]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/powerpc/mm/hugetlbpage.c
powerpc/mm: Cleanup management of kmem_caches for pagetables
[mv-sheeva.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
26
27 #define PAGE_SHIFT_64K  16
28 #define PAGE_SHIFT_16M  24
29 #define PAGE_SHIFT_16G  34
30
31 #define NUM_LOW_AREAS   (0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS  (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 #define MAX_NUMBER_GPAGES       1024
34
35 /* Tracks the 16G pages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  */
37 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
38 static unsigned nr_gpages;
39
40 /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
41  * stored for the huge page sizes that are valid.
42  */
43 unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */
44
45 #define hugepte_shift                   mmu_huge_psizes
46 #define HUGEPTE_INDEX_SIZE(psize)       (mmu_huge_psizes[(psize)])
47 #define PTRS_PER_HUGEPTE(psize)         (1 << mmu_huge_psizes[psize])
48
49 #define HUGEPD_SHIFT(psize)             (mmu_psize_to_shift(psize) \
50                                          + HUGEPTE_INDEX_SIZE(psize))
51 #define HUGEPD_SIZE(psize)              (1UL << HUGEPD_SHIFT(psize))
52 #define HUGEPD_MASK(psize)              (~(HUGEPD_SIZE(psize)-1))
53
54 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
55  * will choke on pointers to hugepte tables, which is handy for
56  * catching screwups early. */
57 #define HUGEPD_OK       0x1
58
59 typedef struct { unsigned long pd; } hugepd_t;
60
61 #define hugepd_none(hpd)        ((hpd).pd == 0)
62
63 static inline int shift_to_mmu_psize(unsigned int shift)
64 {
65         switch (shift) {
66 #ifndef CONFIG_PPC_64K_PAGES
67         case PAGE_SHIFT_64K:
68             return MMU_PAGE_64K;
69 #endif
70         case PAGE_SHIFT_16M:
71             return MMU_PAGE_16M;
72         case PAGE_SHIFT_16G:
73             return MMU_PAGE_16G;
74         }
75         return -1;
76 }
77
78 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
79 {
80         if (mmu_psize_defs[mmu_psize].shift)
81                 return mmu_psize_defs[mmu_psize].shift;
82         BUG();
83 }
84
85 static inline pte_t *hugepd_page(hugepd_t hpd)
86 {
87         BUG_ON(!(hpd.pd & HUGEPD_OK));
88         return (pte_t *)(hpd.pd & ~HUGEPD_OK);
89 }
90
91 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
92                                     struct hstate *hstate)
93 {
94         unsigned int shift = huge_page_shift(hstate);
95         int psize = shift_to_mmu_psize(shift);
96         unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
97         pte_t *dir = hugepd_page(*hpdp);
98
99         return dir + idx;
100 }
101
102 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
103                            unsigned long address, unsigned int psize)
104 {
105         pte_t *new = kmem_cache_zalloc(PGT_CACHE(hugepte_shift[psize]),
106                                        GFP_KERNEL|__GFP_REPEAT);
107
108         if (! new)
109                 return -ENOMEM;
110
111         spin_lock(&mm->page_table_lock);
112         if (!hugepd_none(*hpdp))
113                 kmem_cache_free(PGT_CACHE(hugepte_shift[psize]), new);
114         else
115                 hpdp->pd = (unsigned long)new | HUGEPD_OK;
116         spin_unlock(&mm->page_table_lock);
117         return 0;
118 }
119
120
121 static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
122 {
123         if (huge_page_shift(hstate) < PUD_SHIFT)
124                 return pud_offset(pgd, addr);
125         else
126                 return (pud_t *) pgd;
127 }
128 static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
129                          struct hstate *hstate)
130 {
131         if (huge_page_shift(hstate) < PUD_SHIFT)
132                 return pud_alloc(mm, pgd, addr);
133         else
134                 return (pud_t *) pgd;
135 }
136 static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
137 {
138         if (huge_page_shift(hstate) < PMD_SHIFT)
139                 return pmd_offset(pud, addr);
140         else
141                 return (pmd_t *) pud;
142 }
143 static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
144                          struct hstate *hstate)
145 {
146         if (huge_page_shift(hstate) < PMD_SHIFT)
147                 return pmd_alloc(mm, pud, addr);
148         else
149                 return (pmd_t *) pud;
150 }
151
152 /* Build list of addresses of gigantic pages.  This function is used in early
153  * boot before the buddy or bootmem allocator is setup.
