]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/mem.c
powerpc: Rename files to have consistent _32/_64 suffixes
[karo-tx-linux.git] / arch / powerpc / mm / mem.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/bootinfo.h>
47 #include <asm/prom.h>
48 #include <asm/lmb.h>
49 #include <asm/sections.h>
50
51 #include "mmu_decl.h"
52
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE 0       /* XXX for now */
55 #define CPU_FTR_NOEXECUTE       0
56 #endif
57
58 int init_bootmem_done;
59 int mem_init_done;
60
61 /*
62  * This is called by /dev/mem to know if a given address has to
63  * be mapped non-cacheable or not
64  */
65 int page_is_ram(unsigned long pfn)
66 {
67         unsigned long paddr = (pfn << PAGE_SHIFT);
68
69 #ifndef CONFIG_PPC64    /* XXX for now */
70         return paddr < __pa(high_memory);
71 #else
72         int i;
73         for (i=0; i < lmb.memory.cnt; i++) {
74                 unsigned long base;
75
76                 base = lmb.memory.region[i].base;
77
78                 if ((paddr >= base) &&
79                         (paddr < (base + lmb.memory.region[i].size))) {
80                         return 1;
81                 }
82         }
83
84         return 0;
85 #endif
86 }
87 EXPORT_SYMBOL(page_is_ram);
88
89 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
90                               unsigned long size, pgprot_t vma_prot)
91 {
92         if (ppc_md.phys_mem_access_prot)
93                 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
94
95         if (!page_is_ram(addr >> PAGE_SHIFT))
96                 vma_prot = __pgprot(pgprot_val(vma_prot)
97                                     | _PAGE_GUARDED | _PAGE_NO_CACHE);
98         return vma_prot;
99 }
100 EXPORT_SYMBOL(phys_mem_access_prot);
101
102 void show_mem(void)
103 {
104         unsigned long total = 0, reserved = 0;
105         unsigned long shared = 0, cached = 0;
106         unsigned long highmem = 0;
107         struct page *page;
108         pg_data_t *pgdat;
109         unsigned long i;
110
111         printk("Mem-info:\n");
112         show_free_areas();
113         printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
114         for_each_pgdat(pgdat) {
115                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
116                         page = pgdat_page_nr(pgdat, i);
117                         total++;
118                         if (PageHighMem(page))
119                                 highmem++;
120                         if (PageReserved(page))
121                                 reserved++;
122                         else if (PageSwapCache(page))
123                                 cached++;
124                         else if (page_count(page))
125                                 shared += page_count(page) - 1;
126                 }
127         }
128         printk("%ld pages of RAM\n", total);
129 #ifdef CONFIG_HIGHMEM
130         printk("%ld pages of HIGHMEM\n", highmem);
131 #endif
132         printk("%ld reserved pages\n", reserved);
133         printk("%ld pages shared\n", shared);
134         printk("%ld pages swap cached\n", cached);
135 }
136
137 /*
138  * Initialize the bootmem system and give it all the memory we
139  * have available.  If we are using highmem, we only put the
140  * lowmem into the bootmem system.
141  */
142 #ifndef CONFIG_NEED_MULTIPLE_NODES
143 void __init do_init_bootmem(void)
144 {
145         unsigned long i;
146         unsigned long start, bootmap_pages;
147         unsigned long total_pages;
148         int boot_mapsize;
149
150         max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
151 #ifdef CONFIG_HIGHMEM
152         total_pages = total_lowmem >> PAGE_SHIFT;
153 #endif
154
155         /*
156          * Find an area to use for the bootmem bitmap.  Calculate the size of
157          * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
158          * Add 1 additional page in case the address isn't page-aligned.
159          */
160         bootmap_pages = bootmem_bootmap_pages(total_pages);
161
162         start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
163         BUG_ON(!start);
164
165         boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
166
167         /* Add all physical memory to the bootmem map, mark each area
168          * present.
169          */
170         for (i = 0; i < lmb.memory.cnt; i++) {
171                 unsigned long base = lmb.memory.region[i].base;
172                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
173 #ifdef CONFIG_HIGHMEM
174                 if (base >= total_lowmem)
175                         continue;
176                 if (base + size > total_lowmem)
177                         size = total_lowmem - base;
178 #endif
179                 free_bootmem(base, size);
180         }
181
182         /* reserve the sections we're already using */
183         for (i = 0; i < lmb.reserved.cnt; i++)
184                 reserve_bootmem(lmb.reserved.region[i].base,
185                                 lmb_size_bytes(&lmb.reserved, i));
186
187         /* XXX need to clip this if using highmem? */
188         for (i = 0; i < lmb.memory.cnt; i++)
189                 memory_present(0, lmb_start_pfn(&lmb.memory, i),
190                                lmb_end_pfn(&lmb.memory, i));
191         init_bootmem_done = 1;
192 }
193
194 /*
195  * paging_init() sets up the page tables - in fact we've already done this.
