]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'regulator-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[karo-tx-linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54         return !!(v->arch.pending_exceptions) ||
55                v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60         return 1;
61 }
62
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74         int r;
75
76         WARN_ON(irqs_disabled());
77         hard_irq_disable();
78
79         while (true) {
80                 if (need_resched()) {
81                         local_irq_enable();
82                         cond_resched();
83                         hard_irq_disable();
84                         continue;
85                 }
86
87                 if (signal_pending(current)) {
88                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89                         vcpu->run->exit_reason = KVM_EXIT_INTR;
90                         r = -EINTR;
91                         break;
92                 }
93
94                 vcpu->mode = IN_GUEST_MODE;
95
96                 /*
97                  * Reading vcpu->requests must happen after setting vcpu->mode,
98                  * so we don't miss a request because the requester sees
99                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100                  * before next entering the guest (and thus doesn't IPI).
101                  * This also orders the write to mode from any reads
102                  * to the page tables done while the VCPU is running.
103                  * Please see the comment in kvm_flush_remote_tlbs.
104                  */
105                 smp_mb();
106
107                 if (vcpu->requests) {
108                         /* Make sure we process requests preemptable */
109                         local_irq_enable();
110                         trace_kvm_check_requests(vcpu);
111                         r = kvmppc_core_check_requests(vcpu);
112                         hard_irq_disable();
113                         if (r > 0)
114                                 continue;
115                         break;
116                 }
117
118                 if (kvmppc_core_prepare_to_enter(vcpu)) {
119                         /* interrupts got enabled in between, so we
120                            are back at square 1 */
121                         continue;
122                 }
123
124                 guest_enter_irqoff();
125                 return 1;
126         }
127
128         /* return to host */
129         local_irq_enable();
130         return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138         int i;
139
140         shared->sprg0 = swab64(shared->sprg0);
141         shared->sprg1 = swab64(shared->sprg1);
142         shared->sprg2 = swab64(shared->sprg2);
143         shared->sprg3 = swab64(shared->sprg3);
144         shared->srr0 = swab64(shared->srr0);
145         shared->srr1 = swab64(shared->srr1);
146         shared->dar = swab64(shared->dar);
147         shared->msr = swab64(shared->msr);
148         shared->dsisr = swab32(shared->dsisr);
149         shared->int_pending = swab32(shared->int_pending);
150         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151                 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157         int nr = kvmppc_get_gpr(vcpu, 11);
158         int r;
159         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163         unsigned long r2 = 0;
164
165         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166                 /* 32 bit mode */
167                 param1 &= 0xffffffff;
168                 param2 &= 0xffffffff;
169                 param3 &= 0xffffffff;
170                 param4 &= 0xffffffff;
171         }
172
173         switch (nr) {
174         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175         {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177                 /* Book3S can be little endian, find it out here */
178                 int shared_big_endian = true;
179                 if (vcpu->arch.intr_msr & MSR_LE)
180                         shared_big_endian = false;
181                 if (shared_big_endian != vcpu->arch.shared_big_endian)
182                         kvmppc_swab_shared(vcpu);
183                 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187                         /*
188                          * Older versions of the Linux magic page code had
189                          * a bug where they would map their trampoline code
190                          * NX. If that's the case, remove !PR NX capability.
191                          */
192                         vcpu->arch.disable_kernel_nx = true;
193                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194                 }
195
196                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200                 /*
201                  * Make sure our 4k magic page is in the same window of a 64k
202                  * page within the guest and within the host's page.
