]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/hash_utils_64.c
Merge tag 'soc-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm...
[karo-tx-linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76
77 /*
78  * Note:  pte   --> Linux PTE
79  *        HPTE  --> PowerPC Hashed Page Table Entry
80  *
81  * Execution context:
82  *   htab_initialize is called with the MMU off (of course), but
83  *   the kernel has been copied down to zero so it can directly
84  *   reference global data.  At this point it is very difficult
85  *   to print debug info.
86  *
87  */
88
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 int mmu_virtual_psize = MMU_PAGE_4K;
102 int mmu_vmalloc_psize = MMU_PAGE_4K;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize = MMU_PAGE_4K;
105 #endif
106 int mmu_io_psize = MMU_PAGE_4K;
107 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
108 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
109 u16 mmu_slb_size = 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions;
113 #endif
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8 *linear_map_hash_slots;
116 static unsigned long linear_map_hash_count;
117 static DEFINE_SPINLOCK(linear_map_hash_lock);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
119
120 /* There are definitions of page sizes arrays to be used when none
121  * is provided by the firmware.
122  */
123
124 /* Pre-POWER4 CPUs (4k pages only)
125  */
126 static struct mmu_psize_def mmu_psize_defaults_old[] = {
127         [MMU_PAGE_4K] = {
128                 .shift  = 12,
129                 .sllp   = 0,
130                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
131                 .avpnm  = 0,
132                 .tlbiel = 0,
133         },
134 };
135
136 /* POWER4, GPUL, POWER5
137  *
138  * Support for 16Mb large pages
139  */
140 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
141         [MMU_PAGE_4K] = {
142                 .shift  = 12,
143                 .sllp   = 0,
144                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145                 .avpnm  = 0,
146                 .tlbiel = 1,
147         },
148         [MMU_PAGE_16M] = {
149                 .shift  = 24,
150                 .sllp   = SLB_VSID_L,
151                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
152                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
153                 .avpnm  = 0x1UL,
154                 .tlbiel = 0,
155         },
156 };
157
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
159 {
160         unsigned long rflags = pteflags & 0x1fa;
161
162         /* _PAGE_EXEC -> NOEXEC */
163         if ((pteflags & _PAGE_EXEC) == 0)
164                 rflags |= HPTE_R_N;
165
166         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167          * need to add in 0x1 if it's a read-only user page
168          */
169         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
170                                          (pteflags & _PAGE_DIRTY)))
171                 rflags |= 1;
172         /*
173          * Always add "C" bit for perf. Memory coherence is always enabled
174          */
175         return rflags | HPTE_R_C | HPTE_R_M;
176 }
177
178 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
179                       unsigned long pstart, unsigned long prot,
180                       int psize, int ssize)
181 {
182         unsigned long vaddr, paddr;
183         unsigned int step, shift;
184         int ret = 0;
185
186         shift = mmu_psize_defs[psize].shift;
187         step = 1 << shift;
188
189         prot = htab_convert_pte_flags(prot);
190
191         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
192             vstart, vend, pstart, prot, psize, ssize);
193
194         for (vaddr = vstart, paddr = pstart; vaddr < vend;
195              vaddr += step, paddr += step) {
196                 unsigned long hash, hpteg;
197                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
198                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
199                 unsigned long tprot = prot;
200
201                 /*
202                  * If we hit a bad address return error.
203                  */
204                 if (!vsid)
205                         return -1;
206                 /* Make kernel text executable */
207                 if (overlaps_kernel_text(vaddr, vaddr + step))
208                         tprot &= ~HPTE_R_N;
209
210                 /* Make kvm guest trampolines executable */
211                 if (overlaps_kvm_tmp(vaddr, vaddr + step))
212                         tprot &= ~HPTE_R_N;
213
214                 /*
215                  * If relocatable, check if it overlaps interrupt vectors that
216                  * are copied down to real 0. For relocatable kernel
217                  * (e.g. kdump case) we copy interrupt vectors down to real
218                  * address 0. Mark that region as executable. This is
219                  * because on p8 system with relocation on exception feature
220                  * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
221                  * in order to execute the interrupt handlers in virtual
222                  * mode the vector region need to be marked as executable.
