]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/hash_utils_64.c
Merge tag 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/abs_addr.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/spu.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76
77 /*
78  * Note:  pte   --> Linux PTE
79  *        HPTE  --> PowerPC Hashed Page Table Entry
80  *
81  * Execution context:
82  *   htab_initialize is called with the MMU off (of course), but
83  *   the kernel has been copied down to zero so it can directly
84  *   reference global data.  At this point it is very difficult
85  *   to print debug info.
86  *
87  */
88
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119
120 /* There are definitions of page sizes arrays to be used when none
121  * is provided by the firmware.
122  */
123
124 /* Pre-POWER4 CPUs (4k pages only)
125  */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127         [MMU_PAGE_4K] = {
128                 .shift  = 12,
129                 .sllp   = 0,
130                 .penc   = 0,
131                 .avpnm  = 0,
132                 .tlbiel = 0,
133         },
134 };
135
136 /* POWER4, GPUL, POWER5
137  *
138  * Support for 16Mb large pages
139  */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141         [MMU_PAGE_4K] = {
142                 .shift  = 12,
143                 .sllp   = 0,
144                 .penc   = 0,
145                 .avpnm  = 0,
146                 .tlbiel = 1,
147         },
148         [MMU_PAGE_16M] = {
149                 .shift  = 24,
150                 .sllp   = SLB_VSID_L,
151                 .penc   = 0,
152                 .avpnm  = 0x1UL,
153                 .tlbiel = 0,
154         },
155 };
156
157 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
158 {
159         unsigned long rflags = pteflags & 0x1fa;
160
161         /* _PAGE_EXEC -> NOEXEC */
162         if ((pteflags & _PAGE_EXEC) == 0)
163                 rflags |= HPTE_R_N;
164
165         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
166          * need to add in 0x1 if it's a read-only user page
167          */
168         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
169                                          (pteflags & _PAGE_DIRTY)))
170                 rflags |= 1;
171
172         /* Always add C */
173         return rflags | HPTE_R_C;
174 }
175
176 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
177                       unsigned long pstart, unsigned long prot,
178                       int psize, int ssize)
179 {
180         unsigned long vaddr, paddr;
181         unsigned int step, shift;
182         int ret = 0;
183
184         shift = mmu_psize_defs[psize].shift;
185         step = 1 << shift;
186
187         prot = htab_convert_pte_flags(prot);
188
189         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
190             vstart, vend, pstart, prot, psize, ssize);
191
192         for (vaddr = vstart, paddr = pstart; vaddr < vend;
193              vaddr += step, paddr += step) {
194                 unsigned long hash, hpteg;
195                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
196                 unsigned long va = hpt_va(vaddr, vsid, ssize);
197                 unsigned long tprot = prot;
198
199                 /* Make kernel text executable */
200                 if (overlaps_kernel_text(vaddr, vaddr + step))
201                         tprot &= ~HPTE_R_N;
202
203                 hash = hpt_hash(va, shift, ssize);
204                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
205
206                 BUG_ON(!ppc_md.hpte_insert);
207                 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
208                                          HPTE_V_BOLTED, psize, ssize);
209
210                 if (ret < 0)
211                         break;
212 #ifdef CONFIG_DEBUG_PAGEALLOC
213                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
214                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
215 #endif /* CONFIG_DEBUG_PAGEALLOC */
216         }
217         return ret < 0 ? ret : 0;
218 }
219
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
222                       int psize, int ssize)
223 {
224         unsigned long vaddr;
225         unsigned int step, shift;
226
227         shift = mmu_psize_defs[psize].shift;
228         step = 1 << shift;
229
230         if (!ppc_md.hpte_removebolted) {
231                 printk(KERN_WARNING "Platform doesn't implement "
232                                 "hpte_removebolted\n");
233                 return -EINVAL;
234         }
235
236         for (vaddr = vstart; vaddr < vend; vaddr += step)
237                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
238
239         return 0;
240 }
241 #endif /* CONFIG_MEMORY_HOTPLUG */
242
243 static int __init htab_dt_scan_seg_sizes(unsigned long node,
244                                          const char *uname, int depth,
245                                          void *data)
246 {
247         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
248         u32 *prop;
249         unsigned long size = 0;
250
251         /* We are scanning "cpu" nodes only */
252         if (type == NULL || strcmp(type, "cpu") != 0)
253                 return 0;
254
255         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
256                                           &size);
257         if (prop == NULL)
258                 return 0;
259         for (; size >= 4; size -= 4, ++prop) {
260                 if (prop[0] == 40) {
261                         DBG("1T segment support detected\n");
262                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
263                         return 1;
264                 }
265         }
266         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
267         return 0;
268 }
269
270 static void __init htab_init_seg_sizes(void)
271 {
272         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
273 }
274
275 static int __init htab_dt_scan_page_sizes(unsigned long node,
276                                           const char *uname, int depth,
277                                           void *data)
278 {
279         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
280         u32 *prop;
281         unsigned long size = 0;
282
283         /* We are scanning "cpu" nodes only */
284         if (type == NULL || strcmp(type, "cpu") != 0)
285                 return 0;
286
