]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'ceph-for-4.11-rc1' of git://github.com/ceph/ceph-client
[karo-tx-linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54         return !!(v->arch.pending_exceptions) ||
55                v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60         return 1;
61 }
62
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74         int r;
75
76         WARN_ON(irqs_disabled());
77         hard_irq_disable();
78
79         while (true) {
80                 if (need_resched()) {
81                         local_irq_enable();
82                         cond_resched();
83                         hard_irq_disable();
84                         continue;
85                 }
86
87                 if (signal_pending(current)) {
88                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89                         vcpu->run->exit_reason = KVM_EXIT_INTR;
90                         r = -EINTR;
91                         break;
92                 }
93
94                 vcpu->mode = IN_GUEST_MODE;
95
96                 /*
97                  * Reading vcpu->requests must happen after setting vcpu->mode,
98                  * so we don't miss a request because the requester sees
99                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100                  * before next entering the guest (and thus doesn't IPI).
101                  * This also orders the write to mode from any reads
102                  * to the page tables done while the VCPU is running.
103                  * Please see the comment in kvm_flush_remote_tlbs.
104                  */
105                 smp_mb();
106
107                 if (vcpu->requests) {
108                         /* Make sure we process requests preemptable */
109                         local_irq_enable();
110                         trace_kvm_check_requests(vcpu);
111                         r = kvmppc_core_check_requests(vcpu);
112                         hard_irq_disable();
113                         if (r > 0)
114                                 continue;
115                         break;
116                 }
117
118                 if (kvmppc_core_prepare_to_enter(vcpu)) {
119                         /* interrupts got enabled in between, so we
120                            are back at square 1 */
121                         continue;
122                 }
123
124                 guest_enter_irqoff();
125                 return 1;
126         }
127
128         /* return to host */
129         local_irq_enable();
130         return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138         int i;
139
140         shared->sprg0 = swab64(shared->sprg0);
141         shared->sprg1 = swab64(shared->sprg1);
142         shared->sprg2 = swab64(shared->sprg2);
143         shared->sprg3 = swab64(shared->sprg3);
144         shared->srr0 = swab64(shared->srr0);
145         shared->srr1 = swab64(shared->srr1);
146         shared->dar = swab64(shared->dar);
147         shared->msr = swab64(shared->msr);
148         shared->dsisr = swab32(shared->dsisr);
149         shared->int_pending = swab32(shared->int_pending);
150         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151                 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157         int nr = kvmppc_get_gpr(vcpu, 11);
158         int r;
159         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163         unsigned long r2 = 0;
164
165         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166                 /* 32 bit mode */
167                 param1 &= 0xffffffff;
168                 param2 &= 0xffffffff;
169                 param3 &= 0xffffffff;
170                 param4 &= 0xffffffff;
171         }
172
173         switch (nr) {
174         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175         {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177                 /* Book3S can be little endian, find it out here */
178                 int shared_big_endian = true;
179                 if (vcpu->arch.intr_msr & MSR_LE)
180                         shared_big_endian = false;
181                 if (shared_big_endian != vcpu->arch.shared_big_endian)
182                         kvmppc_swab_shared(vcpu);
183                 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187                         /*
188                          * Older versions of the Linux magic page code had
189                          * a bug where they would map their trampoline code
190                          * NX. If that's the case, remove !PR NX capability.
191                          */
192                         vcpu->arch.disable_kernel_nx = true;
193                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194                 }
195
196                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200                 /*
201                  * Make sure our 4k magic page is in the same window of a 64k
202                  * page within the guest and within the host's page.