154  */
155 void add_gpage(unsigned long addr, unsigned long page_size,
156         unsigned long number_of_pages)
157 {
158         if (!addr)
159                 return;
160         while (number_of_pages > 0) {
161                 gpage_freearray[nr_gpages] = addr;
162                 nr_gpages++;
163                 number_of_pages--;
164                 addr += page_size;
165         }
166 }
167
168 /* Moves the gigantic page addresses from the temporary list to the
169  * huge_boot_pages list.
170  */
171 int alloc_bootmem_huge_page(struct hstate *hstate)
172 {
173         struct huge_bootmem_page *m;
174         if (nr_gpages == 0)
175                 return 0;
176         m = phys_to_virt(gpage_freearray[--nr_gpages]);
177         gpage_freearray[nr_gpages] = 0;
178         list_add(&m->list, &huge_boot_pages);
179         m->hstate = hstate;
180         return 1;
181 }
182
183
184 /* Modelled after find_linux_pte() */
185 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
186 {
187         pgd_t *pg;
188         pud_t *pu;
189         pmd_t *pm;
190
191         unsigned int psize;
192         unsigned int shift;
193         unsigned long sz;
194         struct hstate *hstate;
195         psize = get_slice_psize(mm, addr);
196         shift = mmu_psize_to_shift(psize);
197         sz = ((1UL) << shift);
198         hstate = size_to_hstate(sz);
199
200         addr &= hstate->mask;
201
202         pg = pgd_offset(mm, addr);
203         if (!pgd_none(*pg)) {
204                 pu = hpud_offset(pg, addr, hstate);
205                 if (!pud_none(*pu)) {
206                         pm = hpmd_offset(pu, addr, hstate);
207                         if (!pmd_none(*pm))
208                                 return hugepte_offset((hugepd_t *)pm, addr,
209                                                       hstate);
210                 }
211         }
212
213         return NULL;
214 }
215
216 pte_t *huge_pte_alloc(struct mm_struct *mm,
217                         unsigned long addr, unsigned long sz)
218 {
219         pgd_t *pg;
220         pud_t *pu;
221         pmd_t *pm;
222         hugepd_t *hpdp = NULL;
223         struct hstate *hstate;
224         unsigned int psize;
225         hstate = size_to_hstate(sz);
226
227         psize = get_slice_psize(mm, addr);
228         BUG_ON(!mmu_huge_psizes[psize]);
229
230         addr &= hstate->mask;
231
232         pg = pgd_offset(mm, addr);
233         pu = hpud_alloc(mm, pg, addr, hstate);
234
235         if (pu) {
236                 pm = hpmd_alloc(mm, pu, addr, hstate);
237                 if (pm)
238                         hpdp = (hugepd_t *)pm;
239         }
240
241         if (! hpdp)
242                 return NULL;
243
244         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
245                 return NULL;
246
247         return hugepte_offset(hpdp, addr, hstate);
248 }
249
250 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
251 {
252         return 0;
253 }
254
255 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
256                                unsigned int psize)
257 {
258         pte_t *hugepte = hugepd_page(*hpdp);
259
260         hpdp->pd = 0;
261         tlb->need_flush = 1;
262         pgtable_free_tlb(tlb, hugepte, hugepte_shift[psize]);
263 }
264
265 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
266                                    unsigned long addr, unsigned long end,
267                                    unsigned long floor, unsigned long ceiling,
268                                    unsigned int psize)
269 {
270         pmd_t *pmd;
271         unsigned long next;
272         unsigned long start;
273
274         start = addr;
275         pmd = pmd_offset(pud, addr);
276         do {
277                 next = pmd_addr_end(addr, end);
278                 if (pmd_none(*pmd))
279                         continue;
280                 free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
281         } while (pmd++, addr = next, addr != end);
282
283         start &= PUD_MASK;
284         if (start < floor)
285                 return;
286         if (ceiling) {
287                 ceiling &= PUD_MASK;
288                 if (!ceiling)