287         prop = (u32 *)of_get_flat_dt_prop(node,
288                                           "ibm,segment-page-sizes", &size);
289         if (prop != NULL) {
290                 DBG("Page sizes from device-tree:\n");
291                 size /= 4;
292                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
293                 while(size > 0) {
294                         unsigned int shift = prop[0];
295                         unsigned int slbenc = prop[1];
296                         unsigned int lpnum = prop[2];
297                         unsigned int lpenc = 0;
298                         struct mmu_psize_def *def;
299                         int idx = -1;
300
301                         size -= 3; prop += 3;
302                         while(size > 0 && lpnum) {
303                                 if (prop[0] == shift)
304                                         lpenc = prop[1];
305                                 prop += 2; size -= 2;
306                                 lpnum--;
307                         }
308                         switch(shift) {
309                         case 0xc:
310                                 idx = MMU_PAGE_4K;
311                                 break;
312                         case 0x10:
313                                 idx = MMU_PAGE_64K;
314                                 break;
315                         case 0x14:
316                                 idx = MMU_PAGE_1M;
317                                 break;
318                         case 0x18:
319                                 idx = MMU_PAGE_16M;
320                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
321                                 break;
322                         case 0x22:
323                                 idx = MMU_PAGE_16G;
324                                 break;
325                         }
326                         if (idx < 0)
327                                 continue;
328                         def = &mmu_psize_defs[idx];
329                         def->shift = shift;
330                         if (shift <= 23)
331                                 def->avpnm = 0;
332                         else
333                                 def->avpnm = (1 << (shift - 23)) - 1;
334                         def->sllp = slbenc;
335                         def->penc = lpenc;
336                         /* We don't know for sure what's up with tlbiel, so
337                          * for now we only set it for 4K and 64K pages
338                          */
339                         if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
340                                 def->tlbiel = 1;
341                         else
342                                 def->tlbiel = 0;
343
344                         DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
345                             "tlbiel=%d, penc=%d\n",
346                             idx, shift, def->sllp, def->avpnm, def->tlbiel,
347                             def->penc);
348                 }
349                 return 1;
350         }
351         return 0;
352 }
353
354 #ifdef CONFIG_HUGETLB_PAGE
355 /* Scan for 16G memory blocks that have been set aside for huge pages
356  * and reserve those blocks for 16G huge pages.
357  */
358 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
359                                         const char *uname, int depth,
360                                         void *data) {
361         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
362         unsigned long *addr_prop;
363         u32 *page_count_prop;
364         unsigned int expected_pages;
365         long unsigned int phys_addr;
366         long unsigned int block_size;
367
368         /* We are scanning "memory" nodes only */
369         if (type == NULL || strcmp(type, "memory") != 0)
370                 return 0;
371
372         /* This property is the log base 2 of the number of virtual pages that
373          * will represent this memory block. */
374         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
375         if (page_count_prop == NULL)
376                 return 0;
377         expected_pages = (1 << page_count_prop[0]);
378         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
379         if (addr_prop == NULL)
380                 return 0;
381         phys_addr = addr_prop[0];
382         block_size = addr_prop[1];
383         if (block_size != (16 * GB))
384                 return 0;
385         printk(KERN_INFO "Huge page(16GB) memory: "
386                         "addr = 0x%lX size = 0x%lX pages = %d\n",
387                         phys_addr, block_size, expected_pages);
388         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
389                 memblock_reserve(phys_addr, block_size * expected_pages);
390                 add_gpage(phys_addr, block_size, expected_pages);
391         }
392         return 0;
393 }
394 #endif /* CONFIG_HUGETLB_PAGE */
395
396 static void __init htab_init_page_sizes(void)
397 {
398         int rc;
399
400         /* Default to 4K pages only */
401         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
402                sizeof(mmu_psize_defaults_old));
403
404         /*
405          * Try to find the available page sizes in the device-tree
406          */
407         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
408         if (rc != 0)  /* Found */
409                 goto found;
410
411         /*
412          * Not in the device-tree, let's fallback on known size
413          * list for 16M capable GP & GR
414          */
415         if (mmu_has_feature(MMU_FTR_16M_PAGE))
416                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
417                        sizeof(mmu_psize_defaults_gp));
418  found:
419 #ifndef CONFIG_DEBUG_PAGEALLOC
420         /*
421          * Pick a size for the linear mapping. Currently, we only support
422          * 16M, 1M and 4K which is the default
423          */
424         if (mmu_psize_defs[MMU_PAGE_16M].shift)
425                 mmu_linear_psize = MMU_PAGE_16M;
426         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
427                 mmu_linear_psize = MMU_PAGE_1M;
428 #endif /* CONFIG_DEBUG_PAGEALLOC */
429
430 #ifdef CONFIG_PPC_64K_PAGES
431         /*
432          * Pick a size for the ordinary pages. Default is 4K, we support
433          * 64K for user mappings and vmalloc if supported by the processor.
