]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge branch 'regset' (PTRACE_SETREGSET data leakage)
[karo-tx-linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include "timing.h"
41 #include "irq.h"
42 #include "../mm/mmu_decl.h"
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 struct kvmppc_ops *kvmppc_hv_ops;
48 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
49 struct kvmppc_ops *kvmppc_pr_ops;
50 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
51
52
53 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
54 {
55         return !!(v->arch.pending_exceptions) ||
56                v->requests;
57 }
58
59 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
60 {
61         return 1;
62 }
63
64 /*
65  * Common checks before entering the guest world.  Call with interrupts
66  * disabled.
67  *
68  * returns:
69  *
70  * == 1 if we're ready to go into guest state
71  * <= 0 if we need to go back to the host with return value
72  */
73 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
74 {
75         int r;
76
77         WARN_ON(irqs_disabled());
78         hard_irq_disable();
79
80         while (true) {
81                 if (need_resched()) {
82                         local_irq_enable();
83                         cond_resched();
84                         hard_irq_disable();
85                         continue;
86                 }
87
88                 if (signal_pending(current)) {
89                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
90                         vcpu->run->exit_reason = KVM_EXIT_INTR;
91                         r = -EINTR;
92                         break;
93                 }
94
95                 vcpu->mode = IN_GUEST_MODE;
96
97                 /*
98                  * Reading vcpu->requests must happen after setting vcpu->mode,
99                  * so we don't miss a request because the requester sees
100                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
101                  * before next entering the guest (and thus doesn't IPI).
102                  * This also orders the write to mode from any reads
103                  * to the page tables done while the VCPU is running.
104                  * Please see the comment in kvm_flush_remote_tlbs.
105                  */
106                 smp_mb();
107
108                 if (vcpu->requests) {
109                         /* Make sure we process requests preemptable */
110                         local_irq_enable();
111                         trace_kvm_check_requests(vcpu);
112                         r = kvmppc_core_check_requests(vcpu);
113                         hard_irq_disable();
114                         if (r > 0)
115                                 continue;
116                         break;
117                 }
118
119                 if (kvmppc_core_prepare_to_enter(vcpu)) {
120                         /* interrupts got enabled in between, so we
121                            are back at square 1 */
122                         continue;
123                 }
124
125                 guest_enter_irqoff();
126                 return 1;
127         }
128
129         /* return to host */
130         local_irq_enable();
131         return r;
132 }
133 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
134
135 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
136 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
137 {
138         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
139         int i;
140
141         shared->sprg0 = swab64(shared->sprg0);
142         shared->sprg1 = swab64(shared->sprg1);
143         shared->sprg2 = swab64(shared->sprg2);
144         shared->sprg3 = swab64(shared->sprg3);
145         shared->srr0 = swab64(shared->srr0);
146         shared->srr1 = swab64(shared->srr1);
147         shared->dar = swab64(shared->dar);
148         shared->msr = swab64(shared->msr);
149         shared->dsisr = swab32(shared->dsisr);
150         shared->int_pending = swab32(shared->int_pending);
151         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
152                 shared->sr[i] = swab32(shared->sr[i]);
153 }
154 #endif
155
156 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
157 {
158         int nr = kvmppc_get_gpr(vcpu, 11);
159         int r;
160         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
161         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
162         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
163         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
164         unsigned long r2 = 0;
165
166         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
167                 /* 32 bit mode */
168                 param1 &= 0xffffffff;
169                 param2 &= 0xffffffff;
170                 param3 &= 0xffffffff;
171                 param4 &= 0xffffffff;
172         }
173
174         switch (nr) {
175         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
176         {
177 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
178                 /* Book3S can be little endian, find it out here */
179                 int shared_big_endian = true;
180                 if (vcpu->arch.intr_msr & MSR_LE)
181                         shared_big_endian = false;
182                 if (shared_big_endian != vcpu->arch.shared_big_endian)
183                         kvmppc_swab_shared(vcpu);
184                 vcpu->arch.shared_big_endian = shared_big_endian;
185 #endif
186
187                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
188                         /*
189                          * Older versions of the Linux magic page code had
190                          * a bug where they would map their trampoline code
191                          * NX. If that's the case, remove !PR NX capability.
192                          */
193                         vcpu->arch.disable_kernel_nx = true;
194                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
195                 }
196
197                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
198                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
199
200 #ifdef CONFIG_PPC_64K_PAGES
201                 /*
202                  * Make sure our 4k magic page is in the same window of a 64k
203                  * page within the guest and within the host's page.
