm_ppc_one_seg_page_size *sps;
1195
1196         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1197         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1198                 info->flags |= KVM_PPC_1T_SEGMENTS;
1199         info->slb_size = mmu_slb_size;
1200
1201         /* We only support these sizes for now, and no muti-size segments */
1202         sps = &info->sps[0];
1203         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1204         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1205         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1206
1207         return 0;
1208 }
1209
1210 /*
1211  * Get (and clear) the dirty memory log for a memory slot.
1212  */
1213 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1214 {
1215         struct kvm_memory_slot *memslot;
1216         int r;
1217         unsigned long n;
1218
1219         mutex_lock(&kvm->slots_lock);
1220
1221         r = -EINVAL;
1222         if (log->slot >= KVM_MEMORY_SLOTS)
1223                 goto out;
1224
1225         memslot = id_to_memslot(kvm->memslots, log->slot);
1226         r = -ENOENT;
1227         if (!memslot->dirty_bitmap)
1228                 goto out;
1229
1230         n = kvm_dirty_bitmap_bytes(memslot);
1231         memset(memslot->dirty_bitmap, 0, n);
1232
1233         r = kvmppc_hv_get_dirty_log(kvm, memslot);
1234         if (r)
1235                 goto out;
1236
1237         r = -EFAULT;
1238         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1239                 goto out;
1240
1241         r = 0;
1242 out:
1243         mutex_unlock(&kvm->slots_lock);
1244         return r;
1245 }
1246
1247 static unsigned long slb_pgsize_encoding(unsigned long psize)
1248 {
1249         unsigned long senc = 0;
1250
1251         if (psize > 0x1000) {
1252                 senc = SLB_VSID_L;
1253                 if (psize == 0x10000)
1254                         senc |= SLB_VSID_LP_01;
1255         }
1256         return senc;
1257 }
1258
1259 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1260                                 struct kvm_userspace_memory_region *mem)
1261 {
1262         unsigned long npages;
1263         unsigned long *phys;
1264
1265         /* Allocate a slot_phys array */
1266         phys = kvm->arch.slot_phys[mem->slot];
1267         if (!kvm->arch.using_mmu_notifiers && !phys) {
1268                 npages = mem->memory_size >> PAGE_SHIFT;
1269                 phys = vzalloc(npages * sizeof(unsigned long));
1270                 if (!phys)
1271                         return -ENOMEM;
1272                 kvm->arch.slot_phys[mem->slot] = phys;
1273                 kvm->arch.slot_npages[mem->slot] = npages;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static void unpin_slot(struct kvm *kvm, int slot_id)
1280 {
1281         unsigned long *physp;
1282         unsigned long j, npages, pfn;
1283         struct page *page;
1284
1285         physp = kvm->arch.slot_phys[slot_id];
1286         npages = kvm->arch.slot_npages[slot_id];
1287         if (physp) {
1288                 spin_lock(&kvm->arch.slot_phys_lock);
1289                 for (j = 0; j < npages; j++) {
1290                         if (!(physp[j] & KVMPPC_GOT_PAGE))
1291                                 continue;
1292                         pfn = physp[j] >> PAGE_SHIFT;
1293                         page = pfn_to_page(pfn);
1294                         SetPageDirty(page);
1295                         put_page(page);
1296                 }
1297                 kvm->arch.slot_phys[slot_id] = NULL;
1298                 spin_unlock(&kvm->arch.slot_phys_lock);
1299                 vfree(physp);
1300         }
1301 }
1302
1303 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1304                                 struct kvm_userspace_memory_region *mem)
1305 {
1306 }
1307
1308 static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu)
1309 {
1310         int err = 0;
1311         struct kvm *kvm = vcpu->kvm;
1312         struct kvmppc_linear_info *ri = NULL;
1313         unsigned long hva;
1314         struct kvm_memory_slot *memslot;
1315         struct vm_area_struct *vma;
1316         unsigned long lpcr, senc;
1317         unsigned long psize, porder;
1318         unsigned long rma_size;
1319         unsigned long rmls;
1320         unsigned long *physp;
1321         unsigned long i, npages;
1322
1323         mutex_lock(&kvm->lock);
1324         if (kvm->arch.rma_setup_done)
1325                 goto out;       /* another vcpu beat us to it */
1326
1327         /* Look up the memslot for guest physical address 0 */
1328         memslot = gfn_to_memslot(kvm, 0);
1329
1330         /* We must have some memory at 0 by now */
1331         err = -EINVAL;
1332         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1333                 goto out;
1334
1335         /* Look up the VMA for the start of this memory slot */
1336         hva = memslot->userspace_addr;
1337         down_read(&current->mm->mmap_sem);
1338         vma = find_vma(current->mm, hva);
1339         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1340                 goto up_out;
1341
1342         psize = vma_kernel_pagesize(vma);
1343         porder = __ilog2(psize);
1344
1345         /* Is this one of our preallocated RMAs? */
1346         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1347             hva == vma->vm_start)
1348                 ri = vma->vm_file->private_data;
1349
1350         up_read(&current->mm->mmap_sem);
1351
1352         if (!ri) {
1353                 /* On POWER7, use VRMA; on PPC970, give up */
1354                 err = -EPERM;
1355                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1356                         pr_err("KVM: CPU requires an RMO\n");
1357                         goto out;
1358                 }
1359
1360                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1361                 err = -EINVAL;
1362                 if (!(psize == 0x1000 || psize == 0x10000 ||
1363                       psize == 0x1000000))
1364                         goto out;
1365
1366                 /* Update VRMASD field in the LPCR */
1367                 senc = slb_pgsize_encoding(psize);