203                  */
204                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205                     ((ulong)vcpu->arch.shared & 0xf000)) {
206                         void *old_shared = vcpu->arch.shared;
207                         ulong shared = (ulong)vcpu->arch.shared;
208                         void *new_shared;
209
210                         shared &= PAGE_MASK;
211                         shared |= vcpu->arch.magic_page_pa & 0xf000;
212                         new_shared = (void*)shared;
213                         memcpy(new_shared, old_shared, 0x1000);
214                         vcpu->arch.shared = new_shared;
215                 }
216 #endif
217
218                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220                 r = EV_SUCCESS;
221                 break;
222         }
223         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224                 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229                 /* Second return value is in r4 */
230                 break;
231         case EV_HCALL_TOKEN(EV_IDLE):
232                 r = EV_SUCCESS;
233                 kvm_vcpu_block(vcpu);
234                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235                 break;
236         default:
237                 r = EV_UNIMPLEMENTED;
238                 break;
239         }
240
241         kvmppc_set_gpr(vcpu, 4, r2);
242
243         return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249         int r = false;
250
251         /* We have to know what CPU to virtualize */
252         if (!vcpu->arch.pvr)
253                 goto out;
254
255         /* PAPR only works with book3s_64 */
256         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257                 goto out;
258
259         /* HV KVM can only do PAPR mode for now */
260         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261                 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264         if (!cpu_has_feature(CPU_FTR_EMB_HV))
265                 goto out;
266 #endif
267
268         r = true;
269
270 out:
271         vcpu->arch.sane = r;
272         return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278         enum emulation_result er;
279         int r;
280
281         er = kvmppc_emulate_loadstore(vcpu);
282         switch (er) {
283         case EMULATE_DONE:
284                 /* Future optimization: only reload non-volatiles if they were
285                  * actually modified. */
286                 r = RESUME_GUEST_NV;
287                 break;
288         case EMULATE_AGAIN:
289                 r = RESUME_GUEST;
290                 break;
291         case EMULATE_DO_MMIO:
292                 run->exit_reason = KVM_EXIT_MMIO;
293                 /* We must reload nonvolatiles because "update" load/store
294                  * instructions modify register state. */
295                 /* Future optimization: only reload non-volatiles if they were
296                  * actually modified. */
297                 r = RESUME_HOST_NV;
298                 break;
299         case EMULATE_FAIL:
300         {
301                 u32 last_inst;
302
303                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304                 /* XXX Deliver Program interrupt to guest. */
305                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306                 r = RESUME_HOST;
307                 break;
308         }
309         default:
310                 WARN_ON(1);
311                 r = RESUME_GUEST;
312         }
313
314         return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319               bool data)
320 {
321         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322         struct kvmppc_pte pte;
323         int r;
324
325         vcpu->stat.st++;
326
327         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328                          XLATE_WRITE, &pte);
329         if (r < 0)
330                 return r;
331
332         *eaddr = pte.raddr;
333
334         if (!pte.may_write)
335                 return -EPERM;
336
337         /* Magic page override */
338         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341                 void *magic = vcpu->arch.shared;
342                 magic += pte.eaddr & 0xfff;
343                 memcpy(magic, ptr, size);
344                 return EMULATE_DONE;
345         }
346
347         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348                 return EMULATE_DO_MMIO;
349
350         return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355                       bool data)
356 {
357         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358         struct kvmppc_pte pte;
359         int rc;
360
361         vcpu->stat.ld++;
362
363         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364                           XLATE_READ, &pte);
365         if (rc)
366                 return rc;
367
368         *eaddr = pte.raddr;
369
370         if (!pte.may_read)
371                 return -EPERM;
372
373         if (!data && !pte.may_execute)
374                 return -ENOEXEC;
375
376         /* Magic page override */
377         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380                 void *magic = vcpu->arch.shared;
381                 magic += pte.eaddr & 0xfff;
382                 memcpy(ptr, magic, size);
383                 return EMULATE_DONE;
384         }
385
386         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387                 return EMULATE_DO_MMIO;
388
389         return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395         return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400         return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405         *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410         struct kvmppc_ops *kvm_ops = NULL;
411         /*
412          * if we have both HV and PR enabled, default is HV
413          */
414         if (type == 0) {
415                 if (kvmppc_hv_ops)
416                         kvm_ops = kvmppc_hv_ops;
417                 else
418                         kvm_ops = kvmppc_pr_ops;
419                 if (!kvm_ops)
420                         goto err_out;
421         } else  if (type == KVM_VM_PPC_HV) {
422                 if (!kvmppc_hv_ops)
423                         goto err_out;
424                 kvm_ops = kvmppc_hv_ops;
425         } else if (type == KVM_VM_PPC_PR) {
426                 if (!kvmppc_pr_ops)
427                         goto err_out;
428                 kvm_ops = kvmppc_pr_ops;
429         } else
430                 goto err_out;
431
432         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433                 return -ENOENT;
434
435         kvm->arch.kvm_ops = kvm_ops;
436         return kvmppc_core_init_vm(kvm);
437 err_out:
438         return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443         return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448         return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453         unsigned int i;
454         struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457         /*
458          * We call kick_all_cpus_sync() to ensure that all
459          * CPUs have executed any pending IPIs before we
460          * continue and free VCPUs structures below.
461          */
462         if (is_kvmppc_hv_enabled(kvm))
463                 kick_all_cpus_sync();
464 #endif
465
466         kvm_for_each_vcpu(i, vcpu, kvm)
467                 kvm_arch_vcpu_free(vcpu);
468
469         mutex_lock(&kvm->lock);
470         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471                 kvm->vcpus[i] = NULL;
472
473         atomic_set(&kvm->online_vcpus, 0);
474
475         kvmppc_core_destroy_vm(kvm);
476
477         mutex_unlock(&kvm->lock);
478
479         /* drop the module reference */
480         module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485         int r;
486         /* Assume we're using HV mode when the HV module is loaded */
487         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489         if (kvm) {
490                 /*
491                  * Hooray - we know which VM type we're running on. Depend on
492                  * that rather than the guess above.