223                  */
224                 if ((PHYSICAL_START > MEMORY_START) &&
225                         overlaps_interrupt_vector_text(vaddr, vaddr + step))
226                                 tprot &= ~HPTE_R_N;
227
228                 hash = hpt_hash(vpn, shift, ssize);
229                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
230
231                 BUG_ON(!ppc_md.hpte_insert);
232                 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
233                                          HPTE_V_BOLTED, psize, psize, ssize);
234
235                 if (ret < 0)
236                         break;
237 #ifdef CONFIG_DEBUG_PAGEALLOC
238                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
239                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
240 #endif /* CONFIG_DEBUG_PAGEALLOC */
241         }
242         return ret < 0 ? ret : 0;
243 }
244
245 #ifdef CONFIG_MEMORY_HOTPLUG
246 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
247                       int psize, int ssize)
248 {
249         unsigned long vaddr;
250         unsigned int step, shift;
251
252         shift = mmu_psize_defs[psize].shift;
253         step = 1 << shift;
254
255         if (!ppc_md.hpte_removebolted) {
256                 printk(KERN_WARNING "Platform doesn't implement "
257                                 "hpte_removebolted\n");
258                 return -EINVAL;
259         }
260
261         for (vaddr = vstart; vaddr < vend; vaddr += step)
262                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
263
264         return 0;
265 }
266 #endif /* CONFIG_MEMORY_HOTPLUG */
267
268 static int __init htab_dt_scan_seg_sizes(unsigned long node,
269                                          const char *uname, int depth,
270                                          void *data)
271 {
272         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
273         __be32 *prop;
274         unsigned long size = 0;
275
276         /* We are scanning "cpu" nodes only */
277         if (type == NULL || strcmp(type, "cpu") != 0)
278                 return 0;
279
280         prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
281         if (prop == NULL)
282                 return 0;
283         for (; size >= 4; size -= 4, ++prop) {
284                 if (be32_to_cpu(prop[0]) == 40) {
285                         DBG("1T segment support detected\n");
286                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
287                         return 1;
288                 }
289         }
290         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
291         return 0;
292 }
293
294 static void __init htab_init_seg_sizes(void)
295 {
296         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
297 }
298
299 static int __init get_idx_from_shift(unsigned int shift)
300 {
301         int idx = -1;
302
303         switch (shift) {
304         case 0xc:
305                 idx = MMU_PAGE_4K;
306                 break;
307         case 0x10:
308                 idx = MMU_PAGE_64K;
309                 break;
310         case 0x14:
311                 idx = MMU_PAGE_1M;
312                 break;
313         case 0x18:
314                 idx = MMU_PAGE_16M;
315                 break;
316         case 0x22:
317                 idx = MMU_PAGE_16G;
318                 break;
319         }
320         return idx;
321 }
322
323 static int __init htab_dt_scan_page_sizes(unsigned long node,
324                                           const char *uname, int depth,
325                                           void *data)
326 {
327         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
328         __be32 *prop;
329         unsigned long size = 0;
330
331         /* We are scanning "cpu" nodes only */
332         if (type == NULL || strcmp(type, "cpu") != 0)
333                 return 0;
334
335         prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
336         if (prop != NULL) {
337                 pr_info("Page sizes from device-tree:\n");
338                 size /= 4;
339                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
340                 while(size > 0) {
341                         unsigned int base_shift = be32_to_cpu(prop[0]);
342                         unsigned int slbenc = be32_to_cpu(prop[1]);
343                         unsigned int lpnum = be32_to_cpu(prop[2]);
344                         struct mmu_psize_def *def;
345                         int idx, base_idx;
346
347                         size -= 3; prop += 3;
348                         base_idx = get_idx_from_shift(base_shift);
349                         if (base_idx < 0) {
350                                 /*
351                                  * skip the pte encoding also
352                                  */
353                                 prop += lpnum * 2; size -= lpnum * 2;
354                                 continue;
355                         }
356                         def = &mmu_psize_defs[base_idx];
357                         if (base_idx == MMU_PAGE_16M)
358                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
359
360                         def->shift = base_shift;
361                         if (base_shift <= 23)
362                                 def->avpnm = 0;
363                         else
364                                 def->avpnm = (1 << (base_shift - 23)) - 1;
365                         def->sllp = slbenc;
366                         /*
367                          * We don't know for sure what's up with tlbiel, so
368                          * for now we only set it for 4K and 64K pages
369                          */
370                         if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
371                                 def->tlbiel = 1;
372                         else
373                                 def->tlbiel = 0;
374
375                         while (size > 0 && lpnum) {
376                                 unsigned int shift = be32_to_cpu(prop[0]);
377                                 int penc  = be32_to_cpu(prop[1]);
378
379                                 prop += 2; size -= 2;
380                                 lpnum--;
381
382                                 idx = get_idx_from_shift(shift);
383                                 if (idx < 0)
384                                         continue;
385
386                                 if (penc == -1)
387                                         pr_err("Invalid penc for base_shift=%d "
388                                                "shift=%d\n", base_shift, shift);
389
390                                 def->penc[idx] = penc;
391                                 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
392                                         " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
393                                         base_shift, shift, def->sllp,
394                                         def->avpnm, def->tlbiel, def->penc[idx]);
395                         }
396                 }
397                 return 1;
398         }
399         return 0;
400 }
401
402 #ifdef CONFIG_HUGETLB_PAGE
403 /* Scan for 16G memory blocks that have been set aside for huge pages
404  * and reserve those blocks for 16G huge pages.