434          * We only use 64k for ioremap if the processor
435          * (and firmware) support cache-inhibited large pages.
436          * If not, we use 4k and set mmu_ci_restrictions so that
437          * hash_page knows to switch processes that use cache-inhibited
438          * mappings to 4k pages.
439          */
440         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
441                 mmu_virtual_psize = MMU_PAGE_64K;
442                 mmu_vmalloc_psize = MMU_PAGE_64K;
443                 if (mmu_linear_psize == MMU_PAGE_4K)
444                         mmu_linear_psize = MMU_PAGE_64K;
445                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
446                         /*
447                          * Don't use 64k pages for ioremap on pSeries, since
448                          * that would stop us accessing the HEA ethernet.
449                          */
450                         if (!machine_is(pseries))
451                                 mmu_io_psize = MMU_PAGE_64K;
452                 } else
453                         mmu_ci_restrictions = 1;
454         }
455 #endif /* CONFIG_PPC_64K_PAGES */
456
457 #ifdef CONFIG_SPARSEMEM_VMEMMAP
458         /* We try to use 16M pages for vmemmap if that is supported
459          * and we have at least 1G of RAM at boot
460          */
461         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
462             memblock_phys_mem_size() >= 0x40000000)
463                 mmu_vmemmap_psize = MMU_PAGE_16M;
464         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
465                 mmu_vmemmap_psize = MMU_PAGE_64K;
466         else
467                 mmu_vmemmap_psize = MMU_PAGE_4K;
468 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
469
470         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
471                "virtual = %d, io = %d"
472 #ifdef CONFIG_SPARSEMEM_VMEMMAP
473                ", vmemmap = %d"
474 #endif
475                "\n",
476                mmu_psize_defs[mmu_linear_psize].shift,
477                mmu_psize_defs[mmu_virtual_psize].shift,
478                mmu_psize_defs[mmu_io_psize].shift
479 #ifdef CONFIG_SPARSEMEM_VMEMMAP
480                ,mmu_psize_defs[mmu_vmemmap_psize].shift
481 #endif
482                );
483
484 #ifdef CONFIG_HUGETLB_PAGE
485         /* Reserve 16G huge page memory sections for huge pages */
486         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
487 #endif /* CONFIG_HUGETLB_PAGE */
488 }
489
490 static int __init htab_dt_scan_pftsize(unsigned long node,
491                                        const char *uname, int depth,
492                                        void *data)
493 {
494         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
495         u32 *prop;
496
497         /* We are scanning "cpu" nodes only */
498         if (type == NULL || strcmp(type, "cpu") != 0)
499                 return 0;
500
501         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
502         if (prop != NULL) {
503                 /* pft_size[0] is the NUMA CEC cookie */
504                 ppc64_pft_size = prop[1];
505                 return 1;
506         }
507         return 0;
508 }
509
510 static unsigned long __init htab_get_table_size(void)
511 {
512         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
513
514         /* If hash size isn't already provided by the platform, we try to
515          * retrieve it from the device-tree. If it's not there neither, we
516          * calculate it now based on the total RAM size
517          */
518         if (ppc64_pft_size == 0)
519                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
520         if (ppc64_pft_size)
521                 return 1UL << ppc64_pft_size;
522
523         /* round mem_size up to next power of 2 */
524         mem_size = memblock_phys_mem_size();
525         rnd_mem_size = 1UL << __ilog2(mem_size);
526         if (rnd_mem_size < mem_size)
527                 rnd_mem_size <<= 1;
528
529         /* # pages / 2 */
530         psize = mmu_psize_defs[mmu_virtual_psize].shift;
531         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
532
533         return pteg_count << 7;
534 }
535
536 #ifdef CONFIG_MEMORY_HOTPLUG
537 int create_section_mapping(unsigned long start, unsigned long end)
538 {
539         return htab_bolt_mapping(start, end, __pa(start),
540                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
541                                  mmu_kernel_ssize);
542 }
543
544 int remove_section_mapping(unsigned long start, unsigned long end)
545 {
546         return htab_remove_mapping(start, end, mmu_linear_psize,
547                         mmu_kernel_ssize);
548 }
549 #endif /* CONFIG_MEMORY_HOTPLUG */
550
551 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
552
553 static void __init htab_finish_init(void)
554 {
555         extern unsigned int *htab_call_hpte_insert1;
556         extern unsigned int *htab_call_hpte_insert2;
557         extern unsigned int *htab_call_hpte_remove;
558         extern unsigned int *htab_call_hpte_updatepp;
559
560 #ifdef CONFIG_PPC_HAS_HASH_64K
561         extern unsigned int *ht64_call_hpte_insert1;
562         extern unsigned int *ht64_call_hpte_insert2;
563         extern unsigned int *ht64_call_hpte_remove;