1368                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1369                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1370                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1371                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1372                 kvm->arch.lpcr = lpcr;
1373
1374                 /* Create HPTEs in the hash page table for the VRMA */
1375                 kvmppc_map_vrma(vcpu, memslot, porder);
1376
1377         } else {
1378                 /* Set up to use an RMO region */
1379                 rma_size = ri->npages;
1380                 if (rma_size > memslot->npages)
1381                         rma_size = memslot->npages;
1382                 rma_size <<= PAGE_SHIFT;
1383                 rmls = lpcr_rmls(rma_size);
1384                 err = -EINVAL;
1385                 if (rmls < 0) {
1386                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1387                         goto out;
1388                 }
1389                 atomic_inc(&ri->use_count);
1390                 kvm->arch.rma = ri;
1391
1392                 /* Update LPCR and RMOR */
1393                 lpcr = kvm->arch.lpcr;
1394                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1395                         /* PPC970; insert RMLS value (split field) in HID4 */
1396                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1397                                   (3ul << HID4_RMLS2_SH));
1398                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1399                                 ((rmls & 3) << HID4_RMLS2_SH);
1400                         /* RMOR is also in HID4 */
1401                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1402                                 << HID4_RMOR_SH;
1403                 } else {
1404                         /* POWER7 */
1405                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1406                         lpcr |= rmls << LPCR_RMLS_SH;
1407                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1408                 }
1409                 kvm->arch.lpcr = lpcr;
1410                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1411                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1412
1413                 /* Initialize phys addrs of pages in RMO */
1414                 npages = ri->npages;
1415                 porder = __ilog2(npages);
1416                 physp = kvm->arch.slot_phys[memslot->id];
1417                 spin_lock(&kvm->arch.slot_phys_lock);
1418                 for (i = 0; i < npages; ++i)
1419                         physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1420                 spin_unlock(&kvm->arch.slot_phys_lock);
1421         }
1422
1423         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1424         smp_wmb();
1425         kvm->arch.rma_setup_done = 1;
1426         err = 0;
1427  out:
1428         mutex_unlock(&kvm->lock);
1429         return err;
1430
1431  up_out:
1432         up_read(&current->mm->mmap_sem);
1433         goto out;
1434 }
1435
1436 int kvmppc_core_init_vm(struct kvm *kvm)
1437 {
1438         long r;
1439         unsigned long lpcr;
1440
1441         /* Allocate hashed page table */
1442         r = kvmppc_alloc_hpt(kvm);
1443         if (r)
1444                 return r;
1445
1446         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1447
1448         kvm->arch.rma = NULL;
1449
1450         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1451
1452         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1453                 /* PPC970; HID4 is effectively the LPCR */
1454                 unsigned long lpid = kvm->arch.lpid;
1455                 kvm->arch.host_lpid = 0;
1456                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1457                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1458                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1459                         ((lpid & 0xf) << HID4_LPID5_SH);
1460         } else {
1461                 /* POWER7; init LPCR for virtual RMA mode */
1462                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1463                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1464                 lpcr &= LPCR_PECE | LPCR_LPES;
1465                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1466                         LPCR_VPM0 | LPCR_VPM1;
1467                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1468                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1469         }
1470         kvm->arch.lpcr = lpcr;
1471
1472         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1473         spin_lock_init(&kvm->arch.slot_phys_lock);
1474         return 0;
1475 }
1476
1477 void kvmppc_core_destroy_vm(struct kvm *kvm)
1478 {
1479         unsigned long i;
1480
1481         if (!kvm->arch.using_mmu_notifiers)
1482                 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1483                         unpin_slot(kvm, i);
1484
1485         if (kvm->arch.rma) {
1486                 kvm_release_rma(kvm->arch.rma);
1487                 kvm->arch.rma = NULL;
1488         }
1489
1490         kvmppc_free_hpt(kvm);
1491         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1492 }
1493
1494 /* These are stubs for now */
1495 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1496 {
1497 }
1498
1499 /* We don't need to emulate any privileged instructions or dcbz */
1500 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1501                            unsigned int inst, int *advance)
1502 {
1503         return EMULATE_FAIL;
1504 }
1505
1506 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1507 {
1508         return EMULATE_FAIL;
1509 }
1510
1511 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1512 {
1513         return EMULATE_FAIL;
1514 }
1515
1516 static int kvmppc_book3s_hv_init(void)
1517 {
1518         int r;
1519
1520         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1521
1522         if (r)
1523                 return r;
1524
1525         r = kvmppc_mmu_hv_init();
1526
1527         return r;
1528 }
1529
1530 static void kvmppc_book3s_hv_exit(void)
1531 {
1532         kvm_exit();
1533 }
1534
1535 module_init(kvmppc_book3s_hv_init);
1536 module_exit(kvmppc_book3s_hv_exit);