405  */
406 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
407                                         const char *uname, int depth,
408                                         void *data) {
409         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
410         __be64 *addr_prop;
411         __be32 *page_count_prop;
412         unsigned int expected_pages;
413         long unsigned int phys_addr;
414         long unsigned int block_size;
415
416         /* We are scanning "memory" nodes only */
417         if (type == NULL || strcmp(type, "memory") != 0)
418                 return 0;
419
420         /* This property is the log base 2 of the number of virtual pages that
421          * will represent this memory block. */
422         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
423         if (page_count_prop == NULL)
424                 return 0;
425         expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
426         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
427         if (addr_prop == NULL)
428                 return 0;
429         phys_addr = be64_to_cpu(addr_prop[0]);
430         block_size = be64_to_cpu(addr_prop[1]);
431         if (block_size != (16 * GB))
432                 return 0;
433         printk(KERN_INFO "Huge page(16GB) memory: "
434                         "addr = 0x%lX size = 0x%lX pages = %d\n",
435                         phys_addr, block_size, expected_pages);
436         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
437                 memblock_reserve(phys_addr, block_size * expected_pages);
438                 add_gpage(phys_addr, block_size, expected_pages);
439         }
440         return 0;
441 }
442 #endif /* CONFIG_HUGETLB_PAGE */
443
444 static void mmu_psize_set_default_penc(void)
445 {
446         int bpsize, apsize;
447         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
448                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
449                         mmu_psize_defs[bpsize].penc[apsize] = -1;
450 }
451
452 static void __init htab_init_page_sizes(void)
453 {
454         int rc;
455
456         /* se the invalid penc to -1 */
457         mmu_psize_set_default_penc();
458
459         /* Default to 4K pages only */
460         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
461                sizeof(mmu_psize_defaults_old));
462
463         /*
464          * Try to find the available page sizes in the device-tree
465          */
466         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
467         if (rc != 0)  /* Found */
468                 goto found;
469
470         /*
471          * Not in the device-tree, let's fallback on known size
472          * list for 16M capable GP & GR
473          */
474         if (mmu_has_feature(MMU_FTR_16M_PAGE))
475                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
476                        sizeof(mmu_psize_defaults_gp));
477  found:
478 #ifndef CONFIG_DEBUG_PAGEALLOC
479         /*
480          * Pick a size for the linear mapping. Currently, we only support
481          * 16M, 1M and 4K which is the default
482          */
483         if (mmu_psize_defs[MMU_PAGE_16M].shift)
484                 mmu_linear_psize = MMU_PAGE_16M;
485         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
486                 mmu_linear_psize = MMU_PAGE_1M;
487 #endif /* CONFIG_DEBUG_PAGEALLOC */
488
489 #ifdef CONFIG_PPC_64K_PAGES
490         /*
491          * Pick a size for the ordinary pages. Default is 4K, we support
492          * 64K for user mappings and vmalloc if supported by the processor.
493          * We only use 64k for ioremap if the processor
494          * (and firmware) support cache-inhibited large pages.
495          * If not, we use 4k and set mmu_ci_restrictions so that
496          * hash_page knows to switch processes that use cache-inhibited
497          * mappings to 4k pages.
498          */
499         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
500                 mmu_virtual_psize = MMU_PAGE_64K;
501                 mmu_vmalloc_psize = MMU_PAGE_64K;
502                 if (mmu_linear_psize == MMU_PAGE_4K)
503                         mmu_linear_psize = MMU_PAGE_64K;
504                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
505                         /*
506                          * Don't use 64k pages for ioremap on pSeries, since
507                          * that would stop us accessing the HEA ethernet.
508                          */
509                         if (!machine_is(pseries))
510                                 mmu_io_psize = MMU_PAGE_64K;
511                 } else
512                         mmu_ci_restrictions = 1;
513         }
514 #endif /* CONFIG_PPC_64K_PAGES */
515
516 #ifdef CONFIG_SPARSEMEM_VMEMMAP
517         /* We try to use 16M pages for vmemmap if that is supported
518          * and we have at least 1G of RAM at boot
519          */
520         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
521             memblock_phys_mem_size() >= 0x40000000)
522                 mmu_vmemmap_psize = MMU_PAGE_16M;
523         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
524                 mmu_vmemmap_psize = MMU_PAGE_64K;
525         else
526                 mmu_vmemmap_psize = MMU_PAGE_4K;
527 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
528
529         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
530                "virtual = %d, io = %d"
531 #ifdef CONFIG_SPARSEMEM_VMEMMAP
532                ", vmemmap = %d"
533 #endif
534                "\n",
535                mmu_psize_defs[mmu_linear_psize].shift,
536                mmu_psize_defs[mmu_virtual_psize].shift,
537                mmu_psize_defs[mmu_io_psize].shift
538 #ifdef CONFIG_SPARSEMEM_VMEMMAP
539                ,mmu_psize_defs[mmu_vmemmap_psize].shift
540 #endif
541                );
542
543 #ifdef CONFIG_HUGETLB_PAGE
544         /* Reserve 16G huge page memory sections for huge pages */
545         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
546 #endif /* CONFIG_HUGETLB_PAGE */
547 }
548
549 static int __init htab_dt_scan_pftsize(unsigned long node,
550                                        const char *uname, int depth,
551                                        void *data)
552 {
553         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
554         __be32 *prop;
555
556         /* We are scanning "cpu" nodes only */
557         if (type == NULL || strcmp(type, "cpu") != 0)
558                 return 0;
559
560         prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
561         if (prop != NULL) {
562                 /* pft_size[0] is the NUMA CEC cookie */
563                 ppc64_pft_size = be32_to_cpu(prop[1]);
564                 return 1;
565         }
566         return 0;
567 }
568
569 static unsigned long __init htab_get_table_size(void)
570 {
571         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
572
573         /* If hash size isn't already provided by the platform, we try to
574          * retrieve it from the device-tree. If it's not there neither, we