203                  */
204                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205                     ((ulong)vcpu->arch.shared & 0xf000)) {
206                         void *old_shared = vcpu->arch.shared;
207                         ulong shared = (ulong)vcpu->arch.shared;
208                         void *new_shared;
209
210                         shared &= PAGE_MASK;
211                         shared |= vcpu->arch.magic_page_pa & 0xf000;
212                         new_shared = (void*)shared;
213                         memcpy(new_shared, old_shared, 0x1000);
214                         vcpu->arch.shared = new_shared;
215                 }
216 #endif
217
218                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220                 r = EV_SUCCESS;
221                 break;
222         }
223         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224                 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229                 /* Second return value is in r4 */
230                 break;
231         case EV_HCALL_TOKEN(EV_IDLE):
232                 r = EV_SUCCESS;
233                 kvm_vcpu_block(vcpu);
234                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235                 break;
236         default:
237                 r = EV_UNIMPLEMENTED;
238                 break;
239         }
240
241         kvmppc_set_gpr(vcpu, 4, r2);
242
243         return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249         int r = false;
250
251         /* We have to know what CPU to virtualize */
252         if (!vcpu->arch.pvr)
253                 goto out;
254
255         /* PAPR only works with book3s_64 */
256         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257                 goto out;
258
259         /* HV KVM can only do PAPR mode for now */
260         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261                 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264         if (!cpu_has_feature(CPU_FTR_EMB_HV))
265                 goto out;
266 #endif
267
268         r = true;
269
270 out:
271         vcpu->arch.sane = r;
272         return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278         enum emulation_result er;
279         int r;
280
281         er = kvmppc_emulate_loadstore(vcpu);
282         switch (er) {
283         case EMULATE_DONE:
284                 /* Future optimization: only reload non-volatiles if they were
285                  * actually modified. */
286                 r = RESUME_GUEST_NV;
287                 break;
288         case EMULATE_AGAIN:
289                 r = RESUME_GUEST;
290                 break;
291         case EMULATE_DO_MMIO:
292                 run->exit_reason = KVM_EXIT_MMIO;
293                 /* We must reload nonvolatiles because "update" load/store
294                  * instructions modify register state. */
295                 /* Future optimization: only reload non-volatiles if they were
296                  * actually modified. */
297                 r = RESUME_HOST_NV;
298                 break;
299         case EMULATE_FAIL:
300         {
301                 u32 last_inst;
302
303                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304                 /* XXX Deliver Program interrupt to guest. */
305                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306                 r = RESUME_HOST;
307                 break;
308         }
309         default:
310                 WARN_ON(1);
311                 r = RESUME_GUEST;
312         }
313
314         return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319               bool data)
320 {
321         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322         struct kvmppc_pte pte;
323         int r;
324
325         vcpu->stat.st++;
326
327         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328                          XLATE_WRITE, &pte);
329         if (r < 0)
330                 return r;
331
332         *eaddr = pte.raddr;
333
334         if (!pte.may_write)
335                 return -EPERM;
336
337         /* Magic page override */
338         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341                 void *magic = vcpu->arch.shared;
342                 magic += pte.eaddr & 0xfff;
343                 memcpy(magic, ptr, size);
344                 return EMULATE_DONE;
345         }
346
347         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348                 return EMULATE_DO_MMIO;
349
350         return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355                       bool data)
356 {
357         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358         struct kvmppc_pte pte;
359         int rc;
360
361         vcpu->stat.ld++;
362
363         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364                           XLATE_READ, &pte);
365         if (rc)
366                 return rc;
367
368         *eaddr = pte.raddr;
369
370         if (!pte.may_read)
371                 return -EPERM;
372
373         if (!data && !pte.may_execute)
374                 return -ENOEXEC;
375
376         /* Magic page override */
377         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380                 void *magic = vcpu->arch.shared;
381                 magic += pte.eaddr & 0xfff;
382                 memcpy(ptr, magic, size);
383                 return EMULATE_DONE;
384         }
385
386         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387                 return EMULATE_DO_MMIO;
388
389         return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395         return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400         return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405         *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410         struct kvmppc_ops *kvm_ops = NULL;
411         /*
412          * if we have both HV and PR enabled, default is HV
413          */
414         if (type == 0) {
415                 if (kvmppc_hv_ops)
416                         kvm_ops = kvmppc_hv_ops;
417                 else
418                         kvm_ops = kvmppc_pr_ops;
419                 if (!kvm_ops)
420                         goto err_out;
421         } else  if (type == KVM_VM_PPC_HV) {
422                 if (!kvmppc_hv_ops)
423                         goto err_out;
424                 kvm_ops = kvmppc_hv_ops;
425         } else if (type == KVM_VM_PPC_PR) {
426                 if (!kvmppc_pr_ops)
427                         goto err_out;
428                 kvm_ops = kvmppc_pr_ops;
429         } else
430                 goto err_out;
431
432         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433                 return -ENOENT;
434
435         kvm->arch.kvm_ops = kvm_ops;
436         return kvmppc_core_init_vm(kvm);
437 err_out:
438         return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443         return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448         return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453         unsigned int i;
454         struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457         /*
458          * We call kick_all_cpus_sync() to ensure that all
459          * CPUs have executed any pending IPIs before we
460          * continue and free VCPUs structures below.
461          */
462         if (is_kvmppc_hv_enabled(kvm))
463                 kick_all_cpus_sync();
464 #endif
465
466         kvm_for_each_vcpu(i, vcpu, kvm)
467                 kvm_arch_vcpu_free(vcpu);
468
469         mutex_lock(&kvm->lock);
470         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471                 kvm->vcpus[i] = NULL;
472
473         atomic_set(&kvm->online_vcpus, 0);
474
475         kvmppc_core_destroy_vm(kvm);
476
477         mutex_unlock(&kvm->lock);
478
479         /* drop the module reference */
480         module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485         int r;
486         /* Assume we're using HV mode when the HV module is loaded */
487         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489         if (kvm) {
490                 /*
491                  * Hooray - we know which VM type we're running on. Depend on
492                  * that rather than the guess above.
