2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
40 #include <asm/pgalloc.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
72 unsigned long ioremap_bot = IOREMAP_BASE;
74 #ifdef CONFIG_PPC_MMU_NOHASH
75 static __ref void *early_alloc_pgtable(unsigned long size)
79 pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
84 #endif /* CONFIG_PPC_MMU_NOHASH */
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
91 int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
98 if (slab_is_available()) {
99 pgdp = pgd_offset_k(ea);
100 pudp = pud_alloc(&init_mm, pgdp, ea);
103 pmdp = pmd_alloc(&init_mm, pudp, ea);
106 ptep = pte_alloc_kernel(pmdp, ea);
109 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 pgdp = pgd_offset_k(ea);
114 #ifdef PUD_TABLE_SIZE
115 if (pgd_none(*pgdp)) {
116 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
117 BUG_ON(pudp == NULL);
118 pgd_populate(&init_mm, pgdp, pudp);
120 #endif /* PUD_TABLE_SIZE */
121 pudp = pud_offset(pgdp, ea);
122 if (pud_none(*pudp)) {
123 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
124 BUG_ON(pmdp == NULL);
125 pud_populate(&init_mm, pudp, pmdp);
127 pmdp = pmd_offset(pudp, ea);
128 if (!pmd_present(*pmdp)) {
129 ptep = early_alloc_pgtable(PAGE_SIZE);
130 BUG_ON(ptep == NULL);
131 pmd_populate_kernel(&init_mm, pmdp, ptep);
133 ptep = pte_offset_kernel(pmdp, ea);
134 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
136 #else /* CONFIG_PPC_MMU_NOHASH */
138 * If the mm subsystem is not fully up, we cannot create a
139 * linux page table entry for this mapping. Simply bolt an
140 * entry in the hardware page table.
143 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
144 mmu_io_psize, mmu_kernel_ssize)) {
145 printk(KERN_ERR "Failed to do bolted mapping IO "
146 "memory at %016lx !\n", pa);
149 #endif /* !CONFIG_PPC_MMU_NOHASH */
158 * __ioremap_at - Low level function to establish the page tables
161 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
166 /* Make sure we have the base flags */
167 if ((flags & _PAGE_PRESENT) == 0)
168 flags |= pgprot_val(PAGE_KERNEL);
170 /* Non-cacheable page cannot be coherent */
171 if (flags & _PAGE_NO_CACHE)
172 flags &= ~_PAGE_COHERENT;
174 /* We don't support the 4K PFN hack with ioremap */
175 if (flags & _PAGE_4K_PFN)
178 WARN_ON(pa & ~PAGE_MASK);
179 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
180 WARN_ON(size & ~PAGE_MASK);
182 for (i = 0; i < size; i += PAGE_SIZE)
183 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
186 return (void __iomem *)ea;
190 * __iounmap_from - Low level function to tear down the page tables
191 * for an IO mapping. This is used for mappings that
192 * are manipulated manually, like partial unmapping of
193 * PCI IOs or ISA space.
195 void __iounmap_at(void *ea, unsigned long size)
197 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
198 WARN_ON(size & ~PAGE_MASK);
200 unmap_kernel_range((unsigned long)ea, size);
203 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
204 unsigned long flags, void *caller)
206 phys_addr_t paligned;
210 * Choose an address to map it to.
211 * Once the imalloc system is running, we use it.
212 * Before that, we map using addresses going
213 * up from ioremap_bot. imalloc will use
214 * the addresses from ioremap_bot through
218 paligned = addr & PAGE_MASK;
219 size = PAGE_ALIGN(addr + size) - paligned;
221 if ((size == 0) || (paligned == 0))
224 if (slab_is_available()) {
225 struct vm_struct *area;
227 area = __get_vm_area_caller(size, VM_IOREMAP,
228 ioremap_bot, IOREMAP_END,
233 area->phys_addr = paligned;
234 ret = __ioremap_at(paligned, area->addr, size, flags);
238 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
244 ret += addr & ~PAGE_MASK;
248 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
251 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
254 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
256 unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
257 void *caller = __builtin_return_address(0);
260 return ppc_md.ioremap(addr, size, flags, caller);
261 return __ioremap_caller(addr, size, flags, caller);
264 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
266 unsigned long flags = _PAGE_NO_CACHE;
267 void *caller = __builtin_return_address(0);
270 return ppc_md.ioremap(addr, size, flags, caller);
271 return __ioremap_caller(addr, size, flags, caller);
274 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
277 void *caller = __builtin_return_address(0);
279 /* writeable implies dirty for kernel addresses */
280 if (flags & _PAGE_RW)
281 flags |= _PAGE_DIRTY;
283 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
284 flags &= ~(_PAGE_USER | _PAGE_EXEC);
287 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
288 * which means that we just cleared supervisor access... oops ;-) This
291 flags |= _PAGE_BAP_SR;
295 return ppc_md.ioremap(addr, size, flags, caller);
296 return __ioremap_caller(addr, size, flags, caller);
301 * Unmap an IO region and remove it from imalloc'd list.