289                         return;
290         }
291         if (end - 1 > ceiling - 1)
292                 return;
293
294         pmd = pmd_offset(pud, start);
295         pud_clear(pud);
296         pmd_free_tlb(tlb, pmd, start);
297 }
298
299 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
300                                    unsigned long addr, unsigned long end,
301                                    unsigned long floor, unsigned long ceiling)
302 {
303         pud_t *pud;
304         unsigned long next;
305         unsigned long start;
306         unsigned int shift;
307         unsigned int psize = get_slice_psize(tlb->mm, addr);
308         shift = mmu_psize_to_shift(psize);
309
310         start = addr;
311         pud = pud_offset(pgd, addr);
312         do {
313                 next = pud_addr_end(addr, end);
314                 if (shift < PMD_SHIFT) {
315                         if (pud_none_or_clear_bad(pud))
316                                 continue;
317                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
318                                                ceiling, psize);
319                 } else {
320                         if (pud_none(*pud))
321                                 continue;
322                         free_hugepte_range(tlb, (hugepd_t *)pud, psize);
323                 }
324         } while (pud++, addr = next, addr != end);
325
326         start &= PGDIR_MASK;
327         if (start < floor)
328                 return;
329         if (ceiling) {
330                 ceiling &= PGDIR_MASK;
331                 if (!ceiling)
332                         return;
333         }
334         if (end - 1 > ceiling - 1)
335                 return;
336
337         pud = pud_offset(pgd, start);
338         pgd_clear(pgd);
339         pud_free_tlb(tlb, pud, start);
340 }
341
342 /*
343  * This function frees user-level page tables of a process.
344  *
345  * Must be called with pagetable lock held.
346  */
347 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
348                             unsigned long addr, unsigned long end,
349                             unsigned long floor, unsigned long ceiling)
350 {
351         pgd_t *pgd;
352         unsigned long next;
353         unsigned long start;
354
355         /*
356          * Comments below take from the normal free_pgd_range().  They
357          * apply here too.  The tests against HUGEPD_MASK below are
358          * essential, because we *don't* test for this at the bottom
359          * level.  Without them we'll attempt to free a hugepte table
360          * when we unmap just part of it, even if there are other
361          * active mappings using it.
362          *
363          * The next few lines have given us lots of grief...
364          *
365          * Why are we testing HUGEPD* at this top level?  Because
366          * often there will be no work to do at all, and we'd prefer
367          * not to go all the way down to the bottom just to discover
368          * that.
369          *
370          * Why all these "- 1"s?  Because 0 represents both the bottom
371          * of the address space and the top of it (using -1 for the
372          * top wouldn't help much: the masks would do the wrong thing).
373          * The rule is that addr 0 and floor 0 refer to the bottom of
374          * the address space, but end 0 and ceiling 0 refer to the top
375          * Comparisons need to use "end - 1" and "ceiling - 1" (though
376          * that end 0 case should be mythical).
377          *
378          * Wherever addr is brought up or ceiling brought down, we
379          * must be careful to reject "the opposite 0" before it
380          * confuses the subsequent tests.  But what about where end is
381          * brought down by HUGEPD_SIZE below? no, end can't go down to
382          * 0 there.
383          *
384          * Whereas we round start (addr) and ceiling down, by different
385          * masks at different levels, in order to test whether a table
386          * now has no other vmas using it, so can be freed, we don't
387          * bother to round floor or end up - the tests don't need that.