493                  */
494                 hv_enabled = is_kvmppc_hv_enabled(kvm);
495         }
496
497         switch (ext) {
498 #ifdef CONFIG_BOOKE
499         case KVM_CAP_PPC_BOOKE_SREGS:
500         case KVM_CAP_PPC_BOOKE_WATCHDOG:
501         case KVM_CAP_PPC_EPR:
502 #else
503         case KVM_CAP_PPC_SEGSTATE:
504         case KVM_CAP_PPC_HIOR:
505         case KVM_CAP_PPC_PAPR:
506 #endif
507         case KVM_CAP_PPC_UNSET_IRQ:
508         case KVM_CAP_PPC_IRQ_LEVEL:
509         case KVM_CAP_ENABLE_CAP:
510         case KVM_CAP_ENABLE_CAP_VM:
511         case KVM_CAP_ONE_REG:
512         case KVM_CAP_IOEVENTFD:
513         case KVM_CAP_DEVICE_CTRL:
514                 r = 1;
515                 break;
516         case KVM_CAP_PPC_PAIRED_SINGLES:
517         case KVM_CAP_PPC_OSI:
518         case KVM_CAP_PPC_GET_PVINFO:
519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
520         case KVM_CAP_SW_TLB:
521 #endif
522                 /* We support this only for PR */
523                 r = !hv_enabled;
524                 break;
525 #ifdef CONFIG_KVM_MMIO
526         case KVM_CAP_COALESCED_MMIO:
527                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
528                 break;
529 #endif
530 #ifdef CONFIG_KVM_MPIC
531         case KVM_CAP_IRQ_MPIC:
532                 r = 1;
533                 break;
534 #endif
535
536 #ifdef CONFIG_PPC_BOOK3S_64
537         case KVM_CAP_SPAPR_TCE:
538         case KVM_CAP_SPAPR_TCE_64:
539         case KVM_CAP_PPC_RTAS:
540         case KVM_CAP_PPC_FIXUP_HCALL:
541         case KVM_CAP_PPC_ENABLE_HCALL:
542 #ifdef CONFIG_KVM_XICS
543         case KVM_CAP_IRQ_XICS:
544 #endif
545                 r = 1;
546                 break;
547
548         case KVM_CAP_PPC_ALLOC_HTAB:
549                 r = hv_enabled;
550                 break;
551 #endif /* CONFIG_PPC_BOOK3S_64 */
552 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
553         case KVM_CAP_PPC_SMT:
554                 r = 0;
555                 if (hv_enabled) {
556                         if (cpu_has_feature(CPU_FTR_ARCH_300))
557                                 r = 1;
558                         else
559                                 r = threads_per_subcore;
560                 }
561                 break;
562         case KVM_CAP_PPC_RMA:
563                 r = 0;
564                 break;
565         case KVM_CAP_PPC_HWRNG:
566                 r = kvmppc_hwrng_present();
567                 break;
568 #endif
569         case KVM_CAP_SYNC_MMU:
570 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
571                 r = hv_enabled;
572 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573                 r = 1;
574 #else
575                 r = 0;
576 #endif
577                 break;
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579         case KVM_CAP_PPC_HTAB_FD:
580                 r = hv_enabled;
581                 break;
582 #endif
583         case KVM_CAP_NR_VCPUS:
584                 /*
585                  * Recommending a number of CPUs is somewhat arbitrary; we
586                  * return the number of present CPUs for -HV (since a host
587                  * will have secondary threads "offline"), and for other KVM
588                  * implementations just count online CPUs.