575          * calculate it now based on the total RAM size
576          */
577         if (ppc64_pft_size == 0)
578                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
579         if (ppc64_pft_size)
580                 return 1UL << ppc64_pft_size;
581
582         /* round mem_size up to next power of 2 */
583         mem_size = memblock_phys_mem_size();
584         rnd_mem_size = 1UL << __ilog2(mem_size);
585         if (rnd_mem_size < mem_size)
586                 rnd_mem_size <<= 1;
587
588         /* # pages / 2 */
589         psize = mmu_psize_defs[mmu_virtual_psize].shift;
590         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
591
592         return pteg_count << 7;
593 }
594
595 #ifdef CONFIG_MEMORY_HOTPLUG
596 int create_section_mapping(unsigned long start, unsigned long end)
597 {
598         return htab_bolt_mapping(start, end, __pa(start),
599                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
600                                  mmu_kernel_ssize);
601 }
602
603 int remove_section_mapping(unsigned long start, unsigned long end)
604 {
605         return htab_remove_mapping(start, end, mmu_linear_psize,
606                         mmu_kernel_ssize);
607 }
608 #endif /* CONFIG_MEMORY_HOTPLUG */
609
610 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
611
612 static void __init htab_finish_init(void)
613 {
614         extern unsigned int *htab_call_hpte_insert1;
615         extern unsigned int *htab_call_hpte_insert2;
616         extern unsigned int *htab_call_hpte_remove;
617         extern unsigned int *htab_call_hpte_updatepp;
618
619 #ifdef CONFIG_PPC_HAS_HASH_64K
620         extern unsigned int *ht64_call_hpte_insert1;
621         extern unsigned int *ht64_call_hpte_insert2;
622         extern unsigned int *ht64_call_hpte_remove;
623         extern unsigned int *ht64_call_hpte_updatepp;
624
625         patch_branch(ht64_call_hpte_insert1,
626                 FUNCTION_TEXT(ppc_md.hpte_insert),
627                 BRANCH_SET_LINK);
628         patch_branch(ht64_call_hpte_insert2,
629                 FUNCTION_TEXT(ppc_md.hpte_insert),
630                 BRANCH_SET_LINK);
631         patch_branch(ht64_call_hpte_remove,
632                 FUNCTION_TEXT(ppc_md.hpte_remove),
633                 BRANCH_SET_LINK);
634         patch_branch(ht64_call_hpte_updatepp,
635                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
636                 BRANCH_SET_LINK);
637
638 #endif /* CONFIG_PPC_HAS_HASH_64K */
639
640         patch_branch(htab_call_hpte_insert1,
641                 FUNCTION_TEXT(ppc_md.hpte_insert),
642                 BRANCH_SET_LINK);
643         patch_branch(htab_call_hpte_insert2,
644                 FUNCTION_TEXT(ppc_md.hpte_insert),
645                 BRANCH_SET_LINK);
646         patch_branch(htab_call_hpte_remove,
647                 FUNCTION_TEXT(ppc_md.hpte_remove),
648                 BRANCH_SET_LINK);
649         patch_branch(htab_call_hpte_updatepp,
650                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
651                 BRANCH_SET_LINK);
652 }
653
654 static void __init htab_initialize(void)
655 {
656         unsigned long table;
657         unsigned long pteg_count;
658         unsigned long prot;
659         unsigned long base = 0, size = 0, limit;
660         struct memblock_region *reg;
661
662         DBG(" -> htab_initialize()\n");
663
664         /* Initialize segment sizes */
665         htab_init_seg_sizes();
666
667         /* Initialize page sizes */
668         htab_init_page_sizes();
669
670         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
671                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
672                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
673                 printk(KERN_INFO "Using 1TB segments\n");
674         }
675
676         /*
677          * Calculate the required size of the htab.  We want the number of
678          * PTEGs to equal one half the number of real pages.
679          */ 
680         htab_size_bytes = htab_get_table_size();
681         pteg_count = htab_size_bytes >> 7;
682
683         htab_hash_mask = pteg_count - 1;
684
685         if (firmware_has_feature(FW_FEATURE_LPAR)) {
686                 /* Using a hypervisor which owns the htab */
687                 htab_address = NULL;
688                 _SDR1 = 0; 
689 #ifdef CONFIG_FA_DUMP
690                 /*
691                  * If firmware assisted dump is active firmware preserves
692                  * the contents of htab along with entire partition memory.
693                  * Clear the htab if firmware assisted dump is active so
694                  * that we dont end up using old mappings.
695                  */
696                 if (is_fadump_active() && ppc_md.hpte_clear_all)
697                         ppc_md.hpte_clear_all();
698 #endif
699         } else {
700                 /* Find storage for the HPT.  Must be contiguous in
701                  * the absolute address space. On cell we want it to be
702                  * in the first 2 Gig so we can use it for IOMMU hacks.
703                  */
704                 if (machine_is(cell))
705                         limit = 0x80000000;
706                 else
707                         limit = MEMBLOCK_ALLOC_ANYWHERE;
708
709                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
710
711                 DBG("Hash table allocated at %lx, size: %lx\n", table,
712                     htab_size_bytes);
713
714                 htab_address = __va(table);
715
716                 /* htab absolute addr + encoded htabsize */
717                 _SDR1 = table + __ilog2(pteg_count) - 11;
718
719                 /* Initialize the HPT with no entries */
720                 memset((void *)table, 0, htab_size_bytes);
721
722                 /* Set SDR1 */
723                 mtspr(SPRN_SDR1, _SDR1);
724         }
725
726         prot = pgprot_val(PAGE_KERNEL);
727
728 #ifdef CONFIG_DEBUG_PAGEALLOC
729         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
730         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
731                                                     1, ppc64_rma_size));
732         memset(linear_map_hash_slots, 0, linear_map_hash_count);
733 #endif /* CONFIG_DEBUG_PAGEALLOC */
734
735         /* On U3 based machines, we need to reserve the DART area and
736          * _NOT_ map it to avoid cache paradoxes as it's remapped non
737          * cacheable later on
738          */
739
740         /* create bolted the linear mapping in the hash table */
741         for_each_memblock(memory, reg) {
742                 base = (unsigned long)__va(reg->base);
743                 size = reg->size;
744
745                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
746                     base, size, prot);
747
748 #ifdef CONFIG_U3_DART
749                 /* Do not map the DART space. Fortunately, it will be aligned
750                  * in such a way that it will not cross two memblock regions and
751                  * will fit within a single 16Mb page.