196  */
197 void __init paging_init(void)
198 {
199         unsigned long zones_size[MAX_NR_ZONES];
200         unsigned long zholes_size[MAX_NR_ZONES];
201         unsigned long total_ram = lmb_phys_mem_size();
202         unsigned long top_of_ram = lmb_end_of_DRAM();
203
204 #ifdef CONFIG_HIGHMEM
205         map_page(PKMAP_BASE, 0, 0);     /* XXX gross */
206         pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
207                         (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
208         map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
209         kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
210                         (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
211         kmap_prot = PAGE_KERNEL;
212 #endif /* CONFIG_HIGHMEM */
213
214         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
215                top_of_ram, total_ram);
216         printk(KERN_INFO "Memory hole size: %ldMB\n",
217                (top_of_ram - total_ram) >> 20);
218         /*
219          * All pages are DMA-able so we put them all in the DMA zone.
220          */
221         memset(zones_size, 0, sizeof(zones_size));
222         memset(zholes_size, 0, sizeof(zholes_size));
223
224         zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
225         zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
226
227 #ifdef CONFIG_HIGHMEM
228         zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
229         zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
230         zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
231 #else
232         zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
233         zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
234 #endif /* CONFIG_HIGHMEM */
235
236         free_area_init_node(0, NODE_DATA(0), zones_size,
237                             __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
238 }
239 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
240
241 void __init mem_init(void)
242 {
243 #ifdef CONFIG_NEED_MULTIPLE_NODES
244         int nid;
245 #endif
246         pg_data_t *pgdat;
247         unsigned long i;
248         struct page *page;
249         unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
250
251         num_physpages = max_pfn;        /* RAM is assumed contiguous */
252         high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
253
254 #ifdef CONFIG_NEED_MULTIPLE_NODES
255         for_each_online_node(nid) {
256                 if (NODE_DATA(nid)->node_spanned_pages != 0) {
257                         printk("freeing bootmem node %x\n", nid);
258                         totalram_pages +=
259                                 free_all_bootmem_node(NODE_DATA(nid));
260                 }
261         }
262 #else
263         max_mapnr = num_physpages;
264         totalram_pages += free_all_bootmem();
265 #endif
266         for_each_pgdat(pgdat) {
267                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
268                         page = pgdat_page_nr(pgdat, i);
269                         if (PageReserved(page))
270                                 reservedpages++;
271                 }
272         }
273
274         codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
275         datasize = (unsigned long)&__init_begin - (unsigned long)&_sdata;
276         initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
277         bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
278
279 #ifdef CONFIG_HIGHMEM
280         {
281                 unsigned long pfn, highmem_mapnr;
282
283                 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
284                 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
285                         struct page *page = pfn_to_page(pfn);
286
287                         ClearPageReserved(page);
288                         set_page_count(page, 1);
289                         __free_page(page);
290                         totalhigh_pages++;
291                 }
292                 totalram_pages += totalhigh_pages;
293                 printk(KERN_INFO "High memory: %luk\n",
294                        totalhigh_pages << (PAGE_SHIFT-10));
295         }
296 #endif /* CONFIG_HIGHMEM */
297
298         printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
299                "%luk reserved, %luk data, %luk bss, %luk init)\n",
300                 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
301                 num_physpages << (PAGE_SHIFT-10),
302                 codesize >> 10,
303                 reservedpages << (PAGE_SHIFT-10),
304                 datasize >> 10,
305                 bsssize >> 10,
306                 initsize >> 10);
307
308         mem_init_done = 1;
309
310 #ifdef CONFIG_PPC64
311         /* Initialize the vDSO */
312         vdso_init();
313 #endif
314 }
315
316 /*
317  * This is called when a page has been modified by the kernel.
318  * It just marks the page as not i-cache clean.  We do the i-cache
319  * flush later when the page is given to a user process, if necessary.
