]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/dump_linuxpagetables.c
powerpc/mm: Fix page table dump build on non-Book3S
[karo-tx-linux.git] / arch / powerpc / mm / dump_linuxpagetables.c
1 /*
2  * Copyright 2016, Rashmica Gupta, IBM Corp.
3  *
4  * This traverses the kernel pagetables and dumps the
5  * information about the used sections of memory to
6  * /sys/kernel/debug/kernel_pagetables.
7  *
8  * Derived from the arm64 implementation:
9  * Copyright (c) 2014, The Linux Foundation, Laura Abbott.
10  * (C) Copyright 2008 Intel Corporation, Arjan van de Ven.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; version 2
15  * of the License.
16  */
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/io.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <asm/fixmap.h>
24 #include <asm/pgtable.h>
25 #include <linux/const.h>
26 #include <asm/page.h>
27 #include <asm/pgalloc.h>
28
29 /*
30  * To visualise what is happening,
31  *
32  *  - PTRS_PER_P** = how many entries there are in the corresponding P**
33  *  - P**_SHIFT = how many bits of the address we use to index into the
34  * corresponding P**
35  *  - P**_SIZE is how much memory we can access through the table - not the
36  * size of the table itself.
37  * P**={PGD, PUD, PMD, PTE}
38  *
39  *
40  * Each entry of the PGD points to a PUD. Each entry of a PUD points to a
41  * PMD. Each entry of a PMD points to a PTE. And every PTE entry points to
42  * a page.
43  *
44  * In the case where there are only 3 levels, the PUD is folded into the
45  * PGD: every PUD has only one entry which points to the PMD.
46  *
47  * The page dumper groups page table entries of the same type into a single
48  * description. It uses pg_state to track the range information while
49  * iterating over the PTE entries. When the continuity is broken it then
50  * dumps out a description of the range - ie PTEs that are virtually contiguous
51  * with the same PTE flags are chunked together. This is to make it clear how
52  * different areas of the kernel virtual memory are used.
53  *
54  */
55 struct pg_state {
56         struct seq_file *seq;
57         const struct addr_marker *marker;
58         unsigned long start_address;
59         unsigned int level;
60         u64 current_flags;
61 };
62
63 struct addr_marker {
64         unsigned long start_address;
65         const char *name;
66 };
67
68 static struct addr_marker address_markers[] = {
69         { 0,    "Start of kernel VM" },
70         { 0,    "vmalloc() Area" },
71         { 0,    "vmalloc() End" },
72         { 0,    "isa I/O start" },
73         { 0,    "isa I/O end" },
74         { 0,    "phb I/O start" },
75         { 0,    "phb I/O end" },
76         { 0,    "I/O remap start" },
77         { 0,    "I/O remap end" },
78         { 0,    "vmemmap start" },
79         { -1,   NULL },
80 };
81
82 struct flag_info {
83         u64             mask;
84         u64             val;
85         const char      *set;
86         const char      *clear;
87         bool            is_val;
88         int             shift;
89 };
90
91 static const struct flag_info flag_array[] = {
92         {
93 #ifdef CONFIG_PPC_STD_MMU_64
94                 .mask   = _PAGE_PRIVILEGED,
95                 .val    = 0,
96 #else
97                 .mask   = _PAGE_USER,
98                 .val    = _PAGE_USER,
99 #endif
100                 .set    = "user",
101                 .clear  = "    ",
102         }, {
103                 .mask   = _PAGE_RW,
104                 .val    = _PAGE_RW,
105                 .set    = "rw",
106                 .clear  = "ro",
107         }, {
108                 .mask   = _PAGE_EXEC,
109                 .val    = _PAGE_EXEC,
110                 .set    = " X ",
111                 .clear  = "   ",
112         }, {
113                 .mask   = _PAGE_PTE,
114                 .val    = _PAGE_PTE,
115                 .set    = "pte",
116                 .clear  = "   ",
117         }, {
118                 .mask   = _PAGE_PRESENT,
119                 .val    = _PAGE_PRESENT,
120                 .set    = "present",
121                 .clear  = "       ",
122         }, {
123 #ifdef CONFIG_PPC_STD_MMU_64
124                 .mask   = H_PAGE_HASHPTE,
125                 .val    = H_PAGE_HASHPTE,
126 #else
127                 .mask   = _PAGE_HASHPTE,
128                 .val    = _PAGE_HASHPTE,
129 #endif
130                 .set    = "hpte",
131                 .clear  = "    ",
132         }, {
133 #ifndef CONFIG_PPC_STD_MMU_64
134                 .mask   = _PAGE_GUARDED,
135                 .val    = _PAGE_GUARDED,
136                 .set    = "guarded",
137                 .clear  = "       ",
138         }, {
139 #endif
140                 .mask   = _PAGE_DIRTY,
141                 .val    = _PAGE_DIRTY,
142                 .set    = "dirty",
143                 .clear  = "     ",
144         }, {
145                 .mask   = _PAGE_ACCESSED,
146                 .val    = _PAGE_ACCESSED,