564         extern unsigned int *ht64_call_hpte_updatepp;
565
566         patch_branch(ht64_call_hpte_insert1,
567                 FUNCTION_TEXT(ppc_md.hpte_insert),
568                 BRANCH_SET_LINK);
569         patch_branch(ht64_call_hpte_insert2,
570                 FUNCTION_TEXT(ppc_md.hpte_insert),
571                 BRANCH_SET_LINK);
572         patch_branch(ht64_call_hpte_remove,
573                 FUNCTION_TEXT(ppc_md.hpte_remove),
574                 BRANCH_SET_LINK);
575         patch_branch(ht64_call_hpte_updatepp,
576                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
577                 BRANCH_SET_LINK);
578
579 #endif /* CONFIG_PPC_HAS_HASH_64K */
580
581         patch_branch(htab_call_hpte_insert1,
582                 FUNCTION_TEXT(ppc_md.hpte_insert),
583                 BRANCH_SET_LINK);
584         patch_branch(htab_call_hpte_insert2,
585                 FUNCTION_TEXT(ppc_md.hpte_insert),
586                 BRANCH_SET_LINK);
587         patch_branch(htab_call_hpte_remove,
588                 FUNCTION_TEXT(ppc_md.hpte_remove),
589                 BRANCH_SET_LINK);
590         patch_branch(htab_call_hpte_updatepp,
591                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
592                 BRANCH_SET_LINK);
593 }
594
595 static void __init htab_initialize(void)
596 {
597         unsigned long table;
598         unsigned long pteg_count;
599         unsigned long prot;
600         unsigned long base = 0, size = 0, limit;
601         struct memblock_region *reg;
602
603         DBG(" -> htab_initialize()\n");
604
605         /* Initialize segment sizes */
606         htab_init_seg_sizes();
607
608         /* Initialize page sizes */
609         htab_init_page_sizes();
610
611         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
612                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
613                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
614                 printk(KERN_INFO "Using 1TB segments\n");
615         }
616
617         /*
618          * Calculate the required size of the htab.  We want the number of
619          * PTEGs to equal one half the number of real pages.
620          */ 
621         htab_size_bytes = htab_get_table_size();
622         pteg_count = htab_size_bytes >> 7;
623
624         htab_hash_mask = pteg_count - 1;
625
626         if (firmware_has_feature(FW_FEATURE_LPAR)) {
627                 /* Using a hypervisor which owns the htab */
628                 htab_address = NULL;
629                 _SDR1 = 0; 
630 #ifdef CONFIG_FA_DUMP
631                 /*
632                  * If firmware assisted dump is active firmware preserves
633                  * the contents of htab along with entire partition memory.
634                  * Clear the htab if firmware assisted dump is active so
635                  * that we dont end up using old mappings.
636                  */
637                 if (is_fadump_active() && ppc_md.hpte_clear_all)
638                         ppc_md.hpte_clear_all();
639 #endif
640         } else {
641                 /* Find storage for the HPT.  Must be contiguous in
642                  * the absolute address space. On cell we want it to be
643                  * in the first 2 Gig so we can use it for IOMMU hacks.
644                  */
645                 if (machine_is(cell))
646                         limit = 0x80000000;
647                 else
648                         limit = MEMBLOCK_ALLOC_ANYWHERE;
649
650                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
651
652                 DBG("Hash table allocated at %lx, size: %lx\n", table,
653                     htab_size_bytes);
654
655                 htab_address = abs_to_virt(table);
656
657                 /* htab absolute addr + encoded htabsize */
658                 _SDR1 = table + __ilog2(pteg_count) - 11;
659
660                 /* Initialize the HPT with no entries */
661                 memset((void *)table, 0, htab_size_bytes);
662
663                 /* Set SDR1 */
664                 mtspr(SPRN_SDR1, _SDR1);
665         }
666
667         prot = pgprot_val(PAGE_KERNEL);
668
669 #ifdef CONFIG_DEBUG_PAGEALLOC
670         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
671         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
672                                                     1, ppc64_rma_size));
673         memset(linear_map_hash_slots, 0, linear_map_hash_count);
674 #endif /* CONFIG_DEBUG_PAGEALLOC */
675
676         /* On U3 based machines, we need to reserve the DART area and
677          * _NOT_ map it to avoid cache paradoxes as it's remapped non
678          * cacheable later on
679          */
680
681         /* create bolted the linear mapping in the hash table */
682         for_each_memblock(memory, reg) {
683                 base = (unsigned long)__va(reg->base);
684                 size = reg->size;
685
686                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
687                     base, size, prot);
688
689 #ifdef CONFIG_U3_DART
690                 /* Do not map the DART space. Fortunately, it will be aligned
691                  * in such a way that it will not cross two memblock regions and
692                  * will fit within a single 16Mb page.