752                  * The DART space is assumed to be a full 16Mb region even if
753                  * we only use 2Mb of that space. We will use more of it later
754                  * for AGP GART. We have to use a full 16Mb large page.
755                  */
756                 DBG("DART base: %lx\n", dart_tablebase);
757
758                 if (dart_tablebase != 0 && dart_tablebase >= base
759                     && dart_tablebase < (base + size)) {
760                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
761                         if (base != dart_tablebase)
762                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
763                                                         __pa(base), prot,
764                                                         mmu_linear_psize,
765                                                         mmu_kernel_ssize));
766                         if ((base + size) > dart_table_end)
767                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
768                                                         base + size,
769                                                         __pa(dart_table_end),
770                                                          prot,
771                                                          mmu_linear_psize,
772                                                          mmu_kernel_ssize));
773                         continue;
774                 }
775 #endif /* CONFIG_U3_DART */
776                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
777                                 prot, mmu_linear_psize, mmu_kernel_ssize));
778         }
779         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
780
781         /*
782          * If we have a memory_limit and we've allocated TCEs then we need to
783          * explicitly map the TCE area at the top of RAM. We also cope with the
784          * case that the TCEs start below memory_limit.
785          * tce_alloc_start/end are 16MB aligned so the mapping should work
786          * for either 4K or 16MB pages.
787          */
788         if (tce_alloc_start) {
789                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
790                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
791
792                 if (base + size >= tce_alloc_start)
793                         tce_alloc_start = base + size + 1;
794
795                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
796                                          __pa(tce_alloc_start), prot,
797                                          mmu_linear_psize, mmu_kernel_ssize));
798         }
799
800         htab_finish_init();
801
802         DBG(" <- htab_initialize()\n");
803 }
804 #undef KB
805 #undef MB
806
807 void __init early_init_mmu(void)
808 {
809         /* Setup initial STAB address in the PACA */
810         get_paca()->stab_real = __pa((u64)&initial_stab);
811         get_paca()->stab_addr = (u64)&initial_stab;
812
813         /* Initialize the MMU Hash table and create the linear mapping
814          * of memory. Has to be done before stab/slb initialization as
815          * this is currently where the page size encoding is obtained
816          */
817         htab_initialize();
818
819         /* Initialize stab / SLB management */
820         if (mmu_has_feature(MMU_FTR_SLB))
821                 slb_initialize();
822         else
823                 stab_initialize(get_paca()->stab_real);
824 }
825
826 #ifdef CONFIG_SMP
827 void early_init_mmu_secondary(void)
828 {
829         /* Initialize hash table for that CPU */
830         if (!firmware_has_feature(FW_FEATURE_LPAR))
831                 mtspr(SPRN_SDR1, _SDR1);
832
833         /* Initialize STAB/SLB. We use a virtual address as it works
834          * in real mode on pSeries.
835          */
836         if (mmu_has_feature(MMU_FTR_SLB))
837                 slb_initialize();
838         else
839                 stab_initialize(get_paca()->stab_addr);
840 }
841 #endif /* CONFIG_SMP */
842
843 /*
844  * Called by asm hashtable.S for doing lazy icache flush
845  */
846 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
847 {
848         struct page *page;
849
850         if (!pfn_valid(pte_pfn(pte)))
851                 return pp;
852
853         page = pte_page(pte);
854
855         /* page is dirty */
856         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
857                 if (trap == 0x400) {
858                         flush_dcache_icache_page(page);
859                         set_bit(PG_arch_1, &page->flags);
860                 } else
861                         pp |= HPTE_R_N;
862         }
863         return pp;
864 }
865
866 #ifdef CONFIG_PPC_MM_SLICES
867 unsigned int get_paca_psize(unsigned long addr)
868 {
869         u64 lpsizes;
870         unsigned char *hpsizes;
871         unsigned long index, mask_index;
872
873         if (addr < SLICE_LOW_TOP) {
874                 lpsizes = get_paca()->context.low_slices_psize;
875                 index = GET_LOW_SLICE_INDEX(addr);
876                 return (lpsizes >> (index * 4)) & 0xF;
877         }
878         hpsizes = get_paca()->context.high_slices_psize;
879         index = GET_HIGH_SLICE_INDEX(addr);
880         mask_index = index & 0x1;
881         return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
882 }
883
884 #else
885 unsigned int get_paca_psize(unsigned long addr)
886 {
887         return get_paca()->context.user_psize;
888 }
889 #endif
890
891 /*
892  * Demote a segment to using 4k pages.
893  * For now this makes the whole process use 4k pages.
894  */
895 #ifdef CONFIG_PPC_64K_PAGES
896 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
897 {
898         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
899                 return;
900         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
901 #ifdef CONFIG_SPU_BASE
902         spu_flush_all_slbs(mm);
903 #endif
904         if (get_paca_psize(addr) != MMU_PAGE_4K) {
905                 get_paca()->context = mm->context;
906                 slb_flush_and_rebolt();
907         }
908 }
909 #endif /* CONFIG_PPC_64K_PAGES */
910
911 #ifdef CONFIG_PPC_SUBPAGE_PROT
912 /*
913  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
914  * Userspace sets the subpage permissions using the subpage_prot system call.