589                  */
590                 if (hv_enabled)
591                         r = num_present_cpus();
592                 else
593                         r = num_online_cpus();
594                 break;
595         case KVM_CAP_NR_MEMSLOTS:
596                 r = KVM_USER_MEM_SLOTS;
597                 break;
598         case KVM_CAP_MAX_VCPUS:
599                 r = KVM_MAX_VCPUS;
600                 break;
601 #ifdef CONFIG_PPC_BOOK3S_64
602         case KVM_CAP_PPC_GET_SMMU_INFO:
603                 r = 1;
604                 break;
605         case KVM_CAP_SPAPR_MULTITCE:
606                 r = 1;
607                 break;
608 #endif
609         case KVM_CAP_PPC_HTM:
610                 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
611                     is_kvmppc_hv_enabled(kvm);
612                 break;
613         default:
614                 r = 0;
615                 break;
616         }
617         return r;
618
619 }
620
621 long kvm_arch_dev_ioctl(struct file *filp,
622                         unsigned int ioctl, unsigned long arg)
623 {
624         return -EINVAL;
625 }
626
627 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
628                            struct kvm_memory_slot *dont)
629 {
630         kvmppc_core_free_memslot(kvm, free, dont);
631 }
632
633 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
634                             unsigned long npages)
635 {
636         return kvmppc_core_create_memslot(kvm, slot, npages);
637 }
638
639 int kvm_arch_prepare_memory_region(struct kvm *kvm,
640                                    struct kvm_memory_slot *memslot,
641                                    const struct kvm_userspace_memory_region *mem,
642                                    enum kvm_mr_change change)
643 {
644         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
645 }
646
647 void kvm_arch_commit_memory_region(struct kvm *kvm,
648                                    const struct kvm_userspace_memory_region *mem,
649                                    const struct kvm_memory_slot *old,
650                                    const struct kvm_memory_slot *new,
651                                    enum kvm_mr_change change)
652 {
653         kvmppc_core_commit_memory_region(kvm, mem, old, new);
654 }
655
656 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
657                                    struct kvm_memory_slot *slot)
658 {
659         kvmppc_core_flush_memslot(kvm, slot);
660 }
661
662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
663 {
664         struct kvm_vcpu *vcpu;
665         vcpu = kvmppc_core_vcpu_create(kvm, id);
666         if (!IS_ERR(vcpu)) {
667                 vcpu->arch.wqp = &vcpu->wq;
668                 kvmppc_create_vcpu_debugfs(vcpu, id);
669         }
670         return vcpu;
671 }
672
673 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
674 {
675 }
676
677 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
678 {
679         /* Make sure we're not using the vcpu anymore */
680         hrtimer_cancel(&vcpu->arch.dec_timer);
681
682         kvmppc_remove_vcpu_debugfs(vcpu);
683
684         switch (vcpu->arch.irq_type) {
685         case KVMPPC_IRQ_MPIC:
686                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
687                 break;
688         case KVMPPC_IRQ_XICS:
689                 kvmppc_xics_free_icp(vcpu);
690                 break;
691         }
692
693         kvmppc_core_vcpu_free(vcpu);
694 }
695
696 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
697 {
698         kvm_arch_vcpu_free(vcpu);
699 }
700
701 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
702 {
703         return kvmppc_core_pending_dec(vcpu);
704 }
705
706 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
707 {
708         struct kvm_vcpu *vcpu;
709
710         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
711         kvmppc_decrementer_func(vcpu);
712
713         return HRTIMER_NORESTART;
714 }
715
716 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
717 {
718         int ret;
719
720         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
721         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
722         vcpu->arch.dec_expires = ~(u64)0;
723
724 #ifdef CONFIG_KVM_EXIT_TIMING
725         mutex_init(&vcpu->arch.exit_timing_lock);
726 #endif
727         ret = kvmppc_subarch_vcpu_init(vcpu);
728         return ret;
729 }
730
731 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
732 {
733         kvmppc_mmu_destroy(vcpu);
734         kvmppc_subarch_vcpu_uninit(vcpu);
735 }
736
737 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
738 {
739 #ifdef CONFIG_BOOKE
740         /*
741          * vrsave (formerly usprg0) isn't used by Linux, but may
742          * be used by the guest.
743          *
744          * On non-booke this is associated with Altivec and
745          * is handled by code in book3s.c.
746          */
747         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
748 #endif
749         kvmppc_core_vcpu_load(vcpu, cpu);
750 }
751
752 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
753 {
754         kvmppc_core_vcpu_put(vcpu);
755 #ifdef CONFIG_BOOKE
756         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
757 #endif
758 }
759
760 /*
761  * irq_bypass_add_producer and irq_bypass_del_producer are only
762  * useful if the architecture supports PCI passthrough.
763  * irq_bypass_stop and irq_bypass_start are not needed and so
764  * kvm_ops are not defined for them.