204                  */
205                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
206                     ((ulong)vcpu->arch.shared & 0xf000)) {
207                         void *old_shared = vcpu->arch.shared;
208                         ulong shared = (ulong)vcpu->arch.shared;
209                         void *new_shared;
210
211                         shared &= PAGE_MASK;
212                         shared |= vcpu->arch.magic_page_pa & 0xf000;
213                         new_shared = (void*)shared;
214                         memcpy(new_shared, old_shared, 0x1000);
215                         vcpu->arch.shared = new_shared;
216                 }
217 #endif
218
219                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
220
221                 r = EV_SUCCESS;
222                 break;
223         }
224         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
225                 r = EV_SUCCESS;
226 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
227                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
228 #endif
229
230                 /* Second return value is in r4 */
231                 break;
232         case EV_HCALL_TOKEN(EV_IDLE):
233                 r = EV_SUCCESS;
234                 kvm_vcpu_block(vcpu);
235                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
236                 break;
237         default:
238                 r = EV_UNIMPLEMENTED;
239                 break;
240         }
241
242         kvmppc_set_gpr(vcpu, 4, r2);
243
244         return r;
245 }
246 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
247
248 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
249 {
250         int r = false;
251
252         /* We have to know what CPU to virtualize */
253         if (!vcpu->arch.pvr)
254                 goto out;
255
256         /* PAPR only works with book3s_64 */
257         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
258                 goto out;
259
260         /* HV KVM can only do PAPR mode for now */
261         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
262                 goto out;
263
264 #ifdef CONFIG_KVM_BOOKE_HV
265         if (!cpu_has_feature(CPU_FTR_EMB_HV))
266                 goto out;
267 #endif
268
269         r = true;
270
271 out:
272         vcpu->arch.sane = r;
273         return r ? 0 : -EINVAL;
274 }
275 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
276
277 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
278 {
279         enum emulation_result er;
280         int r;
281
282         er = kvmppc_emulate_loadstore(vcpu);
283         switch (er) {
284         case EMULATE_DONE:
285                 /* Future optimization: only reload non-volatiles if they were
286                  * actually modified. */
287                 r = RESUME_GUEST_NV;
288                 break;
289         case EMULATE_AGAIN:
290                 r = RESUME_GUEST;
291                 break;
292         case EMULATE_DO_MMIO:
293                 run->exit_reason = KVM_EXIT_MMIO;
294                 /* We must reload nonvolatiles because "update" load/store
295                  * instructions modify register state. */
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_HOST_NV;
299                 break;
300         case EMULATE_FAIL:
301         {
302                 u32 last_inst;
303
304                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
305                 /* XXX Deliver Program interrupt to guest. */
306                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
307                 r = RESUME_HOST;
308                 break;
309         }
310         default:
311                 WARN_ON(1);
312                 r = RESUME_GUEST;
313         }
314
315         return r;
316 }
317 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
318
319 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
320               bool data)
321 {
322         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
323         struct kvmppc_pte pte;
324         int r;
325
326         vcpu->stat.st++;
327
328         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
329                          XLATE_WRITE, &pte);
330         if (r < 0)
331                 return r;
332
333         *eaddr = pte.raddr;
334
335         if (!pte.may_write)
336                 return -EPERM;
337
338         /* Magic page override */
339         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
340             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
341             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
342                 void *magic = vcpu->arch.shared;
343                 magic += pte.eaddr & 0xfff;
344                 memcpy(magic, ptr, size);
345                 return EMULATE_DONE;
346         }
347
348         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
349                 return EMULATE_DO_MMIO;
350
351         return EMULATE_DONE;
352 }
353 EXPORT_SYMBOL_GPL(kvmppc_st);
354
355 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
356                       bool data)
357 {
358         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
359         struct kvmppc_pte pte;
360         int rc;
361
362         vcpu->stat.ld++;
363
364         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365                           XLATE_READ, &pte);
366         if (rc)
367                 return rc;
368
369         *eaddr = pte.raddr;
370
371         if (!pte.may_read)
372                 return -EPERM;
373
374         if (!data && !pte.may_execute)
375                 return -ENOEXEC;
376
377         /* Magic page override */
378         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
379             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
380             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
381                 void *magic = vcpu->arch.shared;
382                 magic += pte.eaddr & 0xfff;
383                 memcpy(ptr, magic, size);
384                 return EMULATE_DONE;
385         }
386
387         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
388                 return EMULATE_DO_MMIO;
389
390         return EMULATE_DONE;
391 }
392 EXPORT_SYMBOL_GPL(kvmppc_ld);
393
394 int kvm_arch_hardware_enable(void)
395 {
396         return 0;
397 }
398
399 int kvm_arch_hardware_setup(void)
400 {
401         return 0;
402 }
403
404 void kvm_arch_check_processor_compat(void *rtn)
405 {
406         *(int *)rtn = kvmppc_core_check_processor_compat();
407 }
408
409 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
410 {
411         struct kvmppc_ops *kvm_ops = NULL;
412         /*
413          * if we have both HV and PR enabled, default is HV
414          */
415         if (type == 0) {
416                 if (kvmppc_hv_ops)
417                         kvm_ops = kvmppc_hv_ops;
418                 else
419                         kvm_ops = kvmppc_pr_ops;
420                 if (!kvm_ops)
421                         goto err_out;
422         } else  if (type == KVM_VM_PPC_HV) {
423                 if (!kvmppc_hv_ops)
424                         goto err_out;
425                 kvm_ops = kvmppc_hv_ops;
426         } else if (type == KVM_VM_PPC_PR) {
427                 if (!kvmppc_pr_ops)
428                         goto err_out;
429                 kvm_ops = kvmppc_pr_ops;
430         } else
431                 goto err_out;
432
433         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
434                 return -ENOENT;
435
436         kvm->arch.kvm_ops = kvm_ops;
437         return kvmppc_core_init_vm(kvm);
438 err_out:
439         return -EINVAL;
440 }
441
442 bool kvm_arch_has_vcpu_debugfs(void)
443 {
444         return false;
445 }
446
447 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
448 {
449         return 0;
450 }
451
452 void kvm_arch_destroy_vm(struct kvm *kvm)
453 {
454         unsigned int i;
455         struct kvm_vcpu *vcpu;
456
457 #ifdef CONFIG_KVM_XICS
458         /*
459          * We call kick_all_cpus_sync() to ensure that all
460          * CPUs have executed any pending IPIs before we
461          * continue and free VCPUs structures below.