915  *
916  * Result is 0: full permissions, _PAGE_RW: read-only,
917  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
918  */
919 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
920 {
921         struct subpage_prot_table *spt = &mm->context.spt;
922         u32 spp = 0;
923         u32 **sbpm, *sbpp;
924
925         if (ea >= spt->maxaddr)
926                 return 0;
927         if (ea < 0x100000000UL) {
928                 /* addresses below 4GB use spt->low_prot */
929                 sbpm = spt->low_prot;
930         } else {
931                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
932                 if (!sbpm)
933                         return 0;
934         }
935         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
936         if (!sbpp)
937                 return 0;
938         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
939
940         /* extract 2-bit bitfield for this 4k subpage */
941         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
942
943         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
944         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
945         return spp;
946 }
947
948 #else /* CONFIG_PPC_SUBPAGE_PROT */
949 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
950 {
951         return 0;
952 }
953 #endif
954
955 void hash_failure_debug(unsigned long ea, unsigned long access,
956                         unsigned long vsid, unsigned long trap,
957                         int ssize, int psize, int lpsize, unsigned long pte)
958 {
959         if (!printk_ratelimit())
960                 return;
961         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
962                 ea, access, current->comm);
963         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
964                 trap, vsid, ssize, psize, lpsize, pte);
965 }
966
967 /* Result code is:
968  *  0 - handled
969  *  1 - normal page fault
970  * -1 - critical hash insertion error
971  * -2 - access not permitted by subpage protection mechanism
972  */
973 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
974 {
975         enum ctx_state prev_state = exception_enter();
976         pgd_t *pgdir;
977         unsigned long vsid;
978         struct mm_struct *mm;
979         pte_t *ptep;
980         unsigned hugeshift;
981         const struct cpumask *tmp;
982         int rc, user_region = 0, local = 0;
983         int psize, ssize;
984
985         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
986                 ea, access, trap);
987
988         /* Get region & vsid */
989         switch (REGION_ID(ea)) {
990         case USER_REGION_ID:
991                 user_region = 1;
992                 mm = current->mm;
993                 if (! mm) {
994                         DBG_LOW(" user region with no mm !\n");
995                         rc = 1;
996                         goto bail;
997                 }
998                 psize = get_slice_psize(mm, ea);
999                 ssize = user_segment_size(ea);
1000                 vsid = get_vsid(mm->context.id, ea, ssize);
1001                 break;
1002         case VMALLOC_REGION_ID:
1003                 mm = &init_mm;
1004                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1005                 if (ea < VMALLOC_END)
1006                         psize = mmu_vmalloc_psize;
1007                 else
1008                         psize = mmu_io_psize;
1009                 ssize = mmu_kernel_ssize;
1010                 break;
1011         default:
1012                 /* Not a valid range
1013                  * Send the problem up to do_page_fault 
1014                  */
1015                 rc = 1;
1016                 goto bail;
1017         }
1018         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1019
1020         /* Bad address. */
1021         if (!vsid) {
1022                 DBG_LOW("Bad address!\n");
1023                 rc = 1;
1024                 goto bail;
1025         }
1026         /* Get pgdir */
1027         pgdir = mm->pgd;
1028         if (pgdir == NULL) {
1029                 rc = 1;
1030                 goto bail;
1031         }
1032
1033         /* Check CPU locality */
1034         tmp = cpumask_of(smp_processor_id());
1035         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1036                 local = 1;
1037
1038 #ifndef CONFIG_PPC_64K_PAGES
1039         /* If we use 4K pages and our psize is not 4K, then we might
1040          * be hitting a special driver mapping, and need to align the
1041          * address before we fetch the PTE.
1042          *
1043          * It could also be a hugepage mapping, in which case this is
1044          * not necessary, but it's not harmful, either.
1045          */
1046         if (psize != MMU_PAGE_4K)
1047                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1048 #endif /* CONFIG_PPC_64K_PAGES */
1049
1050         /* Get PTE and page size from page tables */
1051         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1052         if (ptep == NULL || !pte_present(*ptep)) {
1053                 DBG_LOW(" no PTE !\n");
1054                 rc = 1;
1055                 goto bail;
1056         }
1057
1058         /* Add _PAGE_PRESENT to the required access perm */
1059         access |= _PAGE_PRESENT;
1060
1061         /* Pre-check access permissions (will be re-checked atomically
1062          * in __hash_page_XX but this pre-check is a fast path
1063          */
1064         if (access & ~pte_val(*ptep)) {
1065                 DBG_LOW(" no access !\n");
1066                 rc = 1;
1067                 goto bail;
1068         }
1069
1070         if (hugeshift) {
1071                 if (pmd_trans_huge(*(pmd_t *)ptep))
1072                         rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1073                                              trap, local, ssize, psize);
1074 #ifdef CONFIG_HUGETLB_PAGE
1075                 else
1076                         rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1077                                               local, ssize, hugeshift, psize);
1078 #else
1079                 else {
1080                         /*
1081                          * if we have hugeshift, and is not transhuge with
1082                          * hugetlb disabled, something is really wrong.