147                 .set    = "accessed",
148                 .clear  = "        ",
149         }, {
150 #ifndef CONFIG_PPC_STD_MMU_64
151                 .mask   = _PAGE_WRITETHRU,
152                 .val    = _PAGE_WRITETHRU,
153                 .set    = "write through",
154                 .clear  = "             ",
155         }, {
156 #endif
157                 .mask   = _PAGE_NO_CACHE,
158                 .val    = _PAGE_NO_CACHE,
159                 .set    = "no cache",
160                 .clear  = "        ",
161         }, {
162 #ifdef CONFIG_PPC_BOOK3S_64
163                 .mask   = H_PAGE_BUSY,
164                 .val    = H_PAGE_BUSY,
165                 .set    = "busy",
166         }, {
167 #ifdef CONFIG_PPC_64K_PAGES
168                 .mask   = H_PAGE_COMBO,
169                 .val    = H_PAGE_COMBO,
170                 .set    = "combo",
171         }, {
172                 .mask   = H_PAGE_4K_PFN,
173                 .val    = H_PAGE_4K_PFN,
174                 .set    = "4K_pfn",
175         }, {
176 #endif
177                 .mask   = H_PAGE_F_GIX,
178                 .val    = H_PAGE_F_GIX,
179                 .set    = "f_gix",
180                 .is_val = true,
181                 .shift  = H_PAGE_F_GIX_SHIFT,
182         }, {
183                 .mask   = H_PAGE_F_SECOND,
184                 .val    = H_PAGE_F_SECOND,
185                 .set    = "f_second",
186         }, {
187 #endif
188                 .mask   = _PAGE_SPECIAL,
189                 .val    = _PAGE_SPECIAL,
190                 .set    = "special",
191         }
192 };
193
194 struct pgtable_level {
195         const struct flag_info *flag;
196         size_t num;
197         u64 mask;
198 };
199
200 static struct pgtable_level pg_level[] = {
201         {
202         }, { /* pgd */
203                 .flag   = flag_array,
204                 .num    = ARRAY_SIZE(flag_array),
205         }, { /* pud */
206                 .flag   = flag_array,
207                 .num    = ARRAY_SIZE(flag_array),
208         }, { /* pmd */
209                 .flag   = flag_array,
210                 .num    = ARRAY_SIZE(flag_array),
211         }, { /* pte */
212                 .flag   = flag_array,
213                 .num    = ARRAY_SIZE(flag_array),
214         },
215 };
216
217 static void dump_flag_info(struct pg_state *st, const struct flag_info
218                 *flag, u64 pte, int num)
219 {
220         unsigned int i;
221
222         for (i = 0; i < num; i++, flag++) {
223                 const char *s = NULL;
224                 u64 val;
225
226                 /* flag not defined so don't check it */
227                 if (flag->mask == 0)
228                         continue;
229                 /* Some 'flags' are actually values */
230                 if (flag->is_val) {
231                         val = pte & flag->val;
232                         if (flag->shift)
233                                 val = val >> flag->shift;
234                         seq_printf(st->seq, "  %s:%llx", flag->set, val);
235                 } else {
236                         if ((pte & flag->mask) == flag->val)
237                                 s = flag->set;
238                         else
239                                 s = flag->clear;
240                         if (s)
241                                 seq_printf(st->seq, "  %s", s);
242                 }
243                 st->current_flags &= ~flag->mask;
244         }
245         if (st->current_flags != 0)
246                 seq_printf(st->seq, "  unknown flags:%llx", st->current_flags);
247 }
248
249 static void dump_addr(struct pg_state *st, unsigned long addr)
250 {
251         static const char units[] = "KMGTPE";
252         const char *unit = units;
253         unsigned long delta;
254
255         seq_printf(st->seq, "0x%016lx-0x%016lx   ", st->start_address, addr-1);
256         delta = (addr - st->start_address) >> 10;
257         /* Work out what appropriate unit to use */
258         while (!(delta & 1023) && unit[1]) {
259                 delta >>= 10;
260                 unit++;
261         }
262         seq_printf(st->seq, "%9lu%c", delta, *unit);
263
264 }
265
266 static void note_page(struct pg_state *st, unsigned long addr,
267                unsigned int level, u64 val)
268 {
269         u64 flag = val & pg_level[level].mask;
270         /* At first no level is set */
271         if (!st->level) {
272                 st->level = level;
273                 st->current_flags = flag;
274                 st->start_address = addr;
275                 seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
276         /*
277          * Dump the section of virtual memory when:
278          *   - the PTE flags from one entry to the next differs.
279          *   - we change levels in the tree.
280          *   - the address is in a different section of memory and is thus
281          *   used for a different purpose, regardless of the flags.