462          */
463         if (is_kvmppc_hv_enabled(kvm))
464                 kick_all_cpus_sync();
465 #endif
466
467         kvm_for_each_vcpu(i, vcpu, kvm)
468                 kvm_arch_vcpu_free(vcpu);
469
470         mutex_lock(&kvm->lock);
471         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
472                 kvm->vcpus[i] = NULL;
473
474         atomic_set(&kvm->online_vcpus, 0);
475
476         kvmppc_core_destroy_vm(kvm);
477
478         mutex_unlock(&kvm->lock);
479
480         /* drop the module reference */
481         module_put(kvm->arch.kvm_ops->owner);
482 }
483
484 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
485 {
486         int r;
487         /* Assume we're using HV mode when the HV module is loaded */
488         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
489
490         if (kvm) {
491                 /*
492                  * Hooray - we know which VM type we're running on. Depend on
493                  * that rather than the guess above.
494                  */
495                 hv_enabled = is_kvmppc_hv_enabled(kvm);
496         }
497
498         switch (ext) {
499 #ifdef CONFIG_BOOKE
500         case KVM_CAP_PPC_BOOKE_SREGS:
501         case KVM_CAP_PPC_BOOKE_WATCHDOG:
502         case KVM_CAP_PPC_EPR:
503 #else
504         case KVM_CAP_PPC_SEGSTATE:
505         case KVM_CAP_PPC_HIOR:
506         case KVM_CAP_PPC_PAPR:
507 #endif
508         case KVM_CAP_PPC_UNSET_IRQ:
509         case KVM_CAP_PPC_IRQ_LEVEL:
510         case KVM_CAP_ENABLE_CAP:
511         case KVM_CAP_ENABLE_CAP_VM:
512         case KVM_CAP_ONE_REG:
513         case KVM_CAP_IOEVENTFD:
514         case KVM_CAP_DEVICE_CTRL:
515         case KVM_CAP_IMMEDIATE_EXIT:
516                 r = 1;
517                 break;
518         case KVM_CAP_PPC_PAIRED_SINGLES:
519         case KVM_CAP_PPC_OSI:
520         case KVM_CAP_PPC_GET_PVINFO:
521 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
522         case KVM_CAP_SW_TLB:
523 #endif
524                 /* We support this only for PR */
525                 r = !hv_enabled;
526                 break;
527 #ifdef CONFIG_KVM_MMIO
528         case KVM_CAP_COALESCED_MMIO:
529                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
530                 break;
531 #endif
532 #ifdef CONFIG_KVM_MPIC
533         case KVM_CAP_IRQ_MPIC:
534                 r = 1;
535                 break;
536 #endif
537
538 #ifdef CONFIG_PPC_BOOK3S_64
539         case KVM_CAP_SPAPR_TCE:
540         case KVM_CAP_SPAPR_TCE_64:
541         case KVM_CAP_PPC_RTAS:
542         case KVM_CAP_PPC_FIXUP_HCALL:
543         case KVM_CAP_PPC_ENABLE_HCALL:
544 #ifdef CONFIG_KVM_XICS
545         case KVM_CAP_IRQ_XICS:
546 #endif
547                 r = 1;
548                 break;
549
550         case KVM_CAP_PPC_ALLOC_HTAB:
551                 r = hv_enabled;
552                 break;
553 #endif /* CONFIG_PPC_BOOK3S_64 */
554 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555         case KVM_CAP_PPC_SMT:
556                 r = 0;
557                 if (hv_enabled) {
558                         if (cpu_has_feature(CPU_FTR_ARCH_300))
559                                 r = 1;
560                         else
561                                 r = threads_per_subcore;
562                 }
563                 break;
564         case KVM_CAP_PPC_RMA:
565                 r = 0;
566                 break;
567         case KVM_CAP_PPC_HWRNG:
568                 r = kvmppc_hwrng_present();
569                 break;
570         case KVM_CAP_PPC_MMU_RADIX:
571                 r = !!(hv_enabled && radix_enabled());
572                 break;
573         case KVM_CAP_PPC_MMU_HASH_V3:
574                 r = !!(hv_enabled && !radix_enabled() &&
575                        cpu_has_feature(CPU_FTR_ARCH_300));
576                 break;
577 #endif
578         case KVM_CAP_SYNC_MMU:
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580                 r = hv_enabled;
581 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582                 r = 1;
583 #else
584                 r = 0;
585 #endif
586                 break;
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588         case KVM_CAP_PPC_HTAB_FD:
589                 r = hv_enabled;
590                 break;
591 #endif
592         case KVM_CAP_NR_VCPUS:
593                 /*
594                  * Recommending a number of CPUs is somewhat arbitrary; we
595                  * return the number of present CPUs for -HV (since a host
596                  * will have secondary threads "offline"), and for other KVM
597                  * implementations just count online CPUs.