1083                          */
1084                         rc = 1;
1085                         WARN_ON(1);
1086                 }
1087 #endif
1088                 goto bail;
1089         }
1090
1091 #ifndef CONFIG_PPC_64K_PAGES
1092         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1093 #else
1094         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1095                 pte_val(*(ptep + PTRS_PER_PTE)));
1096 #endif
1097         /* Do actual hashing */
1098 #ifdef CONFIG_PPC_64K_PAGES
1099         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1100         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1101                 demote_segment_4k(mm, ea);
1102                 psize = MMU_PAGE_4K;
1103         }
1104
1105         /* If this PTE is non-cacheable and we have restrictions on
1106          * using non cacheable large pages, then we switch to 4k
1107          */
1108         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1109             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1110                 if (user_region) {
1111                         demote_segment_4k(mm, ea);
1112                         psize = MMU_PAGE_4K;
1113                 } else if (ea < VMALLOC_END) {
1114                         /*
1115                          * some driver did a non-cacheable mapping
1116                          * in vmalloc space, so switch vmalloc
1117                          * to 4k pages
1118                          */
1119                         printk(KERN_ALERT "Reducing vmalloc segment "
1120                                "to 4kB pages because of "
1121                                "non-cacheable mapping\n");
1122                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1123 #ifdef CONFIG_SPU_BASE
1124                         spu_flush_all_slbs(mm);
1125 #endif
1126                 }
1127         }
1128         if (user_region) {
1129                 if (psize != get_paca_psize(ea)) {
1130                         get_paca()->context = mm->context;
1131                         slb_flush_and_rebolt();
1132                 }
1133         } else if (get_paca()->vmalloc_sllp !=
1134                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1135                 get_paca()->vmalloc_sllp =
1136                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1137                 slb_vmalloc_update();
1138         }
1139 #endif /* CONFIG_PPC_64K_PAGES */
1140
1141 #ifdef CONFIG_PPC_HAS_HASH_64K
1142         if (psize == MMU_PAGE_64K)
1143                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1144         else
1145 #endif /* CONFIG_PPC_HAS_HASH_64K */
1146         {
1147                 int spp = subpage_protection(mm, ea);
1148                 if (access & spp)
1149                         rc = -2;
1150                 else
1151                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1152                                             local, ssize, spp);
1153         }
1154
1155         /* Dump some info in case of hash insertion failure, they should
1156          * never happen so it is really useful to know if/when they do
1157          */
1158         if (rc == -1)
1159                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1160                                    psize, pte_val(*ptep));
1161 #ifndef CONFIG_PPC_64K_PAGES
1162         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1163 #else
1164         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1165                 pte_val(*(ptep + PTRS_PER_PTE)));
1166 #endif
1167         DBG_LOW(" -> rc=%d\n", rc);
1168
1169 bail:
1170         exception_exit(prev_state);
1171         return rc;
1172 }
1173 EXPORT_SYMBOL_GPL(hash_page);
1174
1175 void hash_preload(struct mm_struct *mm, unsigned long ea,
1176                   unsigned long access, unsigned long trap)
1177 {
1178         int hugepage_shift;
1179         unsigned long vsid;
1180         pgd_t *pgdir;
1181         pte_t *ptep;
1182         unsigned long flags;
1183         int rc, ssize, local = 0;
1184
1185         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1186
1187 #ifdef CONFIG_PPC_MM_SLICES
1188         /* We only prefault standard pages for now */
1189         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1190                 return;
1191 #endif
1192
1193         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1194                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1195
1196         /* Get Linux PTE if available */
1197         pgdir = mm->pgd;
1198         if (pgdir == NULL)
1199                 return;
1200
1201         /* Get VSID */
1202         ssize = user_segment_size(ea);
1203         vsid = get_vsid(mm->context.id, ea, ssize);
1204         if (!vsid)
1205                 return;
1206         /*
1207          * Hash doesn't like irqs. Walking linux page table with irq disabled
1208          * saves us from holding multiple locks.
1209          */
1210         local_irq_save(flags);
1211
1212         /*
1213          * THP pages use update_mmu_cache_pmd. We don't do
1214          * hash preload there. Hence can ignore THP here
1215          */
1216         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugepage_shift);
1217         if (!ptep)
1218                 goto out_exit;
1219
1220         WARN_ON(hugepage_shift);
1221 #ifdef CONFIG_PPC_64K_PAGES
1222         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1223          * a 64K kernel), then we don't preload, hash_page() will take
1224          * care of it once we actually try to access the page.
1225          * That way we don't have to duplicate all of the logic for segment
1226          * page size demotion here
1227          */
1228         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1229                 goto out_exit;
1230 #endif /* CONFIG_PPC_64K_PAGES */
1231
1232         /* Is that local to this CPU ? */
1233         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1234                 local = 1;
1235
1236         /* Hash it in */
1237 #ifdef CONFIG_PPC_HAS_HASH_64K
1238         if (mm->context.user_psize == MMU_PAGE_64K)
1239                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1240         else
1241 #endif /* CONFIG_PPC_HAS_HASH_64K */
1242                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1243                                     subpage_protection(mm, ea));
1244
1245         /* Dump some info in case of hash insertion failure, they should
1246          * never happen so it is really useful to know if/when they do
1247          */
1248         if (rc == -1)
1249                 hash_failure_debug(ea, access, vsid, trap, ssize,
1250                                    mm->context.user_psize,
1251                                    mm->context.user_psize,
1252                                    pte_val(*ptep));
1253 out_exit:
1254         local_irq_restore(flags);
1255 }
1256
1257 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1258  *          do not forget to update the assembly call site !
1259  */
1260 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1261                      int local)
1262 {
1263         unsigned long hash, index, shift, hidx, slot;
1264
1265         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1266         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1267                 hash = hpt_hash(vpn, shift, ssize);
1268                 hidx = __rpte_to_hidx(pte, index);
1269                 if (hidx & _PTEIDX_SECONDARY)
1270                         hash = ~hash;
1271                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1272                 slot += hidx & _PTEIDX_GROUP_IX;
1273                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1274                 /*
1275                  * We use same base page size and actual psize, because we don't
1276                  * use these functions for hugepage
1277                  */
1278                 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1279         } pte_iterate_hashed_end();
1280
1281 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1282         /* Transactions are not aborted by tlbiel, only tlbie.