493                  */
494                 hv_enabled = is_kvmppc_hv_enabled(kvm);
495         }
496
497         switch (ext) {
498 #ifdef CONFIG_BOOKE
499         case KVM_CAP_PPC_BOOKE_SREGS:
500         case KVM_CAP_PPC_BOOKE_WATCHDOG:
501         case KVM_CAP_PPC_EPR:
502 #else
503         case KVM_CAP_PPC_SEGSTATE:
504         case KVM_CAP_PPC_HIOR:
505         case KVM_CAP_PPC_PAPR:
506 #endif
507         case KVM_CAP_PPC_UNSET_IRQ:
508         case KVM_CAP_PPC_IRQ_LEVEL:
509         case KVM_CAP_ENABLE_CAP:
510         case KVM_CAP_ENABLE_CAP_VM:
511         case KVM_CAP_ONE_REG:
512         case KVM_CAP_IOEVENTFD:
513         case KVM_CAP_DEVICE_CTRL:
514         case KVM_CAP_IMMEDIATE_EXIT:
515                 r = 1;
516                 break;
517         case KVM_CAP_PPC_PAIRED_SINGLES:
518         case KVM_CAP_PPC_OSI:
519         case KVM_CAP_PPC_GET_PVINFO:
520 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
521         case KVM_CAP_SW_TLB:
522 #endif
523                 /* We support this only for PR */
524                 r = !hv_enabled;
525                 break;
526 #ifdef CONFIG_KVM_MMIO
527         case KVM_CAP_COALESCED_MMIO:
528                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
529                 break;
530 #endif
531 #ifdef CONFIG_KVM_MPIC
532         case KVM_CAP_IRQ_MPIC:
533                 r = 1;
534                 break;
535 #endif
536
537 #ifdef CONFIG_PPC_BOOK3S_64
538         case KVM_CAP_SPAPR_TCE:
539         case KVM_CAP_SPAPR_TCE_64:
540         case KVM_CAP_PPC_RTAS:
541         case KVM_CAP_PPC_FIXUP_HCALL:
542         case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544         case KVM_CAP_IRQ_XICS:
545 #endif
546                 r = 1;
547                 break;
548
549         case KVM_CAP_PPC_ALLOC_HTAB:
550                 r = hv_enabled;
551                 break;
552 #endif /* CONFIG_PPC_BOOK3S_64 */
553 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
554         case KVM_CAP_PPC_SMT:
555                 r = 0;
556                 if (hv_enabled) {
557                         if (cpu_has_feature(CPU_FTR_ARCH_300))
558                                 r = 1;
559                         else
560                                 r = threads_per_subcore;
561                 }
562                 break;
563         case KVM_CAP_PPC_RMA:
564                 r = 0;
565                 break;
566         case KVM_CAP_PPC_HWRNG:
567                 r = kvmppc_hwrng_present();
568                 break;
569         case KVM_CAP_PPC_MMU_RADIX:
570                 r = !!(hv_enabled && radix_enabled());
571                 break;
572         case KVM_CAP_PPC_MMU_HASH_V3:
573                 r = !!(hv_enabled && !radix_enabled() &&
574                        cpu_has_feature(CPU_FTR_ARCH_300));
575                 break;
576 #endif
577         case KVM_CAP_SYNC_MMU:
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579                 r = hv_enabled;
580 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
581                 r = 1;
582 #else
583                 r = 0;
584 #endif
585                 break;
586 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
587         case KVM_CAP_PPC_HTAB_FD:
588                 r = hv_enabled;
589                 break;
590 #endif
591         case KVM_CAP_NR_VCPUS:
592                 /*
593                  * Recommending a number of CPUs is somewhat arbitrary; we
594                  * return the number of present CPUs for -HV (since a host
595                  * will have secondary threads "offline"), and for other KVM
596                  * implementations just count online CPUs.