598                  */
599                 if (hv_enabled)
600                         r = num_present_cpus();
601                 else
602                         r = num_online_cpus();
603                 break;
604         case KVM_CAP_NR_MEMSLOTS:
605                 r = KVM_USER_MEM_SLOTS;
606                 break;
607         case KVM_CAP_MAX_VCPUS:
608                 r = KVM_MAX_VCPUS;
609                 break;
610 #ifdef CONFIG_PPC_BOOK3S_64
611         case KVM_CAP_PPC_GET_SMMU_INFO:
612                 r = 1;
613                 break;
614         case KVM_CAP_SPAPR_MULTITCE:
615                 r = 1;
616                 break;
617         case KVM_CAP_SPAPR_RESIZE_HPT:
618                 /* Disable this on POWER9 until code handles new HPTE format */
619                 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
620                 break;
621 #endif
622         case KVM_CAP_PPC_HTM:
623                 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
624                     is_kvmppc_hv_enabled(kvm);
625                 break;
626         default:
627                 r = 0;
628                 break;
629         }
630         return r;
631
632 }
633
634 long kvm_arch_dev_ioctl(struct file *filp,
635                         unsigned int ioctl, unsigned long arg)
636 {
637         return -EINVAL;
638 }
639
640 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
641                            struct kvm_memory_slot *dont)
642 {
643         kvmppc_core_free_memslot(kvm, free, dont);
644 }
645
646 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
647                             unsigned long npages)
648 {
649         return kvmppc_core_create_memslot(kvm, slot, npages);
650 }
651
652 int kvm_arch_prepare_memory_region(struct kvm *kvm,
653                                    struct kvm_memory_slot *memslot,
654                                    const struct kvm_userspace_memory_region *mem,
655                                    enum kvm_mr_change change)
656 {
657         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
658 }
659
660 void kvm_arch_commit_memory_region(struct kvm *kvm,
661                                    const struct kvm_userspace_memory_region *mem,
662                                    const struct kvm_memory_slot *old,
663                                    const struct kvm_memory_slot *new,
664                                    enum kvm_mr_change change)
665 {
666         kvmppc_core_commit_memory_region(kvm, mem, old, new);
667 }
668
669 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
670                                    struct kvm_memory_slot *slot)
671 {
672         kvmppc_core_flush_memslot(kvm, slot);
673 }
674
675 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
676 {
677         struct kvm_vcpu *vcpu;
678         vcpu = kvmppc_core_vcpu_create(kvm, id);
679         if (!IS_ERR(vcpu)) {
680                 vcpu->arch.wqp = &vcpu->wq;
681                 kvmppc_create_vcpu_debugfs(vcpu, id);
682         }
683         return vcpu;
684 }
685
686 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
687 {
688 }
689
690 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
691 {
692         /* Make sure we're not using the vcpu anymore */
693         hrtimer_cancel(&vcpu->arch.dec_timer);
694
695         kvmppc_remove_vcpu_debugfs(vcpu);
696
697         switch (vcpu->arch.irq_type) {
698         case KVMPPC_IRQ_MPIC:
699                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
700                 break;
701         case KVMPPC_IRQ_XICS:
702                 kvmppc_xics_free_icp(vcpu);
703                 break;
704         }
705
706         kvmppc_core_vcpu_free(vcpu);
707 }
708
709 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
710 {
711         kvm_arch_vcpu_free(vcpu);
712 }
713
714 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
715 {
716         return kvmppc_core_pending_dec(vcpu);
717 }
718
719 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
720 {
721         struct kvm_vcpu *vcpu;
722
723         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
724         kvmppc_decrementer_func(vcpu);
725
726         return HRTIMER_NORESTART;
727 }
728
729 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
730 {
731         int ret;
732
733         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
734         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
735         vcpu->arch.dec_expires = ~(u64)0;
736
737 #ifdef CONFIG_KVM_EXIT_TIMING
738         mutex_init(&vcpu->arch.exit_timing_lock);
739 #endif
740         ret = kvmppc_subarch_vcpu_init(vcpu);
741         return ret;
742 }
743
744 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
745 {
746         kvmppc_mmu_destroy(vcpu);
747         kvmppc_subarch_vcpu_uninit(vcpu);
748 }
749
750 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
751 {
752 #ifdef CONFIG_BOOKE
753         /*
754          * vrsave (formerly usprg0) isn't used by Linux, but may
755          * be used by the guest.
756          *
757          * On non-booke this is associated with Altivec and
758          * is handled by code in book3s.c.
759          */
760         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
761 #endif
762         kvmppc_core_vcpu_load(vcpu, cpu);
763 }
764
765 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
766 {
767         kvmppc_core_vcpu_put(vcpu);
768 #ifdef CONFIG_BOOKE
769         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
770 #endif
771 }
772
773 /*
774  * irq_bypass_add_producer and irq_bypass_del_producer are only
775  * useful if the architecture supports PCI passthrough.
776  * irq_bypass_stop and irq_bypass_start are not needed and so
777  * kvm_ops are not defined for them.