1283          * Without, syncing a page back to a block device w/ PIO could pick up
1284          * transactional data (bad!) so we force an abort here.  Before the
1285          * sync the page will be made read-only, which will flush_hash_page.
1286          * BIG ISSUE here: if the kernel uses a page from userspace without
1287          * unmapping it first, it may see the speculated version.
1288          */
1289         if (local && cpu_has_feature(CPU_FTR_TM) &&
1290             current->thread.regs &&
1291             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1292                 tm_enable();
1293                 tm_abort(TM_CAUSE_TLBI);
1294         }
1295 #endif
1296 }
1297
1298 void flush_hash_range(unsigned long number, int local)
1299 {
1300         if (ppc_md.flush_hash_range)
1301                 ppc_md.flush_hash_range(number, local);
1302         else {
1303                 int i;
1304                 struct ppc64_tlb_batch *batch =
1305                         &__get_cpu_var(ppc64_tlb_batch);
1306
1307                 for (i = 0; i < number; i++)
1308                         flush_hash_page(batch->vpn[i], batch->pte[i],
1309                                         batch->psize, batch->ssize, local);
1310         }
1311 }
1312
1313 /*
1314  * low_hash_fault is called when we the low level hash code failed
1315  * to instert a PTE due to an hypervisor error
1316  */
1317 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1318 {
1319         enum ctx_state prev_state = exception_enter();
1320
1321         if (user_mode(regs)) {
1322 #ifdef CONFIG_PPC_SUBPAGE_PROT
1323                 if (rc == -2)
1324                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1325                 else
1326 #endif
1327                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1328         } else
1329                 bad_page_fault(regs, address, SIGBUS);
1330
1331         exception_exit(prev_state);
1332 }
1333
1334 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1335                            unsigned long pa, unsigned long rflags,
1336                            unsigned long vflags, int psize, int ssize)
1337 {
1338         unsigned long hpte_group;
1339         long slot;
1340
1341 repeat:
1342         hpte_group = ((hash & htab_hash_mask) *
1343                        HPTES_PER_GROUP) & ~0x7UL;
1344
1345         /* Insert into the hash table, primary slot */
1346         slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1347                                   psize, psize, ssize);
1348
1349         /* Primary is full, try the secondary */
1350         if (unlikely(slot == -1)) {
1351                 hpte_group = ((~hash & htab_hash_mask) *
1352                               HPTES_PER_GROUP) & ~0x7UL;
1353                 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1354                                           vflags | HPTE_V_SECONDARY,
1355                                           psize, psize, ssize);
1356                 if (slot == -1) {
1357                         if (mftb() & 0x1)
1358                                 hpte_group = ((hash & htab_hash_mask) *
1359                                               HPTES_PER_GROUP)&~0x7UL;
1360
1361                         ppc_md.hpte_remove(hpte_group);
1362                         goto repeat;
1363                 }
1364         }
1365
1366         return slot;
1367 }
1368
1369 #ifdef CONFIG_DEBUG_PAGEALLOC
1370 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1371 {
1372         unsigned long hash;
1373         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1374         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1375         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1376         long ret;
1377
1378         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1379
1380         /* Don't create HPTE entries for bad address */
1381         if (!vsid)
1382                 return;
1383
1384         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1385                                     HPTE_V_BOLTED,
1386                                     mmu_linear_psize, mmu_kernel_ssize);
1387
1388         BUG_ON (ret < 0);
1389         spin_lock(&linear_map_hash_lock);
1390         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1391         linear_map_hash_slots[lmi] = ret | 0x80;
1392         spin_unlock(&linear_map_hash_lock);
1393 }
1394
1395 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1396 {
1397         unsigned long hash, hidx, slot;
1398         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1399         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1400
1401         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1402         spin_lock(&linear_map_hash_lock);
1403         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1404         hidx = linear_map_hash_slots[lmi] & 0x7f;
1405         linear_map_hash_slots[lmi] = 0;
1406         spin_unlock(&linear_map_hash_lock);
1407         if (hidx & _PTEIDX_SECONDARY)
1408                 hash = ~hash;
1409         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1410         slot += hidx & _PTEIDX_GROUP_IX;
1411         ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1412                                mmu_kernel_ssize, 0);
1413 }
1414
1415 void kernel_map_pages(struct page *page, int numpages, int enable)
1416 {
1417         unsigned long flags, vaddr, lmi;
1418         int i;
1419
1420         local_irq_save(flags);
1421         for (i = 0; i < numpages; i++, page++) {
1422                 vaddr = (unsigned long)page_address(page);
1423                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1424                 if (lmi >= linear_map_hash_count)
1425                         continue;
1426                 if (enable)
1427                         kernel_map_linear_page(vaddr, lmi);
1428                 else
1429                         kernel_unmap_linear_page(vaddr, lmi);
1430         }
1431         local_irq_restore(flags);
1432 }
1433 #endif /* CONFIG_DEBUG_PAGEALLOC */
1434
1435 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1436                                 phys_addr_t first_memblock_size)
1437 {
1438         /* We don't currently support the first MEMBLOCK not mapping 0
1439          * physical on those processors
1440          */
1441         BUG_ON(first_memblock_base != 0);
1442
1443         /* On LPAR systems, the first entry is our RMA region,
1444          * non-LPAR 64-bit hash MMU systems don't have a limitation
1445          * on real mode access, but using the first entry works well
1446          * enough. We also clamp it to 1G to avoid some funky things
1447          * such as RTAS bugs etc...
1448          */
1449         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1450
1451         /* Finally limit subsequent allocations */
1452         memblock_set_current_limit(ppc64_rma_size);
1453 }