597                  */
598                 if (hv_enabled)
599                         r = num_present_cpus();
600                 else
601                         r = num_online_cpus();
602                 break;
603         case KVM_CAP_NR_MEMSLOTS:
604                 r = KVM_USER_MEM_SLOTS;
605                 break;
606         case KVM_CAP_MAX_VCPUS:
607                 r = KVM_MAX_VCPUS;
608                 break;
609 #ifdef CONFIG_PPC_BOOK3S_64
610         case KVM_CAP_PPC_GET_SMMU_INFO:
611                 r = 1;
612                 break;
613         case KVM_CAP_SPAPR_MULTITCE:
614                 r = 1;
615                 break;
616         case KVM_CAP_SPAPR_RESIZE_HPT:
617                 /* Disable this on POWER9 until code handles new HPTE format */
618                 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
619                 break;
620 #endif
621         case KVM_CAP_PPC_HTM:
622                 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
623                     is_kvmppc_hv_enabled(kvm);
624                 break;
625         default:
626                 r = 0;
627                 break;
628         }
629         return r;
630
631 }
632
633 long kvm_arch_dev_ioctl(struct file *filp,
634                         unsigned int ioctl, unsigned long arg)
635 {
636         return -EINVAL;
637 }
638
639 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
640                            struct kvm_memory_slot *dont)
641 {
642         kvmppc_core_free_memslot(kvm, free, dont);
643 }
644
645 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
646                             unsigned long npages)
647 {
648         return kvmppc_core_create_memslot(kvm, slot, npages);
649 }
650
651 int kvm_arch_prepare_memory_region(struct kvm *kvm,
652                                    struct kvm_memory_slot *memslot,
653                                    const struct kvm_userspace_memory_region *mem,
654                                    enum kvm_mr_change change)
655 {
656         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
657 }
658
659 void kvm_arch_commit_memory_region(struct kvm *kvm,
660                                    const struct kvm_userspace_memory_region *mem,
661                                    const struct kvm_memory_slot *old,
662                                    const struct kvm_memory_slot *new,
663                                    enum kvm_mr_change change)
664 {
665         kvmppc_core_commit_memory_region(kvm, mem, old, new);
666 }
667
668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
669                                    struct kvm_memory_slot *slot)
670 {
671         kvmppc_core_flush_memslot(kvm, slot);
672 }
673
674 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
675 {
676         struct kvm_vcpu *vcpu;
677         vcpu = kvmppc_core_vcpu_create(kvm, id);
678         if (!IS_ERR(vcpu)) {
679                 vcpu->arch.wqp = &vcpu->wq;
680                 kvmppc_create_vcpu_debugfs(vcpu, id);
681         }
682         return vcpu;
683 }
684
685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
686 {
687 }
688
689 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
690 {
691         /* Make sure we're not using the vcpu anymore */
692         hrtimer_cancel(&vcpu->arch.dec_timer);
693
694         kvmppc_remove_vcpu_debugfs(vcpu);
695
696         switch (vcpu->arch.irq_type) {
697         case KVMPPC_IRQ_MPIC:
698                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
699                 break;
700         case KVMPPC_IRQ_XICS:
701                 kvmppc_xics_free_icp(vcpu);
702                 break;
703         }
704
705         kvmppc_core_vcpu_free(vcpu);
706 }
707
708 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
709 {
710         kvm_arch_vcpu_free(vcpu);
711 }
712
713 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
714 {
715         return kvmppc_core_pending_dec(vcpu);
716 }
717
718 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
719 {
720         struct kvm_vcpu *vcpu;
721
722         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
723         kvmppc_decrementer_func(vcpu);
724
725         return HRTIMER_NORESTART;
726 }
727
728 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
729 {
730         int ret;
731
732         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
733         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
734         vcpu->arch.dec_expires = ~(u64)0;
735
736 #ifdef CONFIG_KVM_EXIT_TIMING
737         mutex_init(&vcpu->arch.exit_timing_lock);
738 #endif
739         ret = kvmppc_subarch_vcpu_init(vcpu);
740         return ret;
741 }
742
743 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
744 {
745         kvmppc_mmu_destroy(vcpu);
746         kvmppc_subarch_vcpu_uninit(vcpu);
747 }
748
749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
750 {
751 #ifdef CONFIG_BOOKE
752         /*
753          * vrsave (formerly usprg0) isn't used by Linux, but may
754          * be used by the guest.
755          *
756          * On non-booke this is associated with Altivec and
757          * is handled by code in book3s.c.
758          */
759         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
760 #endif
761         kvmppc_core_vcpu_load(vcpu, cpu);
762 }
763
764 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
765 {
766         kvmppc_core_vcpu_put(vcpu);
767 #ifdef CONFIG_BOOKE
768         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
769 #endif
770 }
771
772 /*
773  * irq_bypass_add_producer and irq_bypass_del_producer are only
774  * useful if the architecture supports PCI passthrough.
775  * irq_bypass_stop and irq_bypass_start are not needed and so
776  * kvm_ops are not defined for them.