765  */
766 bool kvm_arch_has_irq_bypass(void)
767 {
768         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
769                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
770 }
771
772 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
773                                      struct irq_bypass_producer *prod)
774 {
775         struct kvm_kernel_irqfd *irqfd =
776                 container_of(cons, struct kvm_kernel_irqfd, consumer);
777         struct kvm *kvm = irqfd->kvm;
778
779         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
780                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
781
782         return 0;
783 }
784
785 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
786                                       struct irq_bypass_producer *prod)
787 {
788         struct kvm_kernel_irqfd *irqfd =
789                 container_of(cons, struct kvm_kernel_irqfd, consumer);
790         struct kvm *kvm = irqfd->kvm;
791
792         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
793                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
794 }
795
796 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
797                                       struct kvm_run *run)
798 {
799         u64 uninitialized_var(gpr);
800
801         if (run->mmio.len > sizeof(gpr)) {
802                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
803                 return;
804         }
805
806         if (!vcpu->arch.mmio_host_swabbed) {
807                 switch (run->mmio.len) {
808                 case 8: gpr = *(u64 *)run->mmio.data; break;
809                 case 4: gpr = *(u32 *)run->mmio.data; break;
810                 case 2: gpr = *(u16 *)run->mmio.data; break;
811                 case 1: gpr = *(u8 *)run->mmio.data; break;
812                 }
813         } else {
814                 switch (run->mmio.len) {
815                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
816                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
817                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
818                 case 1: gpr = *(u8 *)run->mmio.data; break;
819                 }
820         }
821
822         if (vcpu->arch.mmio_sign_extend) {
823                 switch (run->mmio.len) {
824 #ifdef CONFIG_PPC64
825                 case 4:
826                         gpr = (s64)(s32)gpr;
827                         break;
828 #endif
829                 case 2:
830                         gpr = (s64)(s16)gpr;
831                         break;
832                 case 1:
833                         gpr = (s64)(s8)gpr;
834                         break;
835                 }
836         }
837
838         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
839
840         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
841         case KVM_MMIO_REG_GPR:
842                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
843                 break;
844         case KVM_MMIO_REG_FPR:
845                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
846                 break;
847 #ifdef CONFIG_PPC_BOOK3S
848         case KVM_MMIO_REG_QPR:
849                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
850                 break;
851         case KVM_MMIO_REG_FQPR:
852                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
853                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
854                 break;
855 #endif
856         default:
857                 BUG();
858         }
859 }
860
861 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
862                                 unsigned int rt, unsigned int bytes,
863                                 int is_default_endian, int sign_extend)
864 {
865         int idx, ret;
866         bool host_swabbed;
867
868         /* Pity C doesn't have a logical XOR operator */
869         if (kvmppc_need_byteswap(vcpu)) {
870                 host_swabbed = is_default_endian;
871         } else {
872                 host_swabbed = !is_default_endian;
873         }
874
875         if (bytes > sizeof(run->mmio.data)) {
876                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
877                        run->mmio.len);
878         }
879
880         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
881         run->mmio.len = bytes;
882         run->mmio.is_write = 0;
883
884         vcpu->arch.io_gpr = rt;
885         vcpu->arch.mmio_host_swabbed = host_swabbed;
886         vcpu->mmio_needed = 1;
887         vcpu->mmio_is_write = 0;
888         vcpu->arch.mmio_sign_extend = sign_extend;
889
890         idx = srcu_read_lock(&vcpu->kvm->srcu);
891
892         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
893                               bytes, &run->mmio.data);
894
895         srcu_read_unlock(&vcpu->kvm->srcu, idx);
896
897         if (!ret) {
898                 kvmppc_complete_mmio_load(vcpu, run);
899                 vcpu->mmio_needed = 0;
900                 return EMULATE_DONE;
901         }
902
903         return EMULATE_DO_MMIO;
904 }
905
906 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
907                        unsigned int rt, unsigned int bytes,
908                        int is_default_endian)
909 {
910         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
911 }
912 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
913
914 /* Same as above, but sign extends */
915 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
916                         unsigned int rt, unsigned int bytes,
917                         int is_default_endian)
918 {
919         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
920 }
921
922 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
923                         u64 val, unsigned int bytes, int is_default_endian)
924 {
925         void *data = run->mmio.data;
926         int idx, ret;
927         bool host_swabbed;
928
929         /* Pity C doesn't have a logical XOR operator */
930         if (kvmppc_need_byteswap(vcpu)) {
931                 host_swabbed = is_default_endian;
932         } else {
933                 host_swabbed = !is_default_endian;
934         }
935
936         if (bytes > sizeof(run->mmio.data)) {
937                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
938                        run->mmio.len);
939         }
940
941         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
942         run->mmio.len = bytes;
943         run->mmio.is_write = 1;
944         vcpu->mmio_needed = 1;
945         vcpu->mmio_is_write = 1;
946
947         /* Store the value at the lowest bytes in 'data'. */