320  */
321 void flush_dcache_page(struct page *page)
322 {
323         if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
324                 return;
325         /* avoid an atomic op if possible */
326         if (test_bit(PG_arch_1, &page->flags))
327                 clear_bit(PG_arch_1, &page->flags);
328 }
329 EXPORT_SYMBOL(flush_dcache_page);
330
331 void flush_dcache_icache_page(struct page *page)
332 {
333 #ifdef CONFIG_BOOKE
334         void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
335         __flush_dcache_icache(start);
336         kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
337 #elif defined(CONFIG_8xx)
338         /* On 8xx there is no need to kmap since highmem is not supported */
339         __flush_dcache_icache(page_address(page)); 
340 #else
341         __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
342 #endif
343
344 }
345 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
346 {
347         clear_page(page);
348
349         if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
350                 return;
351         /*
352          * We shouldnt have to do this, but some versions of glibc
353          * require it (ld.so assumes zero filled pages are icache clean)
354          * - Anton
355          */
356
357         /* avoid an atomic op if possible */
358         if (test_bit(PG_arch_1, &pg->flags))
359                 clear_bit(PG_arch_1, &pg->flags);
360 }
361 EXPORT_SYMBOL(clear_user_page);
362
363 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
364                     struct page *pg)
365 {
366         copy_page(vto, vfrom);
367
368         /*
369          * We should be able to use the following optimisation, however
370          * there are two problems.
371          * Firstly a bug in some versions of binutils meant PLT sections
372          * were not marked executable.
373          * Secondly the first word in the GOT section is blrl, used
374          * to establish the GOT address. Until recently the GOT was
375          * not marked executable.
376          * - Anton
377          */
378 #if 0
379         if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
380                 return;
381 #endif
382
383         if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
384                 return;
385
386         /* avoid an atomic op if possible */
387         if (test_bit(PG_arch_1, &pg->flags))
388                 clear_bit(PG_arch_1, &pg->flags);
389 }
390
391 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
392                              unsigned long addr, int len)
393 {
394         unsigned long maddr;
395
396         maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
397         flush_icache_range(maddr, maddr + len);
398         kunmap(page);
399 }
400 EXPORT_SYMBOL(flush_icache_user_range);
401
402 /*
403  * This is called at the end of handling a user page fault, when the
404  * fault has been handled by updating a PTE in the linux page tables.
405  * We use it to preload an HPTE into the hash table corresponding to
406  * the updated linux PTE.
407  * 
408  * This must always be called with the mm->page_table_lock held
409  */
410 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
411                       pte_t pte)
412 {
413         /* handle i-cache coherency */
414         unsigned long pfn = pte_pfn(pte);
415 #ifdef CONFIG_PPC32
416         pmd_t *pmd;
417 #else
418         unsigned long vsid;
419         void *pgdir;
420         pte_t *ptep;
421         int local = 0;
422         cpumask_t tmp;
423         unsigned long flags;
424 #endif
425
426         /* handle i-cache coherency */
427         if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
428             !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
429             pfn_valid(pfn)) {
430                 struct page *page = pfn_to_page(pfn);
431                 if (!PageReserved(page)
432                     && !test_bit(PG_arch_1, &page->flags)) {
433                         if (vma->vm_mm == current->active_mm) {
434 #ifdef CONFIG_8xx
435                         /* On 8xx, cache control instructions (particularly 
436                          * "dcbst" from flush_dcache_icache) fault as write 
437                          * operation if there is an unpopulated TLB entry 
438                          * for the address in question. To workaround that, 
439                          * we invalidate the TLB here, thus avoiding dcbst 
440                          * misbehaviour.
441                          */
442                                 _tlbie(address);
443 #endif
444                                 __flush_dcache_icache((void *) address);
445                         } else
446                                 flush_dcache_icache_page(page);
447                         set_bit(PG_arch_1, &page->flags);
448                 }
449         }
450
451 #ifdef CONFIG_PPC_STD_MMU
452         /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
453         if (!pte_young(pte) || address >= TASK_SIZE)
454                 return;
455 #ifdef CONFIG_PPC32
456         if (Hash == 0)
457                 return;
458         pmd = pmd_offset(pgd_offset(vma->vm_mm, address), address);
459         if (!pmd_none(*pmd))
460                 add_hash_page(vma->vm_mm->context, address, pmd_val(*pmd));
461 #else
462         pgdir = vma->vm_mm->pgd;
463         if (pgdir == NULL)
464                 return;
465
466         ptep = find_linux_pte(pgdir, ea);
467         if (!ptep)
468                 return;
469
470         vsid = get_vsid(vma->vm_mm->context.id, ea);
471
472         local_irq_save(flags);
473         tmp = cpumask_of_cpu(smp_processor_id());
474         if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
475                 local = 1;
476
477         __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
478                     0x300, local);
479         local_irq_restore(flags);
480 #endif
481 #endif
482 }