777  */
778 bool kvm_arch_has_irq_bypass(void)
779 {
780         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
781                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
782 }
783
784 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
785                                      struct irq_bypass_producer *prod)
786 {
787         struct kvm_kernel_irqfd *irqfd =
788                 container_of(cons, struct kvm_kernel_irqfd, consumer);
789         struct kvm *kvm = irqfd->kvm;
790
791         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
792                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
793
794         return 0;
795 }
796
797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
798                                       struct irq_bypass_producer *prod)
799 {
800         struct kvm_kernel_irqfd *irqfd =
801                 container_of(cons, struct kvm_kernel_irqfd, consumer);
802         struct kvm *kvm = irqfd->kvm;
803
804         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
805                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
806 }
807
808 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
809                                       struct kvm_run *run)
810 {
811         u64 uninitialized_var(gpr);
812
813         if (run->mmio.len > sizeof(gpr)) {
814                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
815                 return;
816         }
817
818         if (!vcpu->arch.mmio_host_swabbed) {
819                 switch (run->mmio.len) {
820                 case 8: gpr = *(u64 *)run->mmio.data; break;
821                 case 4: gpr = *(u32 *)run->mmio.data; break;
822                 case 2: gpr = *(u16 *)run->mmio.data; break;
823                 case 1: gpr = *(u8 *)run->mmio.data; break;
824                 }
825         } else {
826                 switch (run->mmio.len) {
827                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
828                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
829                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
830                 case 1: gpr = *(u8 *)run->mmio.data; break;
831                 }
832         }
833
834         if (vcpu->arch.mmio_sign_extend) {
835                 switch (run->mmio.len) {
836 #ifdef CONFIG_PPC64
837                 case 4:
838                         gpr = (s64)(s32)gpr;
839                         break;
840 #endif
841                 case 2:
842                         gpr = (s64)(s16)gpr;
843                         break;
844                 case 1:
845                         gpr = (s64)(s8)gpr;
846                         break;
847                 }
848         }
849
850         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
851
852         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
853         case KVM_MMIO_REG_GPR:
854                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
855                 break;
856         case KVM_MMIO_REG_FPR:
857                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
858                 break;
859 #ifdef CONFIG_PPC_BOOK3S
860         case KVM_MMIO_REG_QPR:
861                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
862                 break;
863         case KVM_MMIO_REG_FQPR:
864                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
865                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
866                 break;
867 #endif
868         default:
869                 BUG();
870         }
871 }
872
873 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
874                                 unsigned int rt, unsigned int bytes,
875                                 int is_default_endian, int sign_extend)
876 {
877         int idx, ret;
878         bool host_swabbed;
879
880         /* Pity C doesn't have a logical XOR operator */
881         if (kvmppc_need_byteswap(vcpu)) {
882                 host_swabbed = is_default_endian;
883         } else {
884                 host_swabbed = !is_default_endian;
885         }
886
887         if (bytes > sizeof(run->mmio.data)) {
888                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
889                        run->mmio.len);
890         }
891
892         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
893         run->mmio.len = bytes;
894         run->mmio.is_write = 0;
895
896         vcpu->arch.io_gpr = rt;
897         vcpu->arch.mmio_host_swabbed = host_swabbed;
898         vcpu->mmio_needed = 1;
899         vcpu->mmio_is_write = 0;
900         vcpu->arch.mmio_sign_extend = sign_extend;
901
902         idx = srcu_read_lock(&vcpu->kvm->srcu);
903
904         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
905                               bytes, &run->mmio.data);
906
907         srcu_read_unlock(&vcpu->kvm->srcu, idx);
908
909         if (!ret) {
910                 kvmppc_complete_mmio_load(vcpu, run);
911                 vcpu->mmio_needed = 0;
912                 return EMULATE_DONE;
913         }
914
915         return EMULATE_DO_MMIO;
916 }
917
918 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
919                        unsigned int rt, unsigned int bytes,
920                        int is_default_endian)
921 {
922         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
923 }
924 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
925
926 /* Same as above, but sign extends */
927 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
928                         unsigned int rt, unsigned int bytes,
929                         int is_default_endian)
930 {
931         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
932 }
933
934 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
935                         u64 val, unsigned int bytes, int is_default_endian)
936 {
937         void *data = run->mmio.data;
938         int idx, ret;
939         bool host_swabbed;
940
941         /* Pity C doesn't have a logical XOR operator */
942         if (kvmppc_need_byteswap(vcpu)) {
943                 host_swabbed = is_default_endian;
944         } else {
945                 host_swabbed = !is_default_endian;
946         }
947
948         if (bytes > sizeof(run->mmio.data)) {
949                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
950                        run->mmio.len);
951         }
952
953         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
954         run->mmio.len = bytes;
955         run->mmio.is_write = 1;
956         vcpu->mmio_needed = 1;
957         vcpu->mmio_is_write = 1;
958
959         /* Store the value at the lowest bytes in 'data'. */
960         if (!host_swabbed) {
961                 switch (bytes) {
962                 case 8: *(u64 *)data = val; break;
963                 case 4: *(u32 *)data = val; break;
964                 case 2: *(u16 *)data = val; break;
965                 case 1: *(u8  *)data = val; break;