948         if (!host_swabbed) {
949                 switch (bytes) {
950                 case 8: *(u64 *)data = val; break;
951                 case 4: *(u32 *)data = val; break;
952                 case 2: *(u16 *)data = val; break;
953                 case 1: *(u8  *)data = val; break;
954                 }
955         } else {
956                 switch (bytes) {
957                 case 8: *(u64 *)data = swab64(val); break;
958                 case 4: *(u32 *)data = swab32(val); break;
959                 case 2: *(u16 *)data = swab16(val); break;
960                 case 1: *(u8  *)data = val; break;
961                 }
962         }
963
964         idx = srcu_read_lock(&vcpu->kvm->srcu);
965
966         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
967                                bytes, &run->mmio.data);
968
969         srcu_read_unlock(&vcpu->kvm->srcu, idx);
970
971         if (!ret) {
972                 vcpu->mmio_needed = 0;
973                 return EMULATE_DONE;
974         }
975
976         return EMULATE_DO_MMIO;
977 }
978 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
979
980 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
981 {
982         int r = 0;
983         union kvmppc_one_reg val;
984         int size;
985
986         size = one_reg_size(reg->id);
987         if (size > sizeof(val))
988                 return -EINVAL;
989
990         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
991         if (r == -EINVAL) {
992                 r = 0;
993                 switch (reg->id) {
994 #ifdef CONFIG_ALTIVEC
995                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
996                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
997                                 r = -ENXIO;
998                                 break;
999                         }
1000                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1001                         break;
1002                 case KVM_REG_PPC_VSCR:
1003                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1004                                 r = -ENXIO;
1005                                 break;
1006                         }
1007                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1008                         break;
1009                 case KVM_REG_PPC_VRSAVE:
1010                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1011                         break;
1012 #endif /* CONFIG_ALTIVEC */
1013                 default:
1014                         r = -EINVAL;
1015                         break;
1016                 }
1017         }
1018
1019         if (r)
1020                 return r;
1021
1022         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1023                 r = -EFAULT;
1024
1025         return r;
1026 }
1027
1028 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1029 {
1030         int r;
1031         union kvmppc_one_reg val;
1032         int size;
1033
1034         size = one_reg_size(reg->id);
1035         if (size > sizeof(val))
1036                 return -EINVAL;
1037
1038         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1039                 return -EFAULT;
1040
1041         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1042         if (r == -EINVAL) {
1043                 r = 0;
1044                 switch (reg->id) {
1045 #ifdef CONFIG_ALTIVEC
1046                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1047                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1048                                 r = -ENXIO;
1049                                 break;
1050                         }
1051                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1052                         break;
1053                 case KVM_REG_PPC_VSCR:
1054                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1055                                 r = -ENXIO;
1056                                 break;
1057                         }
1058                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1059                         break;
1060                 case KVM_REG_PPC_VRSAVE:
1061                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1062                                 r = -ENXIO;
1063                                 break;
1064                         }
1065                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1066                         break;
1067 #endif /* CONFIG_ALTIVEC */
1068                 default:
1069                         r = -EINVAL;
1070                         break;
1071                 }
1072         }
1073
1074         return r;
1075 }
1076
1077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1078 {
1079         int r;
1080         sigset_t sigsaved;
1081
1082         if (vcpu->sigset_active)
1083                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1084
1085         if (vcpu->mmio_needed) {
1086                 if (!vcpu->mmio_is_write)
1087                         kvmppc_complete_mmio_load(vcpu, run);
1088                 vcpu->mmio_needed = 0;
1089         } else if (vcpu->arch.osi_needed) {
1090                 u64 *gprs = run->osi.gprs;
1091                 int i;
1092
1093                 for (i = 0; i < 32; i++)
1094                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1095                 vcpu->arch.osi_needed = 0;
1096         } else if (vcpu->arch.hcall_needed) {
1097                 int i;
1098
1099                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1100                 for (i = 0; i < 9; ++i)
1101                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1102                 vcpu->arch.hcall_needed = 0;
1103 #ifdef CONFIG_BOOKE
1104         } else if (vcpu->arch.epr_needed) {
1105                 kvmppc_set_epr(vcpu, run->epr.epr);
1106                 vcpu->arch.epr_needed = 0;
1107 #endif
1108         }
1109
1110         r = kvmppc_vcpu_run(run, vcpu);
1111
1112         if (vcpu->sigset_active)
1113                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1114
1115         return r;
1116 }
1117
1118 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1119 {
1120         if (irq->irq == KVM_INTERRUPT_UNSET) {
1121                 kvmppc_core_dequeue_external(vcpu);
1122                 return 0;
1123         }
1124
1125         kvmppc_core_queue_external(vcpu, irq);
1126
1127         kvm_vcpu_kick(vcpu);
1128
1129         return 0;
1130 }
1131
1132 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1133                                      struct kvm_enable_cap *cap)
1134 {