778  */
779 bool kvm_arch_has_irq_bypass(void)
780 {
781         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
782                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
783 }
784
785 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
786                                      struct irq_bypass_producer *prod)
787 {
788         struct kvm_kernel_irqfd *irqfd =
789                 container_of(cons, struct kvm_kernel_irqfd, consumer);
790         struct kvm *kvm = irqfd->kvm;
791
792         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
793                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
794
795         return 0;
796 }
797
798 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
799                                       struct irq_bypass_producer *prod)
800 {
801         struct kvm_kernel_irqfd *irqfd =
802                 container_of(cons, struct kvm_kernel_irqfd, consumer);
803         struct kvm *kvm = irqfd->kvm;
804
805         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
806                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
807 }
808
809 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
810                                       struct kvm_run *run)
811 {
812         u64 uninitialized_var(gpr);
813
814         if (run->mmio.len > sizeof(gpr)) {
815                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
816                 return;
817         }
818
819         if (!vcpu->arch.mmio_host_swabbed) {
820                 switch (run->mmio.len) {
821                 case 8: gpr = *(u64 *)run->mmio.data; break;
822                 case 4: gpr = *(u32 *)run->mmio.data; break;
823                 case 2: gpr = *(u16 *)run->mmio.data; break;
824                 case 1: gpr = *(u8 *)run->mmio.data; break;
825                 }
826         } else {
827                 switch (run->mmio.len) {
828                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
829                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
830                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
831                 case 1: gpr = *(u8 *)run->mmio.data; break;
832                 }
833         }
834
835         if (vcpu->arch.mmio_sign_extend) {
836                 switch (run->mmio.len) {
837 #ifdef CONFIG_PPC64
838                 case 4:
839                         gpr = (s64)(s32)gpr;
840                         break;
841 #endif
842                 case 2:
843                         gpr = (s64)(s16)gpr;
844                         break;
845                 case 1:
846                         gpr = (s64)(s8)gpr;
847                         break;
848                 }
849         }
850
851         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
852
853         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
854         case KVM_MMIO_REG_GPR:
855                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
856                 break;
857         case KVM_MMIO_REG_FPR:
858                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
859                 break;
860 #ifdef CONFIG_PPC_BOOK3S
861         case KVM_MMIO_REG_QPR:
862                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
863                 break;
864         case KVM_MMIO_REG_FQPR:
865                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
866                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
867                 break;
868 #endif
869         default:
870                 BUG();
871         }
872 }
873
874 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
875                                 unsigned int rt, unsigned int bytes,
876                                 int is_default_endian, int sign_extend)
877 {
878         int idx, ret;
879         bool host_swabbed;
880
881         /* Pity C doesn't have a logical XOR operator */
882         if (kvmppc_need_byteswap(vcpu)) {
883                 host_swabbed = is_default_endian;
884         } else {
885                 host_swabbed = !is_default_endian;
886         }
887
888         if (bytes > sizeof(run->mmio.data)) {
889                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
890                        run->mmio.len);
891         }
892
893         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
894         run->mmio.len = bytes;
895         run->mmio.is_write = 0;
896
897         vcpu->arch.io_gpr = rt;
898         vcpu->arch.mmio_host_swabbed = host_swabbed;
899         vcpu->mmio_needed = 1;
900         vcpu->mmio_is_write = 0;
901         vcpu->arch.mmio_sign_extend = sign_extend;
902
903         idx = srcu_read_lock(&vcpu->kvm->srcu);
904
905         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
906                               bytes, &run->mmio.data);
907
908         srcu_read_unlock(&vcpu->kvm->srcu, idx);
909
910         if (!ret) {
911                 kvmppc_complete_mmio_load(vcpu, run);
912                 vcpu->mmio_needed = 0;
913                 return EMULATE_DONE;
914         }
915
916         return EMULATE_DO_MMIO;
917 }
918
919 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
920                        unsigned int rt, unsigned int bytes,
921                        int is_default_endian)
922 {
923         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
924 }
925 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
926
927 /* Same as above, but sign extends */
928 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
929                         unsigned int rt, unsigned int bytes,
930                         int is_default_endian)
931 {
932         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
933 }
934
935 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
936                         u64 val, unsigned int bytes, int is_default_endian)
937 {
938         void *data = run->mmio.data;
939         int idx, ret;
940         bool host_swabbed;
941
942         /* Pity C doesn't have a logical XOR operator */
943         if (kvmppc_need_byteswap(vcpu)) {
944                 host_swabbed = is_default_endian;
945         } else {
946                 host_swabbed = !is_default_endian;
947         }
948
949         if (bytes > sizeof(run->mmio.data)) {
950                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
951                        run->mmio.len);
952         }
953
954         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
955         run->mmio.len = bytes;
956         run->mmio.is_write = 1;
957         vcpu->mmio_needed = 1;
958         vcpu->mmio_is_write = 1;
959
960         /* Store the value at the lowest bytes in 'data'. */
961         if (!host_swabbed) {
962                 switch (bytes) {
963                 case 8: *(u64 *)data = val; break;
964                 case 4: *(u32 *)data = val; break;
965                 case 2: *(u16 *)data = val; break;
966                 case 1: *(u8  *)data = val; break;