282          */
283         } else if (flag != st->current_flags || level != st->level ||
284                    addr >= st->marker[1].start_address) {
285
286                 /* Check the PTE flags */
287                 if (st->current_flags) {
288                         dump_addr(st, addr);
289
290                         /* Dump all the flags */
291                         if (pg_level[st->level].flag)
292                                 dump_flag_info(st, pg_level[st->level].flag,
293                                           st->current_flags,
294                                           pg_level[st->level].num);
295
296                         seq_puts(st->seq, "\n");
297                 }
298
299                 /*
300                  * Address indicates we have passed the end of the
301                  * current section of virtual memory
302                  */
303                 while (addr >= st->marker[1].start_address) {
304                         st->marker++;
305                         seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
306                 }
307                 st->start_address = addr;
308                 st->current_flags = flag;
309                 st->level = level;
310         }
311 }
312
313 static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
314 {
315         pte_t *pte = pte_offset_kernel(pmd, 0);
316         unsigned long addr;
317         unsigned int i;
318
319         for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
320                 addr = start + i * PAGE_SIZE;
321                 note_page(st, addr, 4, pte_val(*pte));
322
323         }
324 }
325
326 static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
327 {
328         pmd_t *pmd = pmd_offset(pud, 0);
329         unsigned long addr;
330         unsigned int i;
331
332         for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
333                 addr = start + i * PMD_SIZE;
334                 if (!pmd_none(*pmd))
335                         /* pmd exists */
336                         walk_pte(st, pmd, addr);
337                 else
338                         note_page(st, addr, 3, pmd_val(*pmd));
339         }
340 }
341
342 static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
343 {
344         pud_t *pud = pud_offset(pgd, 0);
345         unsigned long addr;
346         unsigned int i;
347
348         for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
349                 addr = start + i * PUD_SIZE;
350                 if (!pud_none(*pud))
351                         /* pud exists */
352                         walk_pmd(st, pud, addr);
353                 else
354                         note_page(st, addr, 2, pud_val(*pud));
355         }
356 }
357
358 static void walk_pagetables(struct pg_state *st)
359 {
360         pgd_t *pgd = pgd_offset_k(0UL);
361         unsigned int i;
362         unsigned long addr;
363
364         /*
365          * Traverse the linux pagetable structure and dump pages that are in
366          * the hash pagetable.
367          */
368         for (i = 0; i < PTRS_PER_PGD; i++, pgd++) {
369                 addr = KERN_VIRT_START + i * PGDIR_SIZE;
370                 if (!pgd_none(*pgd))
371                         /* pgd exists */
372                         walk_pud(st, pgd, addr);
373                 else
374                         note_page(st, addr, 1, pgd_val(*pgd));
375         }
376 }
377
378 static void populate_markers(void)
379 {
380         address_markers[0].start_address = PAGE_OFFSET;
381         address_markers[1].start_address = VMALLOC_START;
382         address_markers[2].start_address = VMALLOC_END;
383         address_markers[3].start_address = ISA_IO_BASE;
384         address_markers[4].start_address = ISA_IO_END;
385         address_markers[5].start_address = PHB_IO_BASE;
386         address_markers[6].start_address = PHB_IO_END;
387         address_markers[7].start_address = IOREMAP_BASE;
388         address_markers[8].start_address = IOREMAP_END;
389 #ifdef CONFIG_PPC_STD_MMU_64
390         address_markers[9].start_address =  H_VMEMMAP_BASE;
391 #else
392         address_markers[9].start_address =  VMEMMAP_BASE;
393 #endif
394 }
395
396 static int ptdump_show(struct seq_file *m, void *v)
397 {
398         struct pg_state st = {
399                 .seq = m,
400                 .start_address = KERN_VIRT_START,
401                 .marker = address_markers,
402         };
403         /* Traverse kernel page tables */
404         walk_pagetables(&st);
405         note_page(&st, 0, 0, 0);
406         return 0;
407 }
408
409
410 static int ptdump_open(struct inode *inode, struct file *file)
411 {
412         return single_open(file, ptdump_show, NULL);
413 }
414
415 static const struct file_operations ptdump_fops = {
416         .open           = ptdump_open,
417         .read           = seq_read,
418         .llseek         = seq_lseek,
419         .release        = single_release,
420 };
421
422 static void build_pgtable_complete_mask(void)
423 {
424         unsigned int i, j;
425
426         for (i = 0; i < ARRAY_SIZE(pg_level); i++)
427                 if (pg_level[i].flag)
428                         for (j = 0; j < pg_level[i].num; j++)
429                                 pg_level[i].mask |= pg_level[i].flag[j].mask;
430 }
431
432 static int ptdump_init(void)
433 {
434         struct dentry *debugfs_file;
435
436         populate_markers();
437         build_pgtable_complete_mask();
438         debugfs_file = debugfs_create_file("kernel_pagetables", 0400, NULL,
439                         NULL, &ptdump_fops);
440         return debugfs_file ? 0 : -ENOMEM;
441 }
442 device_initcall(ptdump_init);