302 * Access to IO memory should be serialized by driver.
304 void __iounmap(volatile void __iomem *token)
308 if (!slab_is_available())
311 addr = (void *) ((unsigned long __force)
312 PCI_FIX_ADDR(token) & PAGE_MASK);
313 if ((unsigned long)addr < ioremap_bot) {
314 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
321 void iounmap(volatile void __iomem *token)
324 ppc_md.iounmap(token);
329 EXPORT_SYMBOL(ioremap);
330 EXPORT_SYMBOL(ioremap_wc);
331 EXPORT_SYMBOL(ioremap_prot);
332 EXPORT_SYMBOL(__ioremap);
333 EXPORT_SYMBOL(__ioremap_at);
334 EXPORT_SYMBOL(iounmap);
335 EXPORT_SYMBOL(__iounmap);
336 EXPORT_SYMBOL(__iounmap_at);
338 #ifndef __PAGETABLE_PUD_FOLDED
339 /* 4 level page table */
340 struct page *pgd_page(pgd_t pgd)
343 return pte_page(pgd_pte(pgd));
344 return virt_to_page(pgd_page_vaddr(pgd));
348 struct page *pud_page(pud_t pud)
351 return pte_page(pud_pte(pud));
352 return virt_to_page(pud_page_vaddr(pud));
356 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
357 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
359 struct page *pmd_page(pmd_t pmd)
361 if (pmd_trans_huge(pmd) || pmd_huge(pmd))
362 return pfn_to_page(pmd_pfn(pmd));
363 return virt_to_page(pmd_page_vaddr(pmd));
366 #ifdef CONFIG_PPC_64K_PAGES
367 static pte_t *get_from_cache(struct mm_struct *mm)
369 void *pte_frag, *ret;
371 spin_lock(&mm->page_table_lock);
372 ret = mm->context.pte_frag;
374 pte_frag = ret + PTE_FRAG_SIZE;
376 * If we have taken up all the fragments mark PTE page NULL
378 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
380 mm->context.pte_frag = pte_frag;
382 spin_unlock(&mm->page_table_lock);
386 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
389 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
390 __GFP_REPEAT | __GFP_ZERO);
393 if (!kernel && !pgtable_page_ctor(page)) {
398 ret = page_address(page);
399 spin_lock(&mm->page_table_lock);
401 * If we find pgtable_page set, we return
402 * the allocated page with single fragement
405 if (likely(!mm->context.pte_frag)) {
406 atomic_set(&page->_count, PTE_FRAG_NR);
407 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
409 spin_unlock(&mm->page_table_lock);
414 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
418 pte = get_from_cache(mm);
422 return __alloc_for_cache(mm, kernel);
425 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
427 struct page *page = virt_to_page(table);
428 if (put_page_testzero(page)) {
430 pgtable_page_dtor(page);
431 free_hot_cold_page(page, 0);
436 static void page_table_free_rcu(void *table)
438 struct page *page = virt_to_page(table);
439 if (put_page_testzero(page)) {
440 pgtable_page_dtor(page);
441 free_hot_cold_page(page, 0);
445 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
447 unsigned long pgf = (unsigned long)table;
449 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
451 tlb_remove_table(tlb, (void *)pgf);
454 void __tlb_remove_table(void *_table)
456 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
457 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
460 /* PTE page needs special handling */
461 page_table_free_rcu(table);
463 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
464 kmem_cache_free(PGT_CACHE(shift), table);
468 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
471 /* PTE page needs special handling */
472 struct page *page = virt_to_page(table);
473 if (put_page_testzero(page)) {
474 pgtable_page_dtor(page);
475 free_hot_cold_page(page, 0);
478 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
479 kmem_cache_free(PGT_CACHE(shift), table);
483 #endif /* CONFIG_PPC_64K_PAGES */
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
488 * This is called when relaxing access to a hugepage. It's also called in the page
489 * fault path when we don't hit any of the major fault cases, ie, a minor
490 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
491 * handled those two for us, we additionally deal with missing execute
492 * permission here on some processors
494 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
495 pmd_t *pmdp, pmd_t entry, int dirty)
498 #ifdef CONFIG_DEBUG_VM
499 WARN_ON(!pmd_trans_huge(*pmdp));
500 assert_spin_locked(&vma->vm_mm->page_table_lock);