388          */
389         unsigned int psize = get_slice_psize(tlb->mm, addr);
390
391         addr &= HUGEPD_MASK(psize);
392         if (addr < floor) {
393                 addr += HUGEPD_SIZE(psize);
394                 if (!addr)
395                         return;
396         }
397         if (ceiling) {
398                 ceiling &= HUGEPD_MASK(psize);
399                 if (!ceiling)
400                         return;
401         }
402         if (end - 1 > ceiling - 1)
403                 end -= HUGEPD_SIZE(psize);
404         if (addr > end - 1)
405                 return;
406
407         start = addr;
408         pgd = pgd_offset(tlb->mm, addr);
409         do {
410                 psize = get_slice_psize(tlb->mm, addr);
411                 BUG_ON(!mmu_huge_psizes[psize]);
412                 next = pgd_addr_end(addr, end);
413                 if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
414                         if (pgd_none_or_clear_bad(pgd))
415                                 continue;
416                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
417                 } else {
418                         if (pgd_none(*pgd))
419                                 continue;
420                         free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
421                 }
422         } while (pgd++, addr = next, addr != end);
423 }
424
425 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
426                      pte_t *ptep, pte_t pte)
427 {
428         if (pte_present(*ptep)) {
429                 /* We open-code pte_clear because we need to pass the right
430                  * argument to hpte_need_flush (huge / !huge). Might not be
431                  * necessary anymore if we make hpte_need_flush() get the
432                  * page size from the slices
433                  */
434                 pte_update(mm, addr, ptep, ~0UL, 1);
435         }
436         *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
437 }
438
439 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
440                               pte_t *ptep)
441 {
442         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
443         return __pte(old);
444 }
445
446 struct page *
447 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
448 {
449         pte_t *ptep;
450         struct page *page;
451         unsigned int mmu_psize = get_slice_psize(mm, address);
452
453         /* Verify it is a huge page else bail. */
454         if (!mmu_huge_psizes[mmu_psize])
455                 return ERR_PTR(-EINVAL);
456
457         ptep = huge_pte_offset(mm, address);
458         page = pte_page(*ptep);
459         if (page) {
460                 unsigned int shift = mmu_psize_to_shift(mmu_psize);
461                 unsigned long sz = ((1UL) << shift);
462                 page += (address % sz) / PAGE_SIZE;
463         }
464
465         return page;
466 }
467
468 int pmd_huge(pmd_t pmd)
469 {
470         return 0;
471 }
472
473 int pud_huge(pud_t pud)
474 {
475         return 0;
476 }
477
478 struct page *
479 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
480                 pmd_t *pmd, int write)
481 {
482         BUG();
483         return NULL;
484 }
485
486
487 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
488                                         unsigned long len, unsigned long pgoff,
489                                         unsigned long flags)
490 {
491         struct hstate *hstate = hstate_file(file);
492         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
493
494         if (!mmu_huge_psizes[mmu_psize])
495                 return -EINVAL;
496         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
497 }
498
499 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
500 {
501         unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
502
503         return 1UL << mmu_psize_to_shift(psize);
504 }
505
506 /*
507  * Called by asm hashtable.S for doing lazy icache flush
508  */
509 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
510                                         pte_t pte, int trap, unsigned long sz)
511 {
512         struct page *page;
513         int i;
514
515         if (!pfn_valid(pte_pfn(pte)))
516                 return rflags;
517
518         page = pte_page(pte);
519
520         /* page is dirty */
521         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
522                 if (trap == 0x400) {
523                         for (i = 0; i < (sz / PAGE_SIZE); i++)
524                                 __flush_dcache_icache(page_address(page+i));
525                         set_bit(PG_arch_1, &page->flags);
526                 } else {
527                         rflags |= HPTE_R_N;
528                 }
529         }
530         return rflags;
531 }
532
533 int hash_huge_page(struct mm_struct *mm, unsigned long access,
534                    unsigned long ea, unsigned long vsid, int local,
535                    unsigned long trap)
536 {
537         pte_t *ptep;
538         unsigned long old_pte, new_pte;
539         unsigned long va, rflags, pa, sz;
540         long slot;
541         int err = 1;
542         int ssize = user_segment_size(ea);
543         unsigned int mmu_psize;
544         int shift;
545         mmu_psize = get_slice_psize(mm, ea);
546
547         if (!mmu_huge_psizes[mmu_psize])
548                 goto out;
549         ptep = huge_pte_offset(mm, ea);
550
551         /* Search the Linux page table for a match with va */
552         va = hpt_va(ea, vsid, ssize);
553
554         /*
555          * If no pte found or not present, send the problem up to
556          * do_page_fault
557          */
558         if (unlikely(!ptep || pte_none(*ptep)))
559                 goto out;
560
561         /* 
562          * Check the user's access rights to the page.  If access should be
563          * prevented then send the problem up to do_page_fault.