693                  * The DART space is assumed to be a full 16Mb region even if
694                  * we only use 2Mb of that space. We will use more of it later
695                  * for AGP GART. We have to use a full 16Mb large page.
696                  */
697                 DBG("DART base: %lx\n", dart_tablebase);
698
699                 if (dart_tablebase != 0 && dart_tablebase >= base
700                     && dart_tablebase < (base + size)) {
701                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
702                         if (base != dart_tablebase)
703                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
704                                                         __pa(base), prot,
705                                                         mmu_linear_psize,
706                                                         mmu_kernel_ssize));
707                         if ((base + size) > dart_table_end)
708                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
709                                                         base + size,
710                                                         __pa(dart_table_end),
711                                                          prot,
712                                                          mmu_linear_psize,
713                                                          mmu_kernel_ssize));
714                         continue;
715                 }
716 #endif /* CONFIG_U3_DART */
717                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
718                                 prot, mmu_linear_psize, mmu_kernel_ssize));
719         }
720         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
721
722         /*
723          * If we have a memory_limit and we've allocated TCEs then we need to
724          * explicitly map the TCE area at the top of RAM. We also cope with the
725          * case that the TCEs start below memory_limit.
726          * tce_alloc_start/end are 16MB aligned so the mapping should work
727          * for either 4K or 16MB pages.
728          */
729         if (tce_alloc_start) {
730                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
731                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
732
733                 if (base + size >= tce_alloc_start)
734                         tce_alloc_start = base + size + 1;
735
736                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
737                                          __pa(tce_alloc_start), prot,
738                                          mmu_linear_psize, mmu_kernel_ssize));
739         }
740
741         htab_finish_init();
742
743         DBG(" <- htab_initialize()\n");
744 }
745 #undef KB
746 #undef MB
747
748 void __init early_init_mmu(void)
749 {
750         /* Setup initial STAB address in the PACA */
751         get_paca()->stab_real = __pa((u64)&initial_stab);
752         get_paca()->stab_addr = (u64)&initial_stab;
753
754         /* Initialize the MMU Hash table and create the linear mapping
755          * of memory. Has to be done before stab/slb initialization as
756          * this is currently where the page size encoding is obtained
757          */
758         htab_initialize();
759
760         /* Initialize stab / SLB management */
761         if (mmu_has_feature(MMU_FTR_SLB))
762                 slb_initialize();
763 }
764
765 #ifdef CONFIG_SMP
766 void __cpuinit early_init_mmu_secondary(void)
767 {
768         /* Initialize hash table for that CPU */
769         if (!firmware_has_feature(FW_FEATURE_LPAR))
770                 mtspr(SPRN_SDR1, _SDR1);
771
772         /* Initialize STAB/SLB. We use a virtual address as it works
773          * in real mode on pSeries.
774          */
775         if (mmu_has_feature(MMU_FTR_SLB))
776                 slb_initialize();
777         else
778                 stab_initialize(get_paca()->stab_addr);
779 }
780 #endif /* CONFIG_SMP */
781
782 /*
783  * Called by asm hashtable.S for doing lazy icache flush
784  */
785 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
786 {
787         struct page *page;
788
789         if (!pfn_valid(pte_pfn(pte)))
790                 return pp;
791
792         page = pte_page(pte);
793
794         /* page is dirty */
795         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
796                 if (trap == 0x400) {
797                         flush_dcache_icache_page(page);
798                         set_bit(PG_arch_1, &page->flags);
799                 } else
800                         pp |= HPTE_R_N;
801         }
802         return pp;
803 }
804
805 #ifdef CONFIG_PPC_MM_SLICES
806 unsigned int get_paca_psize(unsigned long addr)
807 {
808         unsigned long index, slices;
809
810         if (addr < SLICE_LOW_TOP) {
811                 slices = get_paca()->context.low_slices_psize;
812                 index = GET_LOW_SLICE_INDEX(addr);
813         } else {
814                 slices = get_paca()->context.high_slices_psize;
815                 index = GET_HIGH_SLICE_INDEX(addr);
816         }
817         return (slices >> (index * 4)) & 0xF;
818 }
819
820 #else
821 unsigned int get_paca_psize(unsigned long addr)
822 {
823         return get_paca()->context.user_psize;
824 }
825 #endif
826
827 /*
828  * Demote a segment to using 4k pages.
829  * For now this makes the whole process use 4k pages.
830  */
831 #ifdef CONFIG_PPC_64K_PAGES
832 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
833 {
834         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
835                 return;
836         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
837 #ifdef CONFIG_SPU_BASE
838         spu_flush_all_slbs(mm);
839 #endif
840         if (get_paca_psize(addr) != MMU_PAGE_4K) {
841                 get_paca()->context = mm->context;
842                 slb_flush_and_rebolt();
843         }
844 }
845 #endif /* CONFIG_PPC_64K_PAGES */
846
847 #ifdef CONFIG_PPC_SUBPAGE_PROT
848 /*
849  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
850  * Userspace sets the subpage permissions using the subpage_prot system call.
851  *
852  * Result is 0: full permissions, _PAGE_RW: read-only,
853  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
854  */
855 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
856 {
857         struct subpage_prot_table *spt = &mm->context.spt;
858         u32 spp = 0;
859         u32 **sbpm, *sbpp;
860
861         if (ea >= spt->maxaddr)
862                 return 0;
863         if (ea < 0x100000000) {
864                 /* addresses below 4GB use spt->low_prot */
865                 sbpm = spt->low_prot;
866         } else {
867                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
868                 if (!sbpm)
869                         return 0;
870         }
871         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
872         if (!sbpp)
873                 return 0;
874         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
875
876         /* extract 2-bit bitfield for this 4k subpage */
877         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
878
879         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
880         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
881         return spp;
882 }
883
884 #else /* CONFIG_PPC_SUBPAGE_PROT */
885 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
886 {
887         return 0;
888 }
889 #endif
890
891 void hash_failure_debug(unsigned long ea, unsigned long access,
892                         unsigned long vsid, unsigned long trap,
893                         int ssize, int psize, unsigned long pte)
894 {
895         if (!printk_ratelimit())
896                 return;
897         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
898                 ea, access, current->comm);
899         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
900                 trap, vsid, ssize, psize, pte);
901 }
902
903 /* Result code is:
904  *  0 - handled
905  *  1 - normal page fault
906  * -1 - critical hash insertion error
907  * -2 - access not permitted by subpage protection mechanism
908  */
909 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
910 {
911         pgd_t *pgdir;
912         unsigned long vsid;
913         struct mm_struct *mm;
914         pte_t *ptep;
915         unsigned hugeshift;
916         const struct cpumask *tmp;
917         int rc, user_region = 0, local = 0;
918         int psize, ssize;
919
920         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
921                 ea, access, trap);
922
923         if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
924                 DBG_LOW(" out of pgtable range !\n");
925                 return 1;
926         }
927
928         /* Get region & vsid */
929         switch (REGION_ID(ea)) {
930         case USER_REGION_ID:
931                 user_region = 1;
932                 mm = current->mm;
933                 if (! mm) {
934                         DBG_LOW(" user region with no mm !\n");
935                         return 1;
936                 }
937                 psize = get_slice_psize(mm, ea);
938                 ssize = user_segment_size(ea);
939                 vsid = get_vsid(mm->context.id, ea, ssize);
940                 break;
941         case VMALLOC_REGION_ID:
942                 mm = &init_mm;
943                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
944                 if (ea < VMALLOC_END)
945                         psize = mmu_vmalloc_psize;
946                 else
947                         psize = mmu_io_psize;
948                 ssize = mmu_kernel_ssize;
949                 break;
950         default:
951                 /* Not a valid range
952                  * Send the problem up to do_page_fault 
953                  */
954                 return 1;
955         }
956         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
957
958         /* Get pgdir */
959         pgdir = mm->pgd;
960         if (pgdir == NULL)
961                 return 1;
962
963         /* Check CPU locality */
964         tmp = cpumask_of(smp_processor_id());
965         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
966                 local = 1;
967
968 #ifndef CONFIG_PPC_64K_PAGES
969         /* If we use 4K pages and our psize is not 4K, then we might
970          * be hitting a special driver mapping, and need to align the
971          * address before we fetch the PTE.
972          *
973          * It could also be a hugepage mapping, in which case this is
974          * not necessary, but it's not harmful, either.