502 changed = !pmd_same(*(pmdp), entry);
504 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
506 * Since we are not supporting SW TLB systems, we don't
507 * have any thing similar to flush_tlb_page_nohash()
513 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
514 pmd_t *pmdp, unsigned long clr,
518 unsigned long old, tmp;
520 #ifdef CONFIG_DEBUG_VM
521 WARN_ON(!pmd_trans_huge(*pmdp));
522 assert_spin_locked(&mm->page_table_lock);
525 #ifdef PTE_ATOMIC_UPDATES
526 __asm__ __volatile__(
534 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
535 : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
538 old = pmd_val(*pmdp);
539 *pmdp = __pmd((old & ~clr) | set);
541 trace_hugepage_update(addr, old, clr, set);
542 if (old & _PAGE_HASHPTE)
543 hpte_do_hugepage_flush(mm, addr, pmdp, old);
547 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
552 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
553 VM_BUG_ON(pmd_trans_huge(*pmdp));
558 * Wait for all pending hash_page to finish. This is needed
559 * in case of subpage collapse. When we collapse normal pages
560 * to hugepage, we first clear the pmd, then invalidate all
561 * the PTE entries. The assumption here is that any low level
562 * page fault will see a none pmd and take the slow path that
563 * will wait on mmap_sem. But we could very well be in a
564 * hash_page with local ptep pointer value. Such a hash page
565 * can result in adding new HPTE entries for normal subpages.
566 * That means we could be modifying the page content as we
567 * copy them to a huge page. So wait for parallel hash_page
568 * to finish before invalidating HPTE entries. We can do this
569 * by sending an IPI to all the cpus and executing a dummy
572 kick_all_cpus_sync();
574 * Now invalidate the hpte entries in the range
575 * covered by pmd. This make sure we take a
576 * fault and will find the pmd as none, which will
577 * result in a major fault which takes mmap_sem and
578 * hence wait for collapse to complete. Without this
579 * the __collapse_huge_page_copy can result in copying
582 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
586 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
587 unsigned long address, pmd_t *pmdp)
589 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
593 * We currently remove entries from the hashtable regardless of whether
594 * the entry was young or dirty. The generic routines only flush if the
595 * entry was young or dirty which is not good enough.
597 * We should be more intelligent about this but for the moment we override
598 * these functions and force a tlb flush unconditionally
600 int pmdp_clear_flush_young(struct vm_area_struct *vma,
601 unsigned long address, pmd_t *pmdp)
603 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
607 * We mark the pmd splitting and invalidate all the hpte
608 * entries for this hugepage.
610 void pmdp_splitting_flush(struct vm_area_struct *vma,
611 unsigned long address, pmd_t *pmdp)
613 unsigned long old, tmp;
615 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
617 #ifdef CONFIG_DEBUG_VM
618 WARN_ON(!pmd_trans_huge(*pmdp));
619 assert_spin_locked(&vma->vm_mm->page_table_lock);
622 #ifdef PTE_ATOMIC_UPDATES
624 __asm__ __volatile__(
631 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
632 : "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
635 old = pmd_val(*pmdp);
636 *pmdp = __pmd(old | _PAGE_SPLITTING);
639 * If we didn't had the splitting flag set, go and flush the
642 trace_hugepage_splitting(address, old);
643 if (!(old & _PAGE_SPLITTING)) {
644 /* We need to flush the hpte */
645 if (old & _PAGE_HASHPTE)
646 hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
649 * This ensures that generic code that rely on IRQ disabling
650 * to prevent a parallel THP split work as expected.
652 kick_all_cpus_sync();
656 * We want to put the pgtable in pmd and use pgtable for tracking
657 * the base page size hptes
659 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
662 pgtable_t *pgtable_slot;
663 assert_spin_locked(&mm->page_table_lock);
665 * we store the pgtable in the second half of PMD
667 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
668 *pgtable_slot = pgtable;
670 * expose the deposited pgtable to other cpus.