564          */
565         if (unlikely(access & ~pte_val(*ptep)))
566                 goto out;
567         /*
568          * At this point, we have a pte (old_pte) which can be used to build
569          * or update an HPTE. There are 2 cases:
570          *
571          * 1. There is a valid (present) pte with no associated HPTE (this is 
572          *      the most common case)
573          * 2. There is a valid (present) pte with an associated HPTE. The
574          *      current values of the pp bits in the HPTE prevent access
575          *      because we are doing software DIRTY bit management and the
576          *      page is currently not DIRTY. 
577          */
578
579
580         do {
581                 old_pte = pte_val(*ptep);
582                 if (old_pte & _PAGE_BUSY)
583                         goto out;
584                 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
585         } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
586                                          old_pte, new_pte));
587
588         rflags = 0x2 | (!(new_pte & _PAGE_RW));
589         /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
590         rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
591         shift = mmu_psize_to_shift(mmu_psize);
592         sz = ((1UL) << shift);
593         if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
594                 /* No CPU has hugepages but lacks no execute, so we
595                  * don't need to worry about that case */
596                 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
597                                                        trap, sz);
598
599         /* Check if pte already has an hpte (case 2) */
600         if (unlikely(old_pte & _PAGE_HASHPTE)) {
601                 /* There MIGHT be an HPTE for this pte */
602                 unsigned long hash, slot;
603
604                 hash = hpt_hash(va, shift, ssize);
605                 if (old_pte & _PAGE_F_SECOND)
606                         hash = ~hash;
607                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
608                 slot += (old_pte & _PAGE_F_GIX) >> 12;
609
610                 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
611                                          ssize, local) == -1)
612                         old_pte &= ~_PAGE_HPTEFLAGS;
613         }
614
615         if (likely(!(old_pte & _PAGE_HASHPTE))) {
616                 unsigned long hash = hpt_hash(va, shift, ssize);
617                 unsigned long hpte_group;
618
619                 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
620
621 repeat:
622                 hpte_group = ((hash & htab_hash_mask) *
623                               HPTES_PER_GROUP) & ~0x7UL;
624
625                 /* clear HPTE slot informations in new PTE */
626 #ifdef CONFIG_PPC_64K_PAGES
627                 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
628 #else
629                 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
630 #endif
631                 /* Add in WIMG bits */
632                 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
633                                       _PAGE_COHERENT | _PAGE_GUARDED));
634
635                 /* Insert into the hash table, primary slot */
636                 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
637                                           mmu_psize, ssize);
638
639                 /* Primary is full, try the secondary */
640                 if (unlikely(slot == -1)) {
641                         hpte_group = ((~hash & htab_hash_mask) *
642                                       HPTES_PER_GROUP) & ~0x7UL; 
643                         slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
644                                                   HPTE_V_SECONDARY,
645                                                   mmu_psize, ssize);
646                         if (slot == -1) {
647                                 if (mftb() & 0x1)
648                                         hpte_group = ((hash & htab_hash_mask) *
649                                                       HPTES_PER_GROUP)&~0x7UL;
650
651                                 ppc_md.hpte_remove(hpte_group);
652                                 goto repeat;
653                         }
654                 }
655