966                 }
967         } else {
968                 switch (bytes) {
969                 case 8: *(u64 *)data = swab64(val); break;
970                 case 4: *(u32 *)data = swab32(val); break;
971                 case 2: *(u16 *)data = swab16(val); break;
972                 case 1: *(u8  *)data = val; break;
973                 }
974         }
975
976         idx = srcu_read_lock(&vcpu->kvm->srcu);
977
978         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
979                                bytes, &run->mmio.data);
980
981         srcu_read_unlock(&vcpu->kvm->srcu, idx);
982
983         if (!ret) {
984                 vcpu->mmio_needed = 0;
985                 return EMULATE_DONE;
986         }
987
988         return EMULATE_DO_MMIO;
989 }
990 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
991
992 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
993 {
994         int r = 0;
995         union kvmppc_one_reg val;
996         int size;
997
998         size = one_reg_size(reg->id);
999         if (size > sizeof(val))
1000                 return -EINVAL;
1001
1002         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1003         if (r == -EINVAL) {
1004                 r = 0;
1005                 switch (reg->id) {
1006 #ifdef CONFIG_ALTIVEC
1007                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1008                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1009                                 r = -ENXIO;
1010                                 break;
1011                         }
1012                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1013                         break;
1014                 case KVM_REG_PPC_VSCR:
1015                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1016                                 r = -ENXIO;
1017                                 break;
1018                         }
1019                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1020                         break;
1021                 case KVM_REG_PPC_VRSAVE:
1022                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1023                         break;
1024 #endif /* CONFIG_ALTIVEC */
1025                 default:
1026                         r = -EINVAL;
1027                         break;
1028                 }
1029         }
1030
1031         if (r)
1032                 return r;
1033
1034         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1035                 r = -EFAULT;
1036
1037         return r;
1038 }
1039
1040 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1041 {
1042         int r;
1043         union kvmppc_one_reg val;
1044         int size;
1045
1046         size = one_reg_size(reg->id);
1047         if (size > sizeof(val))
1048                 return -EINVAL;
1049
1050         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1051                 return -EFAULT;
1052
1053         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1054         if (r == -EINVAL) {
1055                 r = 0;
1056                 switch (reg->id) {
1057 #ifdef CONFIG_ALTIVEC
1058                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1059                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1060                                 r = -ENXIO;
1061                                 break;
1062                         }
1063                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1064                         break;
1065                 case KVM_REG_PPC_VSCR:
1066                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1067                                 r = -ENXIO;
1068                                 break;
1069                         }
1070                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1071                         break;
1072                 case KVM_REG_PPC_VRSAVE:
1073                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1074                                 r = -ENXIO;
1075                                 break;
1076                         }
1077                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1078                         break;
1079 #endif /* CONFIG_ALTIVEC */
1080                 default:
1081                         r = -EINVAL;
1082                         break;
1083                 }
1084         }
1085
1086         return r;
1087 }
1088
1089 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1090 {
1091         int r;
1092         sigset_t sigsaved;
1093
1094         if (vcpu->sigset_active)
1095                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1096
1097         if (vcpu->mmio_needed) {
1098                 if (!vcpu->mmio_is_write)
1099                         kvmppc_complete_mmio_load(vcpu, run);
1100                 vcpu->mmio_needed = 0;
1101         } else if (vcpu->arch.osi_needed) {
1102                 u64 *gprs = run->osi.gprs;
1103                 int i;
1104
1105                 for (i = 0; i < 32; i++)
1106                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1107                 vcpu->arch.osi_needed = 0;
1108         } else if (vcpu->arch.hcall_needed) {
1109                 int i;
1110
1111                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1112                 for (i = 0; i < 9; ++i)
1113                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1114                 vcpu->arch.hcall_needed = 0;
1115 #ifdef CONFIG_BOOKE
1116         } else if (vcpu->arch.epr_needed) {
1117                 kvmppc_set_epr(vcpu, run->epr.epr);
1118                 vcpu->arch.epr_needed = 0;
1119 #endif
1120         }
1121
1122         if (run->immediate_exit)
1123                 r = -EINTR;
1124         else
1125                 r = kvmppc_vcpu_run(run, vcpu);
1126
1127         if (vcpu->sigset_active)
1128                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1129
1130         return r;
1131 }
1132
1133 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1134 {
1135         if (irq->irq == KVM_INTERRUPT_UNSET) {
1136                 kvmppc_core_dequeue_external(vcpu);
1137                 return 0;
1138         }
1139
1140         kvmppc_core_queue_external(vcpu, irq);
1141
1142         kvm_vcpu_kick(vcpu);
1143
1144         return 0;
1145 }
1146
1147 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1148                                      struct kvm_enable_cap *cap)
1149 {
1150         int r;
1151
1152         if (cap->flags)
1153                 return -EINVAL;
1154
1155         switch (cap->cap) {
1156         case KVM_CAP_PPC_OSI:
1157                 r = 0;
1158                 vcpu->arch.osi_enabled = true;
1159                 break;
1160         case KVM_CAP_PPC_PAPR:
1161                 r = 0;
1162                 vcpu->arch.papr_enabled = true;
1163                 break;
1164         case KVM_CAP_PPC_EPR:
1165                 r = 0;