671 * before we set the hugepage PTE at pmd level
672 * hash fault code looks at the deposted pgtable
673 * to store hash index values.
678 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
681 pgtable_t *pgtable_slot;
683 assert_spin_locked(&mm->page_table_lock);
684 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
685 pgtable = *pgtable_slot;
687 * Once we withdraw, mark the entry NULL.
689 *pgtable_slot = NULL;
691 * We store HPTE information in the deposited PTE fragment.
692 * zero out the content on withdraw.
694 memset(pgtable, 0, PTE_FRAG_SIZE);
699 * set a new huge pmd. We should not be called for updating
700 * an existing pmd entry. That should go via pmd_hugepage_update.
702 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
703 pmd_t *pmdp, pmd_t pmd)
705 #ifdef CONFIG_DEBUG_VM
706 WARN_ON((pmd_val(*pmdp) & (_PAGE_PRESENT | _PAGE_USER)) ==
707 (_PAGE_PRESENT | _PAGE_USER));
708 assert_spin_locked(&mm->page_table_lock);
709 WARN_ON(!pmd_trans_huge(pmd));
711 trace_hugepage_set_pmd(addr, pmd_val(pmd));
712 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
715 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
718 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
722 * A linux hugepage PMD was changed and the corresponding hash table entries
723 * neesd to be flushed.
725 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
726 pmd_t *pmdp, unsigned long old_pmd)
731 unsigned long flags = 0;
732 const struct cpumask *tmp;
734 /* get the base page size,vsid and segment size */
735 #ifdef CONFIG_DEBUG_VM
736 psize = get_slice_psize(mm, addr);
737 BUG_ON(psize == MMU_PAGE_16M);
739 if (old_pmd & _PAGE_COMBO)
742 psize = MMU_PAGE_64K;
744 if (!is_kernel_addr(addr)) {
745 ssize = user_segment_size(addr);
746 vsid = get_vsid(mm->context.id, addr, ssize);
749 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
750 ssize = mmu_kernel_ssize;
753 tmp = cpumask_of(smp_processor_id());
754 if (cpumask_equal(mm_cpumask(mm), tmp))
755 flags |= HPTE_LOCAL_UPDATE;
757 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
760 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
762 pmd_val(pmd) |= pgprot_val(pgprot);
766 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
770 * For a valid pte, we would have _PAGE_PRESENT always
771 * set. We use this to check THP page at pmd level.
772 * leaf pte for huge page, bottom two bits != 00
774 pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
775 pmd_val(pmd) |= _PAGE_THP_HUGE;
776 pmd = pmd_set_protbits(pmd, pgprot);
780 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
782 return pfn_pmd(page_to_pfn(page), pgprot);
785 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
788 pmd_val(pmd) &= _HPAGE_CHG_MASK;
789 pmd = pmd_set_protbits(pmd, newprot);
794 * This is called at the end of handling a user page fault, when the
795 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
796 * We use it to preload an HPTE into the hash table corresponding to
797 * the updated linux HUGE PMD entry.
799 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
805 pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
806 unsigned long addr, pmd_t *pmdp)
811 pgtable_t *pgtable_slot;
813 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
814 old_pmd = __pmd(old);
816 * We have pmd == none and we are holding page_table_lock.
817 * So we can safely go and clear the pgtable hash
820 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
821 pgtable = *pgtable_slot;
823 * Let's zero out old valid and hash index details
824 * hash fault look at them.
826 memset(pgtable, 0, PTE_FRAG_SIZE);
828 * Serialize against find_linux_pte_or_hugepte which does lock-less
829 * lookup in page tables with local interrupts disabled. For huge pages
830 * it casts pmd_t to pte_t. Since format of pte_t is different from
831 * pmd_t we want to prevent transit from pmd pointing to page table
832 * to pmd pointing to huge page (and back) while interrupts are disabled.
833 * We clear pmd to possibly replace it with page table pointer in
834 * different code paths. So make sure we wait for the parallel
835 * find_linux_pte_or_hugepage to finish.
837 kick_all_cpus_sync();
841 int has_transparent_hugepage(void)
843 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
846 * We support THP only if PMD_SIZE is 16MB.
848 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
851 * We need to make sure that we support 16MB hugepage in a segement
852 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
856 * If we have 64K HPTE, we will be using that by default
858 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
859 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
862 * Ok we only have 4K HPTE
864 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */