]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/mm/pgtable-hash64.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[karo-tx-linux.git] / arch / powerpc / mm / pgtable-hash64.c
1 /*
2  * Copyright 2005, Paul Mackerras, IBM Corporation.
3  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14 #include <linux/mm.h>
15
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/sections.h>
19 #include <asm/mmu.h>
20 #include <asm/tlb.h>
21
22 #include "mmu_decl.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thp.h>
26
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29  * vmemmap is the starting address of the virtual address space where
30  * struct pages are allocated for all possible PFNs present on the system
31  * including holes and bad memory (hence sparse). These virtual struct
32  * pages are stored in sequence in this virtual address space irrespective
33  * of the fact whether the corresponding PFN is valid or not. This achieves
34  * constant relationship between address of struct page and its PFN.
35  *
36  * During boot or memory hotplug operation when a new memory section is
37  * added, physical memory allocation (including hash table bolting) will
38  * be performed for the set of struct pages which are part of the memory
39  * section. This saves memory by not allocating struct pages for PFNs
40  * which are not valid.
41  *
42  *              ----------------------------------------------
43  *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44  *              ----------------------------------------------
45  *
46  *         f000000000000000                  c000000000000000
47  * vmemmap +--------------+                  +--------------+
48  *  +      |  page struct | +--------------> |  page struct |
49  *  |      +--------------+                  +--------------+
50  *  |      |  page struct | +--------------> |  page struct |
51  *  |      +--------------+ |                +--------------+
52  *  |      |  page struct | +       +------> |  page struct |
53  *  |      +--------------+         |        +--------------+
54  *  |      |  page struct |         |   +--> |  page struct |
55  *  |      +--------------+         |   |    +--------------+
56  *  |      |  page struct |         |   |
57  *  |      +--------------+         |   |
58  *  |      |  page struct |         |   |
59  *  |      +--------------+         |   |
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct | +-------+   |
65  *  |      +--------------+             |
66  *  |      |  page struct | +-----------+
67  *  |      +--------------+
68  *  |      |  page struct | No mapping
69  *  |      +--------------+
70  *  |      |  page struct | No mapping
71  *  v      +--------------+
72  *
73  *              -----------------------------------------
74  *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
75  *              -----------------------------------------
76  *
77  * vmemmap +--------------+                 +---------------+
78  *  +      |  page struct | +-------------> |      PFN      |
79  *  |      +--------------+                 +---------------+
80  *  |      |  page struct | +-------------> |      PFN      |
81  *  |      +--------------+                 +---------------+
82  *  |      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |              |
87  *  |      +--------------+
88  *  |      |              |
89  *  |      +--------------+
90  *  |      |              |
91  *  |      +--------------+                 +---------------+
92  *  |      |  page struct | +-------------> |      PFN      |
93  *  |      +--------------+                 +---------------+
94  *  |      |              |
95  *  |      +--------------+
96  *  |      |              |
97  *  |      +--------------+                 +---------------+
98  *  |      |  page struct | +-------------> |      PFN      |
99  *  |      +--------------+                 +---------------+
100  *  |      |  page struct | +-------------> |      PFN      |
101  *  v      +--------------+                 +---------------+
102  */
103 /*
104  * On hash-based CPUs, the vmemmap is bolted in the hash table.
105  *
106  */
107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108                                        unsigned long page_size,
109                                        unsigned long phys)
110 {
111         int rc = htab_bolt_mapping(start, start + page_size, phys,
112                                    pgprot_val(PAGE_KERNEL),
113                                    mmu_vmemmap_psize, mmu_kernel_ssize);
114         if (rc < 0) {
115                 int rc2 = htab_remove_mapping(start, start + page_size,
116                                               mmu_vmemmap_psize,
117                                               mmu_kernel_ssize);
118                 BUG_ON(rc2 && (rc2 != -ENOENT));
119         }
120         return rc;
121 }
122
123 #ifdef CONFIG_MEMORY_HOTPLUG
124 void hash__vmemmap_remove_mapping(unsigned long start,
125                               unsigned long page_size)
126 {
127         int rc = htab_remove_mapping(start, start + page_size,
128                                      mmu_vmemmap_psize,
129                                      mmu_kernel_ssize);
130         BUG_ON((rc < 0) && (rc != -ENOENT));
131         WARN_ON(rc == -ENOENT);
132 }
133 #endif
134 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
135
136 /*
137  * map_kernel_page currently only called by __ioremap
138  * map_kernel_page adds an entry to the ioremap page table
139  * and adds an entry to the HPT, possibly bolting it
140  */
141 int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
142 {
143         pgd_t *pgdp;
144         pud_t *pudp;
145         pmd_t *pmdp;
146         pte_t *ptep;
147
148         BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
149         if (slab_is_available()) {
150                 pgdp = pgd_offset_k(ea);
151                 pudp = pud_alloc(&init_mm, pgdp, ea);
152                 if (!pudp)
153                         return -ENOMEM;
154                 pmdp = pmd_alloc(&init_mm, pudp, ea);
155                 if (!pmdp)
156                         return -ENOMEM;
157                 ptep = pte_alloc_kernel(pmdp, ea);
158                 if (!ptep)
159                         return -ENOMEM;
160                 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
161                                                           __pgprot(flags)));
162         } else {
163                 /*
164                  * If the mm subsystem is not fully up, we cannot create a
165                  * linux page table entry for this mapping.  Simply bolt an
166                  * entry in the hardware page table.