967                 }
968         } else {
969                 switch (bytes) {
970                 case 8: *(u64 *)data = swab64(val); break;
971                 case 4: *(u32 *)data = swab32(val); break;
972                 case 2: *(u16 *)data = swab16(val); break;
973                 case 1: *(u8  *)data = val; break;
974                 }
975         }
976
977         idx = srcu_read_lock(&vcpu->kvm->srcu);
978
979         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
980                                bytes, &run->mmio.data);
981
982         srcu_read_unlock(&vcpu->kvm->srcu, idx);
983
984         if (!ret) {
985                 vcpu->mmio_needed = 0;
986                 return EMULATE_DONE;
987         }
988
989         return EMULATE_DO_MMIO;
990 }
991 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
992
993 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
994 {
995         int r = 0;
996         union kvmppc_one_reg val;
997         int size;
998
999         size = one_reg_size(reg->id);
1000         if (size > sizeof(val))
1001                 return -EINVAL;
1002
1003         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1004         if (r == -EINVAL) {
1005                 r = 0;
1006                 switch (reg->id) {
1007 #ifdef CONFIG_ALTIVEC
1008                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1009                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1010                                 r = -ENXIO;
1011                                 break;
1012                         }
1013                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1014                         break;
1015                 case KVM_REG_PPC_VSCR:
1016                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1017                                 r = -ENXIO;
1018                                 break;
1019                         }
1020                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1021                         break;
1022                 case KVM_REG_PPC_VRSAVE:
1023                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1024                         break;
1025 #endif /* CONFIG_ALTIVEC */
1026                 default:
1027                         r = -EINVAL;
1028                         break;
1029                 }
1030         }
1031
1032         if (r)
1033                 return r;
1034
1035         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1036                 r = -EFAULT;
1037
1038         return r;
1039 }
1040
1041 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1042 {
1043         int r;
1044         union kvmppc_one_reg val;
1045         int size;
1046
1047         size = one_reg_size(reg->id);
1048         if (size > sizeof(val))
1049                 return -EINVAL;
1050
1051         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1052                 return -EFAULT;
1053
1054         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1055         if (r == -EINVAL) {
1056                 r = 0;
1057                 switch (reg->id) {
1058 #ifdef CONFIG_ALTIVEC
1059                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1060                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1061                                 r = -ENXIO;
1062                                 break;
1063                         }
1064                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1065                         break;
1066                 case KVM_REG_PPC_VSCR:
1067                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1068                                 r = -ENXIO;
1069                                 break;
1070                         }
1071                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1072                         break;
1073                 case KVM_REG_PPC_VRSAVE:
1074                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1075                                 r = -ENXIO;
1076                                 break;
1077                         }
1078                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1079                         break;
1080 #endif /* CONFIG_ALTIVEC */
1081                 default:
1082                         r = -EINVAL;
1083                         break;
1084                 }
1085         }
1086
1087         return r;
1088 }
1089
1090 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1091 {
1092         int r;
1093         sigset_t sigsaved;
1094
1095         if (vcpu->sigset_active)
1096                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1097
1098         if (vcpu->mmio_needed) {
1099                 if (!vcpu->mmio_is_write)
1100                         kvmppc_complete_mmio_load(vcpu, run);
1101                 vcpu->mmio_needed = 0;
1102         } else if (vcpu->arch.osi_needed) {
1103                 u64 *gprs = run->osi.gprs;
1104                 int i;
1105
1106                 for (i = 0; i < 32; i++)
1107                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1108                 vcpu->arch.osi_needed = 0;
1109         } else if (vcpu->arch.hcall_needed) {
1110                 int i;
1111
1112                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1113                 for (i = 0; i < 9; ++i)
1114                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1115                 vcpu->arch.hcall_needed = 0;
1116 #ifdef CONFIG_BOOKE
1117         } else if (vcpu->arch.epr_needed) {
1118                 kvmppc_set_epr(vcpu, run->epr.epr);
1119                 vcpu->arch.epr_needed = 0;
1120 #endif
1121         }
1122
1123         if (run->immediate_exit)
1124                 r = -EINTR;
1125         else
1126                 r = kvmppc_vcpu_run(run, vcpu);
1127
1128         if (vcpu->sigset_active)
1129                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1130
1131         return r;
1132 }
1133
1134 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1135 {
1136         if (irq->irq == KVM_INTERRUPT_UNSET) {
1137                 kvmppc_core_dequeue_external(vcpu);
1138                 return 0;
1139         }
1140
1141         kvmppc_core_queue_external(vcpu, irq);
1142
1143         kvm_vcpu_kick(vcpu);
1144
1145         return 0;
1146 }
1147
1148 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1149                                      struct kvm_enable_cap *cap)
1150 {
1151         int r;
1152
1153         if (cap->flags)
1154                 return -EINVAL;
1155
1156         switch (cap->cap) {
1157         case KVM_CAP_PPC_OSI:
1158                 r = 0;
1159                 vcpu->arch.osi_enabled = true;
1160                 break;
1161         case KVM_CAP_PPC_PAPR:
1162                 r = 0;
1163                 vcpu->arch.papr_enabled = true;
1164                 break;
1165         case KVM_CAP_PPC_EPR:
1166                 r = 0;
1167                 if (cap->args[0])
1168                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1169                 else
1170                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1171                 break;
1172 #ifdef CONFIG_BOOKE
1173         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1174                 r = 0;
1175                 vcpu->arch.watchdog_enabled = true;
1176                 break;
1177 #endif
1178 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1179         case KVM_CAP_SW_TLB: {
1180                 struct kvm_config_tlb cfg;
1181                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1182
1183                 r = -EFAULT;
1184                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1185                         break;
1186
1187                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1188                 break;
1189         }
1190 #endif
1191 #ifdef CONFIG_KVM_MPIC
1192         case KVM_CAP_IRQ_MPIC: {
1193                 struct fd f;
1194                 struct kvm_device *dev;
1195
1196                 r = -EBADF;
1197                 f = fdget(cap->args[0]);
1198                 if (!f.file)
1199                         break;
1200
1201                 r = -EPERM;
1202                 dev = kvm_device_from_filp(f.file);
1203                 if (dev)
1204                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1205
1206                 fdput(f);
1207                 break;
1208         }
1209 #endif
1210 #ifdef CONFIG_KVM_XICS
1211         case KVM_CAP_IRQ_XICS: {
1212                 struct fd f;
1213                 struct kvm_device *dev;
1214
1215                 r = -EBADF;
1216                 f = fdget(cap->args[0]);
1217                 if (!f.file)
1218                         break;
1219
1220                 r = -EPERM;
1221                 dev = kvm_device_from_filp(f.file);
1222                 if (dev)
1223                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1224
1225                 fdput(f);
1226                 break;
1227         }
1228 #endif /* CONFIG_KVM_XICS */
1229         default:
1230                 r = -EINVAL;
1231                 break;
1232         }
1233
1234         if (!r)
1235                 r = kvmppc_sanity_check(vcpu);
1236
1237         return r;
1238 }
1239
1240 bool kvm_arch_intc_initialized(struct kvm *kvm)
1241 {
1242 #ifdef CONFIG_KVM_MPIC
1243         if (kvm->arch.mpic)
1244                 return true;
1245 #endif
1246 #ifdef CONFIG_KVM_XICS
1247         if (kvm->arch.xics)
1248                 return true;
1249 #endif
1250         return false;
1251 }
1252
1253 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1254                                     struct kvm_mp_state *mp_state)
1255 {
1256         return -EINVAL;
1257 }
1258
1259 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1260                                     struct kvm_mp_state *mp_state)
1261 {
1262         return -EINVAL;
1263 }
1264
1265 long kvm_arch_vcpu_ioctl(struct file *filp,
1266                          unsigned int ioctl, unsigned long arg)
1267 {
1268         struct kvm_vcpu *vcpu = filp->private_data;
1269         void __user *argp = (void __user *)arg;
1270         long r;
1271
1272         switch (ioctl) {
1273         case KVM_INTERRUPT: {
1274                 struct kvm_interrupt irq;
1275                 r = -EFAULT;
1276                 if (copy_from_user(&irq, argp, sizeof(irq)))
1277                         goto out;
1278                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1279                 goto out;
1280         }
1281
1282         case KVM_ENABLE_CAP:
1283         {
1284                 struct kvm_enable_cap cap;
1285                 r = -EFAULT;
1286                 if (copy_from_user(&cap, argp, sizeof(cap)))
1287                         goto out;
1288                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1289                 break;
1290         }
1291
1292         case KVM_SET_ONE_REG:
1293         case KVM_GET_ONE_REG:
1294         {
1295                 struct kvm_one_reg reg;
1296                 r = -EFAULT;
1297                 if (copy_from_user(&reg, argp, sizeof(reg)))
1298                         goto out;
1299                 if (ioctl == KVM_SET_ONE_REG)
1300                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1301                 else
1302                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1303                 break;
1304         }
1305
1306 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1307         case KVM_DIRTY_TLB: {
1308                 struct kvm_dirty_tlb dirty;
1309                 r = -EFAULT;
1310                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1311                         goto out;
1312                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1313                 break;
1314         }
1315 #endif
1316         default:
1317                 r = -EINVAL;
1318         }
1319
1320 out:
1321         return r;
1322 }
1323
1324 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1325 {
1326         return VM_FAULT_SIGBUS;
1327 }
1328
1329 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1330 {
1331         u32 inst_nop = 0x60000000;
1332 #ifdef CONFIG_KVM_BOOKE_HV
1333         u32 inst_sc1 = 0x44000022;
1334         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1335         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1336         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1337         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1338 #else
1339         u32 inst_lis = 0x3c000000;
1340         u32 inst_ori = 0x60000000;
1341         u32 inst_sc = 0x44000002;
1342         u32 inst_imm_mask = 0xffff;
1343
1344         /*
1345          * The hypercall to get into KVM from within guest context is as
1346          * follows:
1347          *
1348          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1349          *    ori r0, KVM_SC_MAGIC_R0@l
1350          *    sc
1351          *    nop
1352          */
1353         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1354         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1355         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1356         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1357 #endif
1358
1359         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1360
1361         return 0;
1362 }
1363
1364 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1365                           bool line_status)
1366 {
1367         if (!irqchip_in_kernel(kvm))
1368                 return -ENXIO;
1369
1370         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1371                                         irq_event->irq, irq_event->level,
1372                                         line_status);
1373         return 0;
1374 }
1375
1376
1377 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1378                                    struct kvm_enable_cap *cap)
1379 {
1380         int r;
1381
1382         if (cap->flags)
1383                 return -EINVAL;
1384
1385         switch (cap->cap) {
1386 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1387         case KVM_CAP_PPC_ENABLE_HCALL: {
1388                 unsigned long hcall = cap->args[0];
1389
1390                 r = -EINVAL;
1391                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1392                     cap->args[1] > 1)
1393                         break;
1394                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1395                         break;
1396                 if (cap->args[1])
1397                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1398                 else
1399                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1400                 r = 0;
1401                 break;
1402         }
1403 #endif
1404         default:
1405                 r = -EINVAL;
1406                 break;
1407         }
1408
1409         return r;
1410 }
1411
1412 long kvm_arch_vm_ioctl(struct file *filp,
1413                        unsigned int ioctl, unsigned long arg)
1414 {
1415         struct kvm *kvm __maybe_unused = filp->private_data;
1416         void __user *argp = (void __user *)arg;
1417         long r;
1418
1419         switch (ioctl) {
1420         case KVM_PPC_GET_PVINFO: {
1421                 struct kvm_ppc_pvinfo pvinfo;
1422                 memset(&pvinfo, 0, sizeof(pvinfo));
1423                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1424                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1425                         r = -EFAULT;
1426                         goto out;
1427                 }
1428
1429                 break;
1430         }
1431         case KVM_ENABLE_CAP:
1432         {
1433                 struct kvm_enable_cap cap;
1434                 r = -EFAULT;
1435                 if (copy_from_user(&cap, argp, sizeof(cap)))
1436                         goto out;
1437                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1438                 break;
1439         }
1440 #ifdef CONFIG_PPC_BOOK3S_64
1441         case KVM_CREATE_SPAPR_TCE_64: {
1442                 struct kvm_create_spapr_tce_64 create_tce_64;
1443
1444                 r = -EFAULT;
1445                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1446                         goto out;
1447                 if (create_tce_64.flags) {
1448                         r = -EINVAL;
1449                         goto out;
1450                 }
1451                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1452                 goto out;
1453         }
1454         case KVM_CREATE_SPAPR_TCE: {
1455                 struct kvm_create_spapr_tce create_tce;
1456                 struct kvm_create_spapr_tce_64 create_tce_64;
1457
1458                 r = -EFAULT;
1459                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1460                         goto out;
1461
1462                 create_tce_64.liobn = create_tce.liobn;
1463                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1464                 create_tce_64.offset = 0;
1465                 create_tce_64.size = create_tce.window_size >>
1466                                 IOMMU_PAGE_SHIFT_4K;
1467                 create_tce_64.flags = 0;
1468                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1469                 goto out;
1470         }
1471         case KVM_PPC_GET_SMMU_INFO: {
1472                 struct kvm_ppc_smmu_info info;
1473                 struct kvm *kvm = filp->private_data;
1474
1475                 memset(&info, 0, sizeof(info));
1476                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1477                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1478                         r = -EFAULT;
1479                 break;
1480         }
1481         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1482                 struct kvm *kvm = filp->private_data;
1483
1484                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1485                 break;
1486         }
1487         case KVM_PPC_CONFIGURE_V3_MMU: {
1488                 struct kvm *kvm = filp->private_data;
1489                 struct kvm_ppc_mmuv3_cfg cfg;
1490
1491                 r = -EINVAL;
1492                 if (!kvm->arch.kvm_ops->configure_mmu)
1493                         goto out;
1494                 r = -EFAULT;
1495                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1496                         goto out;
1497                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1498                 break;
1499         }
1500         case KVM_PPC_GET_RMMU_INFO: {
1501                 struct kvm *kvm = filp->private_data;
1502                 struct kvm_ppc_rmmu_info info;
1503
1504                 r = -EINVAL;
1505                 if (!kvm->arch.kvm_ops->get_rmmu_info)
1506                         goto out;
1507                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1508                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1509                         r = -EFAULT;
1510                 break;
1511         }
1512         default: {
1513                 struct kvm *kvm = filp->private_data;
1514                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1515         }
1516 #else /* CONFIG_PPC_BOOK3S_64 */
1517         default:
1518                 r = -ENOTTY;
1519 #endif
1520         }
1521 out:
1522         return r;
1523 }
1524
1525 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1526 static unsigned long nr_lpids;
1527
1528 long kvmppc_alloc_lpid(void)
1529 {
1530         long lpid;
1531
1532         do {
1533                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1534                 if (lpid >= nr_lpids) {
1535                         pr_err("%s: No LPIDs free\n", __func__);
1536                         return -ENOMEM;
1537                 }
1538         } while (test_and_set_bit(lpid, lpid_inuse));
1539
1540         return lpid;
1541 }
1542 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1543
1544 void kvmppc_claim_lpid(long lpid)
1545 {
1546         set_bit(lpid, lpid_inuse);
1547 }
1548 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1549
1550 void kvmppc_free_lpid(long lpid)
1551 {
1552         clear_bit(lpid, lpid_inuse);
1553 }
1554 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1555
1556 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1557 {
1558         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1559         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1560 }
1561 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1562
1563 int kvm_arch_init(void *opaque)
1564 {
1565         return 0;
1566 }
1567
1568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);