1135         int r;
1136
1137         if (cap->flags)
1138                 return -EINVAL;
1139
1140         switch (cap->cap) {
1141         case KVM_CAP_PPC_OSI:
1142                 r = 0;
1143                 vcpu->arch.osi_enabled = true;
1144                 break;
1145         case KVM_CAP_PPC_PAPR:
1146                 r = 0;
1147                 vcpu->arch.papr_enabled = true;
1148                 break;
1149         case KVM_CAP_PPC_EPR:
1150                 r = 0;
1151                 if (cap->args[0])
1152                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1153                 else
1154                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1155                 break;
1156 #ifdef CONFIG_BOOKE
1157         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1158                 r = 0;
1159                 vcpu->arch.watchdog_enabled = true;
1160                 break;
1161 #endif
1162 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1163         case KVM_CAP_SW_TLB: {
1164                 struct kvm_config_tlb cfg;
1165                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1166
1167                 r = -EFAULT;
1168                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1169                         break;
1170
1171                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1172                 break;
1173         }
1174 #endif
1175 #ifdef CONFIG_KVM_MPIC
1176         case KVM_CAP_IRQ_MPIC: {
1177                 struct fd f;
1178                 struct kvm_device *dev;
1179
1180                 r = -EBADF;
1181                 f = fdget(cap->args[0]);
1182                 if (!f.file)
1183                         break;
1184
1185                 r = -EPERM;
1186                 dev = kvm_device_from_filp(f.file);
1187                 if (dev)
1188                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1189
1190                 fdput(f);
1191                 break;
1192         }
1193 #endif
1194 #ifdef CONFIG_KVM_XICS
1195         case KVM_CAP_IRQ_XICS: {
1196                 struct fd f;
1197                 struct kvm_device *dev;
1198
1199                 r = -EBADF;
1200                 f = fdget(cap->args[0]);
1201                 if (!f.file)
1202                         break;
1203
1204                 r = -EPERM;
1205                 dev = kvm_device_from_filp(f.file);
1206                 if (dev)
1207                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1208
1209                 fdput(f);
1210                 break;
1211         }
1212 #endif /* CONFIG_KVM_XICS */
1213         default:
1214                 r = -EINVAL;
1215                 break;
1216         }
1217
1218         if (!r)
1219                 r = kvmppc_sanity_check(vcpu);
1220
1221         return r;
1222 }
1223
1224 bool kvm_arch_intc_initialized(struct kvm *kvm)
1225 {
1226 #ifdef CONFIG_KVM_MPIC
1227         if (kvm->arch.mpic)
1228                 return true;
1229 #endif
1230 #ifdef CONFIG_KVM_XICS
1231         if (kvm->arch.xics)
1232                 return true;
1233 #endif
1234         return false;
1235 }
1236
1237 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1238                                     struct kvm_mp_state *mp_state)
1239 {
1240         return -EINVAL;
1241 }
1242
1243 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1244                                     struct kvm_mp_state *mp_state)
1245 {
1246         return -EINVAL;
1247 }
1248
1249 long kvm_arch_vcpu_ioctl(struct file *filp,
1250                          unsigned int ioctl, unsigned long arg)
1251 {
1252         struct kvm_vcpu *vcpu = filp->private_data;
1253         void __user *argp = (void __user *)arg;
1254         long r;
1255
1256         switch (ioctl) {
1257         case KVM_INTERRUPT: {
1258                 struct kvm_interrupt irq;
1259                 r = -EFAULT;
1260                 if (copy_from_user(&irq, argp, sizeof(irq)))
1261                         goto out;
1262                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1263                 goto out;
1264         }
1265
1266         case KVM_ENABLE_CAP:
1267         {
1268                 struct kvm_enable_cap cap;
1269                 r = -EFAULT;
1270                 if (copy_from_user(&cap, argp, sizeof(cap)))
1271                         goto out;
1272                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1273                 break;
1274         }
1275
1276         case KVM_SET_ONE_REG:
1277         case KVM_GET_ONE_REG:
1278         {
1279                 struct kvm_one_reg reg;
1280                 r = -EFAULT;
1281                 if (copy_from_user(&reg, argp, sizeof(reg)))
1282                         goto out;
1283                 if (ioctl == KVM_SET_ONE_REG)
1284                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1285                 else
1286                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1287                 break;
1288         }
1289
1290 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1291         case KVM_DIRTY_TLB: {
1292                 struct kvm_dirty_tlb dirty;
1293                 r = -EFAULT;
1294                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1295                         goto out;
1296                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1297                 break;
1298         }
1299 #endif
1300         default:
1301                 r = -EINVAL;
1302         }
1303
1304 out:
1305         return r;
1306 }
1307
1308 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1309 {
1310         return VM_FAULT_SIGBUS;
1311 }
1312
1313 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1314 {
1315         u32 inst_nop = 0x60000000;
1316 #ifdef CONFIG_KVM_BOOKE_HV
1317         u32 inst_sc1 = 0x44000022;
1318         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1319         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1320         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1321         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1322 #else
1323         u32 inst_lis = 0x3c000000;
1324         u32 inst_ori = 0x60000000;
1325         u32 inst_sc = 0x44000002;
1326         u32 inst_imm_mask = 0xffff;
1327
1328         /*
1329          * The hypercall to get into KVM from within guest context is as
1330          * follows:
1331          *
1332          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1333          *    ori r0, KVM_SC_MAGIC_R0@l
1334          *    sc
1335          *    nop
1336          */