167                  *
168                  */
169                 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
170                                       mmu_io_psize, mmu_kernel_ssize)) {
171                         printk(KERN_ERR "Failed to do bolted mapping IO "
172                                "memory at %016lx !\n", pa);
173                         return -ENOMEM;
174                 }
175         }
176
177         smp_wmb();
178         return 0;
179 }
180
181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
182
183 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
184                                     pmd_t *pmdp, unsigned long clr,
185                                     unsigned long set)
186 {
187         __be64 old_be, tmp;
188         unsigned long old;
189
190 #ifdef CONFIG_DEBUG_VM
191         WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
192         assert_spin_locked(&mm->page_table_lock);
193 #endif
194
195         __asm__ __volatile__(
196         "1:     ldarx   %0,0,%3\n\
197                 and.    %1,%0,%6\n\
198                 bne-    1b \n\
199                 andc    %1,%0,%4 \n\
200                 or      %1,%1,%7\n\
201                 stdcx.  %1,0,%3 \n\
202                 bne-    1b"
203         : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
204         : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
205           "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
206         : "cc" );
207
208         old = be64_to_cpu(old_be);
209
210         trace_hugepage_update(addr, old, clr, set);
211         if (old & H_PAGE_HASHPTE)
212                 hpte_do_hugepage_flush(mm, addr, pmdp, old);
213         return old;
214 }
215
216 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
217                             pmd_t *pmdp)
218 {
219         pmd_t pmd;
220
221         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
222         VM_BUG_ON(pmd_trans_huge(*pmdp));
223         VM_BUG_ON(pmd_devmap(*pmdp));
224
225         pmd = *pmdp;
226         pmd_clear(pmdp);
227         /*
228          * Wait for all pending hash_page to finish. This is needed
229          * in case of subpage collapse. When we collapse normal pages
230          * to hugepage, we first clear the pmd, then invalidate all
231          * the PTE entries. The assumption here is that any low level
232          * page fault will see a none pmd and take the slow path that
233          * will wait on mmap_sem. But we could very well be in a
234          * hash_page with local ptep pointer value. Such a hash page
235          * can result in adding new HPTE entries for normal subpages.
236          * That means we could be modifying the page content as we
237          * copy them to a huge page. So wait for parallel hash_page
238          * to finish before invalidating HPTE entries. We can do this
239          * by sending an IPI to all the cpus and executing a dummy
240          * function there.
241          */
242         kick_all_cpus_sync();
243         /*
244          * Now invalidate the hpte entries in the range
245          * covered by pmd. This make sure we take a
246          * fault and will find the pmd as none, which will
247          * result in a major fault which takes mmap_sem and
248          * hence wait for collapse to complete. Without this
249          * the __collapse_huge_page_copy can result in copying
250          * the old content.
251          */
252         flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
253         return pmd;
254 }
255
256 /*
257  * We want to put the pgtable in pmd and use pgtable for tracking
258  * the base page size hptes
259  */
260 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
261                                   pgtable_t pgtable)
262 {
263         pgtable_t *pgtable_slot;
264         assert_spin_locked(&mm->page_table_lock);
265         /*
266          * we store the pgtable in the second half of PMD
267          */
268         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
269         *pgtable_slot = pgtable;
270         /*
271          * expose the deposited pgtable to other cpus.
272          * before we set the hugepage PTE at pmd level
273          * hash fault code looks at the deposted pgtable
274          * to store hash index values.
275          */
276         smp_wmb();
277 }
278
279 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
280 {
281         pgtable_t pgtable;
282         pgtable_t *pgtable_slot;
283
284         assert_spin_locked(&mm->page_table_lock);
285         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
286         pgtable = *pgtable_slot;
287         /*
288          * Once we withdraw, mark the entry NULL.
289          */
290         *pgtable_slot = NULL;
291         /*
292          * We store HPTE information in the deposited PTE fragment.
293          * zero out the content on withdraw.
294          */
295         memset(pgtable, 0, PTE_FRAG_SIZE);
296         return pgtable;
297 }
298
299 void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
300                                unsigned long address, pmd_t *pmdp)
301 {
302         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
303         VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
304         VM_BUG_ON(pmd_devmap(*pmdp));
305
306         /*
307          * We can't mark the pmd none here, because that will cause a race
308          * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
309          * we spilt, but at the same time we wan't rest of the ppc64 code
310          * not to insert hash pte on this, because we will be modifying
311          * the deposited pgtable in the caller of this function. Hence
312          * clear the _PAGE_USER so that we move the fault handling to
313          * higher level function and that will serialize against ptl.