656                 if (unlikely(slot == -2))
657                         panic("hash_huge_page: pte_insert failed\n");
658
659                 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
660         }
661
662         /*
663          * No need to use ldarx/stdcx here
664          */
665         *ptep = __pte(new_pte & ~_PAGE_BUSY);
666
667         err = 0;
668
669  out:
670         return err;
671 }
672
673 static void __init set_huge_psize(int psize)
674 {
675         /* Check that it is a page size supported by the hardware and
676          * that it fits within pagetable limits. */
677         if (mmu_psize_defs[psize].shift &&
678                 mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
679                 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
680                  mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
681                  mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
682                 /* Return if huge page size has already been setup or is the
683                  * same as the base page size. */
684                 if (mmu_huge_psizes[psize] ||
685                    mmu_psize_defs[psize].shift == PAGE_SHIFT)
686                         return;
687                 hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
688
689                 switch (mmu_psize_defs[psize].shift) {
690                 case PAGE_SHIFT_64K:
691                     /* We only allow 64k hpages with 4k base page,
692                      * which was checked above, and always put them
693                      * at the PMD */
694                     hugepte_shift[psize] = PMD_SHIFT;
695                     break;
696                 case PAGE_SHIFT_16M:
697                     /* 16M pages can be at two different levels
698                      * of pagestables based on base page size */
699                     if (PAGE_SHIFT == PAGE_SHIFT_64K)
700                             hugepte_shift[psize] = PMD_SHIFT;
701                     else /* 4k base page */
702                             hugepte_shift[psize] = PUD_SHIFT;
703                     break;
704                 case PAGE_SHIFT_16G:
705                     /* 16G pages are always at PGD level */
706                     hugepte_shift[psize] = PGDIR_SHIFT;
707                     break;
708                 }
709                 hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
710         } else
711                 hugepte_shift[psize] = 0;
712 }
713
714 static int __init hugepage_setup_sz(char *str)
715 {
716         unsigned long long size;
717         int mmu_psize;
718         int shift;
719
720         size = memparse(str, &str);
721
722         shift = __ffs(size);
723         mmu_psize = shift_to_mmu_psize(shift);
724         if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
725                 set_huge_psize(mmu_psize);
726         else
727                 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
728
729         return 1;
730 }
731 __setup("hugepagesz=", hugepage_setup_sz);
732
733 static int __init hugetlbpage_init(void)
734 {
735         unsigned int psize;
736
737         if (!cpu_has_feature(CPU_FTR_16M_PAGE))
738                 return -ENODEV;
739
740         /* Add supported huge page sizes.  Need to change
741          *  HUGE_MAX_HSTATE if the number of supported huge page sizes
742          *  changes.
743          */
744         set_huge_psize(MMU_PAGE_16M);
745         set_huge_psize(MMU_PAGE_16G);
746
747         /* Temporarily disable support for 64K huge pages when 64K SPU local
748          * store support is enabled as the current implementation conflicts.
749          */
750 #ifndef CONFIG_SPU_FS_64K_LS
751         set_huge_psize(MMU_PAGE_64K);
752 #endif
753
754         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
755                 if (mmu_huge_psizes[psize]) {
756                         pgtable_cache_add(hugepte_shift[psize], NULL);
757                         if (!PGT_CACHE(hugepte_shift[psize]))
758                                 panic("hugetlbpage_init(): could not create "
759                                       "pgtable cache for %d bit pagesize\n",
760                                       mmu_psize_to_shift(psize));
761                 }
762         }
763
764         return 0;
765 }
766
767 module_init(hugetlbpage_init);