1166                 if (cap->args[0])
1167                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1168                 else
1169                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1170                 break;
1171 #ifdef CONFIG_BOOKE
1172         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1173                 r = 0;
1174                 vcpu->arch.watchdog_enabled = true;
1175                 break;
1176 #endif
1177 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1178         case KVM_CAP_SW_TLB: {
1179                 struct kvm_config_tlb cfg;
1180                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1181
1182                 r = -EFAULT;
1183                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1184                         break;
1185
1186                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1187                 break;
1188         }
1189 #endif
1190 #ifdef CONFIG_KVM_MPIC
1191         case KVM_CAP_IRQ_MPIC: {
1192                 struct fd f;
1193                 struct kvm_device *dev;
1194
1195                 r = -EBADF;
1196                 f = fdget(cap->args[0]);
1197                 if (!f.file)
1198                         break;
1199
1200                 r = -EPERM;
1201                 dev = kvm_device_from_filp(f.file);
1202                 if (dev)
1203                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1204
1205                 fdput(f);
1206                 break;
1207         }
1208 #endif
1209 #ifdef CONFIG_KVM_XICS
1210         case KVM_CAP_IRQ_XICS: {
1211                 struct fd f;
1212                 struct kvm_device *dev;
1213
1214                 r = -EBADF;
1215                 f = fdget(cap->args[0]);
1216                 if (!f.file)
1217                         break;
1218
1219                 r = -EPERM;
1220                 dev = kvm_device_from_filp(f.file);
1221                 if (dev)
1222                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1223
1224                 fdput(f);
1225                 break;
1226         }
1227 #endif /* CONFIG_KVM_XICS */
1228         default:
1229                 r = -EINVAL;
1230                 break;
1231         }
1232
1233         if (!r)
1234                 r = kvmppc_sanity_check(vcpu);
1235
1236         return r;
1237 }
1238
1239 bool kvm_arch_intc_initialized(struct kvm *kvm)
1240 {
1241 #ifdef CONFIG_KVM_MPIC
1242         if (kvm->arch.mpic)
1243                 return true;
1244 #endif
1245 #ifdef CONFIG_KVM_XICS
1246         if (kvm->arch.xics)
1247                 return true;
1248 #endif
1249         return false;
1250 }
1251
1252 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1253                                     struct kvm_mp_state *mp_state)
1254 {
1255         return -EINVAL;
1256 }
1257
1258 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1259                                     struct kvm_mp_state *mp_state)
1260 {
1261         return -EINVAL;
1262 }
1263
1264 long kvm_arch_vcpu_ioctl(struct file *filp,
1265                          unsigned int ioctl, unsigned long arg)
1266 {
1267         struct kvm_vcpu *vcpu = filp->private_data;
1268         void __user *argp = (void __user *)arg;
1269         long r;
1270
1271         switch (ioctl) {
1272         case KVM_INTERRUPT: {
1273                 struct kvm_interrupt irq;
1274                 r = -EFAULT;
1275                 if (copy_from_user(&irq, argp, sizeof(irq)))
1276                         goto out;
1277                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1278                 goto out;
1279         }
1280
1281         case KVM_ENABLE_CAP:
1282         {
1283                 struct kvm_enable_cap cap;
1284                 r = -EFAULT;
1285                 if (copy_from_user(&cap, argp, sizeof(cap)))
1286                         goto out;
1287                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1288                 break;
1289         }
1290
1291         case KVM_SET_ONE_REG:
1292         case KVM_GET_ONE_REG:
1293         {
1294                 struct kvm_one_reg reg;
1295                 r = -EFAULT;
1296                 if (copy_from_user(&reg, argp, sizeof(reg)))
1297                         goto out;
1298                 if (ioctl == KVM_SET_ONE_REG)
1299                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1300                 else
1301                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1302                 break;
1303         }
1304
1305 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1306         case KVM_DIRTY_TLB: {
1307                 struct kvm_dirty_tlb dirty;
1308                 r = -EFAULT;
1309                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1310                         goto out;
1311                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1312                 break;
1313         }
1314 #endif
1315         default:
1316                 r = -EINVAL;
1317         }
1318
1319 out:
1320         return r;
1321 }
1322
1323 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1324 {
1325         return VM_FAULT_SIGBUS;
1326 }
1327
1328 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1329 {
1330         u32 inst_nop = 0x60000000;
1331 #ifdef CONFIG_KVM_BOOKE_HV
1332         u32 inst_sc1 = 0x44000022;
1333         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1334         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1335         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1336         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1337 #else
1338         u32 inst_lis = 0x3c000000;
1339         u32 inst_ori = 0x60000000;
1340         u32 inst_sc = 0x44000002;
1341         u32 inst_imm_mask = 0xffff;
1342
1343         /*
1344          * The hypercall to get into KVM from within guest context is as
1345          * follows:
1346          *
1347          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1348          *    ori r0, KVM_SC_MAGIC_R0@l
1349          *    sc
1350          *    nop
1351          */
1352         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1353         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1354         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1355         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1356 #endif
1357
1358         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1359
1360         return 0;
1361 }
1362
1363 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1364                           bool line_status)
1365 {
1366         if (!irqchip_in_kernel(kvm))
1367                 return -ENXIO;
1368
1369         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1370                                         irq_event->irq, irq_event->level,
1371                                         line_status);
1372         return 0;
1373 }
1374
1375
1376 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1377                                    struct kvm_enable_cap *cap)
1378 {
1379         int r;
1380
1381         if (cap->flags)
1382                 return -EINVAL;
1383
1384         switch (cap->cap) {
1385 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1386         case KVM_CAP_PPC_ENABLE_HCALL: {
1387                 unsigned long hcall = cap->args[0];
1388
1389                 r = -EINVAL;
1390                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1391                     cap->args[1] > 1)
1392                         break;
1393                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1394                         break;
1395                 if (cap->args[1])
1396                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1397                 else
1398                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1399                 r = 0;
1400                 break;
1401         }
1402 #endif
1403         default:
1404                 r = -EINVAL;
1405                 break;
1406         }
1407
1408         return r;
1409 }
1410
1411 long kvm_arch_vm_ioctl(struct file *filp,
1412                        unsigned int ioctl, unsigned long arg)
1413 {
1414         struct kvm *kvm __maybe_unused = filp->private_data;
1415         void __user *argp = (void __user *)arg;
1416         long r;
1417
1418         switch (ioctl) {
1419         case KVM_PPC_GET_PVINFO: {
1420                 struct kvm_ppc_pvinfo pvinfo;
1421                 memset(&pvinfo, 0, sizeof(pvinfo));
1422                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1423                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1424                         r = -EFAULT;
1425                         goto out;
1426                 }
1427
1428                 break;
1429         }
1430         case KVM_ENABLE_CAP:
1431         {
1432                 struct kvm_enable_cap cap;
1433                 r = -EFAULT;
1434                 if (copy_from_user(&cap, argp, sizeof(cap)))
1435                         goto out;
1436                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1437                 break;
1438         }
1439 #ifdef CONFIG_PPC_BOOK3S_64
1440         case KVM_CREATE_SPAPR_TCE_64: {
1441                 struct kvm_create_spapr_tce_64 create_tce_64;
1442
1443                 r = -EFAULT;
1444                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1445                         goto out;
1446                 if (create_tce_64.flags) {
1447                         r = -EINVAL;
1448                         goto out;
1449                 }
1450                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1451                 goto out;
1452         }
1453         case KVM_CREATE_SPAPR_TCE: {
1454                 struct kvm_create_spapr_tce create_tce;
1455                 struct kvm_create_spapr_tce_64 create_tce_64;
1456
1457                 r = -EFAULT;
1458                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1459                         goto out;
1460
1461                 create_tce_64.liobn = create_tce.liobn;
1462                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1463                 create_tce_64.offset = 0;
1464                 create_tce_64.size = create_tce.window_size >>
1465                                 IOMMU_PAGE_SHIFT_4K;
1466                 create_tce_64.flags = 0;
1467                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1468                 goto out;
1469         }
1470         case KVM_PPC_GET_SMMU_INFO: {
1471                 struct kvm_ppc_smmu_info info;
1472                 struct kvm *kvm = filp->private_data;
1473
1474                 memset(&info, 0, sizeof(info));
1475                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1476                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1477                         r = -EFAULT;
1478                 break;
1479         }
1480         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1481                 struct kvm *kvm = filp->private_data;
1482
1483                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1484                 break;
1485         }
1486         case KVM_PPC_CONFIGURE_V3_MMU: {
1487                 struct kvm *kvm = filp->private_data;
1488                 struct kvm_ppc_mmuv3_cfg cfg;
1489
1490                 r = -EINVAL;
1491                 if (!kvm->arch.kvm_ops->configure_mmu)
1492                         goto out;
1493                 r = -EFAULT;
1494                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1495                         goto out;
1496                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1497                 break;
1498         }
1499         case KVM_PPC_GET_RMMU_INFO: {
1500                 struct kvm *kvm = filp->private_data;
1501                 struct kvm_ppc_rmmu_info info;
1502
1503                 r = -EINVAL;
1504                 if (!kvm->arch.kvm_ops->get_rmmu_info)
1505                         goto out;
1506                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1507                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1508                         r = -EFAULT;
1509                 break;
1510         }
1511         default: {
1512                 struct kvm *kvm = filp->private_data;
1513                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1514         }
1515 #else /* CONFIG_PPC_BOOK3S_64 */
1516         default:
1517                 r = -ENOTTY;
1518 #endif
1519         }
1520 out:
1521         return r;
1522 }
1523
1524 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1525 static unsigned long nr_lpids;
1526
1527 long kvmppc_alloc_lpid(void)
1528 {
1529         long lpid;
1530
1531         do {
1532                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1533                 if (lpid >= nr_lpids) {
1534                         pr_err("%s: No LPIDs free\n", __func__);
1535                         return -ENOMEM;
1536                 }
1537         } while (test_and_set_bit(lpid, lpid_inuse));
1538
1539         return lpid;
1540 }
1541 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1542
1543 void kvmppc_claim_lpid(long lpid)
1544 {
1545         set_bit(lpid, lpid_inuse);
1546 }
1547 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1548
1549 void kvmppc_free_lpid(long lpid)
1550 {
1551         clear_bit(lpid, lpid_inuse);
1552 }
1553 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1554
1555 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1556 {
1557         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1558         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1559 }
1560 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1561
1562 int kvm_arch_init(void *opaque)
1563 {
1564         return 0;
1565 }
1566
1567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);