314          * We need to flush existing hash pte entries here even though,
315          * the translation is still valid, because we will withdraw
316          * pgtable_t after this.
317          */
318         pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
319 }
320
321 /*
322  * A linux hugepage PMD was changed and the corresponding hash table entries
323  * neesd to be flushed.
324  */
325 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
326                             pmd_t *pmdp, unsigned long old_pmd)
327 {
328         int ssize;
329         unsigned int psize;
330         unsigned long vsid;
331         unsigned long flags = 0;
332         const struct cpumask *tmp;
333
334         /* get the base page size,vsid and segment size */
335 #ifdef CONFIG_DEBUG_VM
336         psize = get_slice_psize(mm, addr);
337         BUG_ON(psize == MMU_PAGE_16M);
338 #endif
339         if (old_pmd & H_PAGE_COMBO)
340                 psize = MMU_PAGE_4K;
341         else
342                 psize = MMU_PAGE_64K;
343
344         if (!is_kernel_addr(addr)) {
345                 ssize = user_segment_size(addr);
346                 vsid = get_vsid(mm->context.id, addr, ssize);
347                 WARN_ON(vsid == 0);
348         } else {
349                 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
350                 ssize = mmu_kernel_ssize;
351         }
352
353         tmp = cpumask_of(smp_processor_id());
354         if (cpumask_equal(mm_cpumask(mm), tmp))
355                 flags |= HPTE_LOCAL_UPDATE;
356
357         return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
358 }
359
360 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
361                                 unsigned long addr, pmd_t *pmdp)
362 {
363         pmd_t old_pmd;
364         pgtable_t pgtable;
365         unsigned long old;
366         pgtable_t *pgtable_slot;
367
368         old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
369         old_pmd = __pmd(old);
370         /*
371          * We have pmd == none and we are holding page_table_lock.
372          * So we can safely go and clear the pgtable hash
373          * index info.
374          */
375         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
376         pgtable = *pgtable_slot;
377         /*
378          * Let's zero out old valid and hash index details
379          * hash fault look at them.
380          */
381         memset(pgtable, 0, PTE_FRAG_SIZE);
382         /*
383          * Serialize against find_linux_pte_or_hugepte which does lock-less
384          * lookup in page tables with local interrupts disabled. For huge pages
385          * it casts pmd_t to pte_t. Since format of pte_t is different from
386          * pmd_t we want to prevent transit from pmd pointing to page table
387          * to pmd pointing to huge page (and back) while interrupts are disabled.
388          * We clear pmd to possibly replace it with page table pointer in
389          * different code paths. So make sure we wait for the parallel
390          * find_linux_pte_or_hugepage to finish.
391          */
392         kick_all_cpus_sync();
393         return old_pmd;
394 }
395
396 int hash__has_transparent_hugepage(void)
397 {
398
399         if (!mmu_has_feature(MMU_FTR_16M_PAGE))
400                 return 0;
401         /*
402          * We support THP only if PMD_SIZE is 16MB.
403          */
404         if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
405                 return 0;
406         /*
407          * We need to make sure that we support 16MB hugepage in a segement
408          * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
409          * of 64K.
410          */
411         /*
412          * If we have 64K HPTE, we will be using that by default
413          */
414         if (mmu_psize_defs[MMU_PAGE_64K].shift &&
415             (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
416                 return 0;
417         /*
418          * Ok we only have 4K HPTE
419          */
420         if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
421                 return 0;
422
423         return 1;
424 }
425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
426
427 #ifdef CONFIG_STRICT_KERNEL_RWX
428 static bool hash__change_memory_range(unsigned long start, unsigned long end,
429                                       unsigned long newpp)
430 {
431         unsigned long idx;
432         unsigned int step, shift;
433
434         shift = mmu_psize_defs[mmu_linear_psize].shift;
435         step = 1 << shift;
436
437         start = ALIGN_DOWN(start, step);
438         end = ALIGN(end, step); // aligns up
439
440         if (start >= end)
441                 return false;
442
443         pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
444                  start, end, newpp, step);
445
446         for (idx = start; idx < end; idx += step)
447                 /* Not sure if we can do much with the return value */
448                 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
449                                                         mmu_kernel_ssize);
450
451         return true;
452 }
453
454 void hash__mark_rodata_ro(void)
455 {
456         unsigned long start, end;
457
458         start = (unsigned long)_stext;
459         end = (unsigned long)__init_begin;
460
461         WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
462 }
463
464 void hash__mark_initmem_nx(void)
465 {
466         unsigned long start, end, pp;
467
468         start = (unsigned long)__init_begin;
469         end = (unsigned long)__init_end;
470
471         pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
472
473         WARN_ON(!hash__change_memory_range(start, end, pp));
474 }
475 #endif