975          */
976         if (psize != MMU_PAGE_4K)
977                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
978 #endif /* CONFIG_PPC_64K_PAGES */
979
980         /* Get PTE and page size from page tables */
981         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
982         if (ptep == NULL || !pte_present(*ptep)) {
983                 DBG_LOW(" no PTE !\n");
984                 return 1;
985         }
986
987         /* Add _PAGE_PRESENT to the required access perm */
988         access |= _PAGE_PRESENT;
989
990         /* Pre-check access permissions (will be re-checked atomically
991          * in __hash_page_XX but this pre-check is a fast path
992          */
993         if (access & ~pte_val(*ptep)) {
994                 DBG_LOW(" no access !\n");
995                 return 1;
996         }
997
998 #ifdef CONFIG_HUGETLB_PAGE
999         if (hugeshift)
1000                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1001                                         ssize, hugeshift, psize);
1002 #endif /* CONFIG_HUGETLB_PAGE */
1003
1004 #ifndef CONFIG_PPC_64K_PAGES
1005         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1006 #else
1007         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1008                 pte_val(*(ptep + PTRS_PER_PTE)));
1009 #endif
1010         /* Do actual hashing */
1011 #ifdef CONFIG_PPC_64K_PAGES
1012         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1013         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1014                 demote_segment_4k(mm, ea);
1015                 psize = MMU_PAGE_4K;
1016         }
1017
1018         /* If this PTE is non-cacheable and we have restrictions on
1019          * using non cacheable large pages, then we switch to 4k
1020          */
1021         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1022             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1023                 if (user_region) {
1024                         demote_segment_4k(mm, ea);
1025                         psize = MMU_PAGE_4K;
1026                 } else if (ea < VMALLOC_END) {
1027                         /*
1028                          * some driver did a non-cacheable mapping
1029                          * in vmalloc space, so switch vmalloc
1030                          * to 4k pages
1031                          */
1032                         printk(KERN_ALERT "Reducing vmalloc segment "
1033                                "to 4kB pages because of "
1034                                "non-cacheable mapping\n");
1035                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1036 #ifdef CONFIG_SPU_BASE
1037                         spu_flush_all_slbs(mm);
1038 #endif
1039                 }
1040         }
1041         if (user_region) {
1042                 if (psize != get_paca_psize(ea)) {
1043                         get_paca()->context = mm->context;
1044                         slb_flush_and_rebolt();
1045                 }
1046         } else if (get_paca()->vmalloc_sllp !=
1047                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1048                 get_paca()->vmalloc_sllp =
1049                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1050                 slb_vmalloc_update();
1051         }
1052 #endif /* CONFIG_PPC_64K_PAGES */
1053
1054 #ifdef CONFIG_PPC_HAS_HASH_64K
1055         if (psize == MMU_PAGE_64K)
1056                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1057         else
1058 #endif /* CONFIG_PPC_HAS_HASH_64K */
1059         {
1060                 int spp = subpage_protection(mm, ea);
1061                 if (access & spp)
1062                         rc = -2;
1063                 else
1064                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1065                                             local, ssize, spp);
1066         }
1067
1068         /* Dump some info in case of hash insertion failure, they should
1069          * never happen so it is really useful to know if/when they do
1070          */
1071         if (rc == -1)
1072                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1073                                    pte_val(*ptep));
1074 #ifndef CONFIG_PPC_64K_PAGES
1075         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1076 #else
1077         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1078                 pte_val(*(ptep + PTRS_PER_PTE)));
1079 #endif
1080         DBG_LOW(" -> rc=%d\n", rc);
1081         return rc;
1082 }
1083 EXPORT_SYMBOL_GPL(hash_page);
1084
1085 void hash_preload(struct mm_struct *mm, unsigned long ea,
1086                   unsigned long access, unsigned long trap)
1087 {
1088         unsigned long vsid;
1089         pgd_t *pgdir;
1090         pte_t *ptep;
1091         unsigned long flags;
1092         int rc, ssize, local = 0;
1093
1094         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1095
1096 #ifdef CONFIG_PPC_MM_SLICES
1097         /* We only prefault standard pages for now */
1098         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1099                 return;
1100 #endif
1101
1102         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1103                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1104
1105         /* Get Linux PTE if available */
1106         pgdir = mm->pgd;
1107         if (pgdir == NULL)
1108                 return;
1109         ptep = find_linux_pte(pgdir, ea);
1110         if (!ptep)
1111                 return;
1112
1113 #ifdef CONFIG_PPC_64K_PAGES
1114         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1115          * a 64K kernel), then we don't preload, hash_page() will take
1116          * care of it once we actually try to access the page.
1117          * That way we don't have to duplicate all of the logic for segment
1118          * page size demotion here
1119          */
1120         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1121                 return;
1122 #endif /* CONFIG_PPC_64K_PAGES */
1123
1124         /* Get VSID */
1125         ssize = user_segment_size(ea);
1126         vsid = get_vsid(mm->context.id, ea, ssize);
1127
1128         /* Hash doesn't like irqs */
1129         local_irq_save(flags);
1130
1131         /* Is that local to this CPU ? */
1132         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1133                 local = 1;
1134
1135         /* Hash it in */
1136 #ifdef CONFIG_PPC_HAS_HASH_64K
1137         if (mm->context.user_psize == MMU_PAGE_64K)
1138                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1139         else
1140 #endif /* CONFIG_PPC_HAS_HASH_64K */
1141                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1142                                     subpage_protection(mm, ea));
1143
1144         /* Dump some info in case of hash insertion failure, they should
1145          * never happen so it is really useful to know if/when they do
1146          */
1147         if (rc == -1)
1148                 hash_failure_debug(ea, access, vsid, trap, ssize,
1149                                    mm->context.user_psize, pte_val(*ptep));
1150
1151         local_irq_restore(flags);
1152 }
1153
1154 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1155  *          do not forget to update the assembly call site !