1337         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1338         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1339         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1340         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1341 #endif
1342
1343         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1344
1345         return 0;
1346 }
1347
1348 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1349                           bool line_status)
1350 {
1351         if (!irqchip_in_kernel(kvm))
1352                 return -ENXIO;
1353
1354         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1355                                         irq_event->irq, irq_event->level,
1356                                         line_status);
1357         return 0;
1358 }
1359
1360
1361 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1362                                    struct kvm_enable_cap *cap)
1363 {
1364         int r;
1365
1366         if (cap->flags)
1367                 return -EINVAL;
1368
1369         switch (cap->cap) {
1370 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1371         case KVM_CAP_PPC_ENABLE_HCALL: {
1372                 unsigned long hcall = cap->args[0];
1373
1374                 r = -EINVAL;
1375                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1376                     cap->args[1] > 1)
1377                         break;
1378                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1379                         break;
1380                 if (cap->args[1])
1381                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1382                 else
1383                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1384                 r = 0;
1385                 break;
1386         }
1387 #endif
1388         default:
1389                 r = -EINVAL;
1390                 break;
1391         }
1392
1393         return r;
1394 }
1395
1396 long kvm_arch_vm_ioctl(struct file *filp,
1397                        unsigned int ioctl, unsigned long arg)
1398 {
1399         struct kvm *kvm __maybe_unused = filp->private_data;
1400         void __user *argp = (void __user *)arg;
1401         long r;
1402
1403         switch (ioctl) {
1404         case KVM_PPC_GET_PVINFO: {
1405                 struct kvm_ppc_pvinfo pvinfo;
1406                 memset(&pvinfo, 0, sizeof(pvinfo));
1407                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1408                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1409                         r = -EFAULT;
1410                         goto out;
1411                 }
1412
1413                 break;
1414         }
1415         case KVM_ENABLE_CAP:
1416         {
1417                 struct kvm_enable_cap cap;
1418                 r = -EFAULT;
1419                 if (copy_from_user(&cap, argp, sizeof(cap)))
1420                         goto out;
1421                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1422                 break;
1423         }
1424 #ifdef CONFIG_PPC_BOOK3S_64
1425         case KVM_CREATE_SPAPR_TCE_64: {
1426                 struct kvm_create_spapr_tce_64 create_tce_64;
1427
1428                 r = -EFAULT;
1429                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1430                         goto out;
1431                 if (create_tce_64.flags) {
1432                         r = -EINVAL;
1433                         goto out;
1434                 }
1435                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1436                 goto out;
1437         }
1438         case KVM_CREATE_SPAPR_TCE: {
1439                 struct kvm_create_spapr_tce create_tce;
1440                 struct kvm_create_spapr_tce_64 create_tce_64;
1441
1442                 r = -EFAULT;
1443                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1444                         goto out;
1445
1446                 create_tce_64.liobn = create_tce.liobn;
1447                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1448                 create_tce_64.offset = 0;
1449                 create_tce_64.size = create_tce.window_size >>
1450                                 IOMMU_PAGE_SHIFT_4K;
1451                 create_tce_64.flags = 0;
1452                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1453                 goto out;
1454         }
1455         case KVM_PPC_GET_SMMU_INFO: {
1456                 struct kvm_ppc_smmu_info info;
1457                 struct kvm *kvm = filp->private_data;
1458
1459                 memset(&info, 0, sizeof(info));
1460                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1461                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1462                         r = -EFAULT;
1463                 break;
1464         }
1465         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1466                 struct kvm *kvm = filp->private_data;
1467
1468                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1469                 break;
1470         }
1471         default: {
1472                 struct kvm *kvm = filp->private_data;
1473                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1474         }
1475 #else /* CONFIG_PPC_BOOK3S_64 */
1476         default:
1477                 r = -ENOTTY;
1478 #endif
1479         }
1480 out:
1481         return r;
1482 }
1483
1484 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1485 static unsigned long nr_lpids;
1486
1487 long kvmppc_alloc_lpid(void)
1488 {
1489         long lpid;
1490
1491         do {
1492                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1493                 if (lpid >= nr_lpids) {
1494                         pr_err("%s: No LPIDs free\n", __func__);
1495                         return -ENOMEM;
1496                 }
1497         } while (test_and_set_bit(lpid, lpid_inuse));
1498
1499         return lpid;
1500 }
1501 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1502
1503 void kvmppc_claim_lpid(long lpid)
1504 {
1505         set_bit(lpid, lpid_inuse);
1506 }
1507 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1508
1509 void kvmppc_free_lpid(long lpid)
1510 {
1511         clear_bit(lpid, lpid_inuse);
1512 }
1513 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1514
1515 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1516 {
1517         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1518         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1519 }
1520 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1521
1522 int kvm_arch_init(void *opaque)
1523 {
1524         return 0;
1525 }
1526
1527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);