1156  */
1157 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1158                      int local)
1159 {
1160         unsigned long hash, index, shift, hidx, slot;
1161
1162         DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1163         pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1164                 hash = hpt_hash(va, shift, ssize);
1165                 hidx = __rpte_to_hidx(pte, index);
1166                 if (hidx & _PTEIDX_SECONDARY)
1167                         hash = ~hash;
1168                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1169                 slot += hidx & _PTEIDX_GROUP_IX;
1170                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1171                 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1172         } pte_iterate_hashed_end();
1173 }
1174
1175 void flush_hash_range(unsigned long number, int local)
1176 {
1177         if (ppc_md.flush_hash_range)
1178                 ppc_md.flush_hash_range(number, local);
1179         else {
1180                 int i;
1181                 struct ppc64_tlb_batch *batch =
1182                         &__get_cpu_var(ppc64_tlb_batch);
1183
1184                 for (i = 0; i < number; i++)
1185                         flush_hash_page(batch->vaddr[i], batch->pte[i],
1186                                         batch->psize, batch->ssize, local);
1187         }
1188 }
1189
1190 /*
1191  * low_hash_fault is called when we the low level hash code failed
1192  * to instert a PTE due to an hypervisor error
1193  */
1194 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1195 {
1196         if (user_mode(regs)) {
1197 #ifdef CONFIG_PPC_SUBPAGE_PROT
1198                 if (rc == -2)
1199                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1200                 else
1201 #endif
1202                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1203         } else
1204                 bad_page_fault(regs, address, SIGBUS);
1205 }
1206
1207 #ifdef CONFIG_DEBUG_PAGEALLOC
1208 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1209 {
1210         unsigned long hash, hpteg;
1211         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1212         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1213         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1214         int ret;
1215
1216         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1217         hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1218
1219         ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1220                                  mode, HPTE_V_BOLTED,
1221                                  mmu_linear_psize, mmu_kernel_ssize);
1222         BUG_ON (ret < 0);
1223         spin_lock(&linear_map_hash_lock);
1224         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1225         linear_map_hash_slots[lmi] = ret | 0x80;
1226         spin_unlock(&linear_map_hash_lock);
1227 }
1228
1229 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1230 {
1231         unsigned long hash, hidx, slot;
1232         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1233         unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1234
1235         hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1236         spin_lock(&linear_map_hash_lock);
1237         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1238         hidx = linear_map_hash_slots[lmi] & 0x7f;
1239         linear_map_hash_slots[lmi] = 0;
1240         spin_unlock(&linear_map_hash_lock);
1241         if (hidx & _PTEIDX_SECONDARY)
1242                 hash = ~hash;
1243         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1244         slot += hidx & _PTEIDX_GROUP_IX;
1245         ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1246 }
1247
1248 void kernel_map_pages(struct page *page, int numpages, int enable)
1249 {
1250         unsigned long flags, vaddr, lmi;
1251         int i;
1252
1253         local_irq_save(flags);
1254         for (i = 0; i < numpages; i++, page++) {
1255                 vaddr = (unsigned long)page_address(page);
1256                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1257                 if (lmi >= linear_map_hash_count)
1258                         continue;
1259                 if (enable)
1260                         kernel_map_linear_page(vaddr, lmi);
1261                 else
1262                         kernel_unmap_linear_page(vaddr, lmi);
1263         }
1264         local_irq_restore(flags);
1265 }
1266 #endif /* CONFIG_DEBUG_PAGEALLOC */
1267
1268 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1269                                 phys_addr_t first_memblock_size)
1270 {
1271         /* We don't currently support the first MEMBLOCK not mapping 0
1272          * physical on those processors
1273          */
1274         BUG_ON(first_memblock_base != 0);
1275
1276         /* On LPAR systems, the first entry is our RMA region,
1277          * non-LPAR 64-bit hash MMU systems don't have a limitation
1278          * on real mode access, but using the first entry works well
1279          * enough. We also clamp it to 1G to avoid some funky things
1280          * such as RTAS bugs etc...
1281          */
1282         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1283
1284         /* Finally limit subsequent allocations */
1285         memblock_set_current_limit(ppc64_rma_size);
1286 }