]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
vfio: powerpc/spapr/iommu/powernv/ioda2: Rework IOMMU ownership control
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debug.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42
43 #include <misc/cxl-base.h>
44
45 #include "powernv.h"
46 #include "pci.h"
47
48 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
49 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
50
51 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
52                             const char *fmt, ...)
53 {
54         struct va_format vaf;
55         va_list args;
56         char pfix[32];
57
58         va_start(args, fmt);
59
60         vaf.fmt = fmt;
61         vaf.va = &args;
62
63         if (pe->flags & PNV_IODA_PE_DEV)
64                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
65         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
66                 sprintf(pfix, "%04x:%02x     ",
67                         pci_domain_nr(pe->pbus), pe->pbus->number);
68 #ifdef CONFIG_PCI_IOV
69         else if (pe->flags & PNV_IODA_PE_VF)
70                 sprintf(pfix, "%04x:%02x:%2x.%d",
71                         pci_domain_nr(pe->parent_dev->bus),
72                         (pe->rid & 0xff00) >> 8,
73                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
74 #endif /* CONFIG_PCI_IOV*/
75
76         printk("%spci %s: [PE# %.3d] %pV",
77                level, pfix, pe->pe_number, &vaf);
78
79         va_end(args);
80 }
81
82 #define pe_err(pe, fmt, ...)                                    \
83         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
84 #define pe_warn(pe, fmt, ...)                                   \
85         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
86 #define pe_info(pe, fmt, ...)                                   \
87         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
88
89 static bool pnv_iommu_bypass_disabled __read_mostly;
90
91 static int __init iommu_setup(char *str)
92 {
93         if (!str)
94                 return -EINVAL;
95
96         while (*str) {
97                 if (!strncmp(str, "nobypass", 8)) {
98                         pnv_iommu_bypass_disabled = true;
99                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
100                         break;
101                 }
102                 str += strcspn(str, ",");
103                 if (*str == ',')
104                         str++;
105         }
106
107         return 0;
108 }
109 early_param("iommu", iommu_setup);
110
111 /*
112  * stdcix is only supposed to be used in hypervisor real mode as per
113  * the architecture spec
114  */
115 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
116 {
117         __asm__ __volatile__("stdcix %0,0,%1"
118                 : : "r" (val), "r" (paddr) : "memory");
119 }
120
121 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
122 {
123         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
124                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
125 }
126
127 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
128 {
129         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
130                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
131                         __func__, pe_no, phb->hose->global_number);
132                 return;
133         }
134
135         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
136                 pr_warn("%s: PE %d was assigned on PHB#%x\n",
137                         __func__, pe_no, phb->hose->global_number);
138                 return;
139         }
140
141         phb->ioda.pe_array[pe_no].phb = phb;
142         phb->ioda.pe_array[pe_no].pe_number = pe_no;
143 }
144
145 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
146 {
147         unsigned long pe;
148
149         do {
150                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
151                                         phb->ioda.total_pe, 0);
152                 if (pe >= phb->ioda.total_pe)
153                         return IODA_INVALID_PE;
154         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
155
156         phb->ioda.pe_array[pe].phb = phb;
157         phb->ioda.pe_array[pe].pe_number = pe;
158         return pe;
159 }
160
161 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
162 {
163         WARN_ON(phb->ioda.pe_array[pe].pdev);
164
165         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
166         clear_bit(pe, phb->ioda.pe_alloc);
167 }
168
169 /* The default M64 BAR is shared by all PEs */
170 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
171 {
172         const char *desc;
173         struct resource *r;
174         s64 rc;
175
176         /* Configure the default M64 BAR */
177         rc = opal_pci_set_phb_mem_window(phb->opal_id,
178                                          OPAL_M64_WINDOW_TYPE,
179                                          phb->ioda.m64_bar_idx,
180                                          phb->ioda.m64_base,
181                                          0, /* unused */
182                                          phb->ioda.m64_size);
183         if (rc != OPAL_SUCCESS) {
184                 desc = "configuring";
185                 goto fail;
186         }
187
188         /* Enable the default M64 BAR */
189         rc = opal_pci_phb_mmio_enable(phb->opal_id,
190                                       OPAL_M64_WINDOW_TYPE,
191                                       phb->ioda.m64_bar_idx,
192                                       OPAL_ENABLE_M64_SPLIT);
193         if (rc != OPAL_SUCCESS) {
194                 desc = "enabling";
195                 goto fail;
196         }
197
198         /* Mark the M64 BAR assigned */
199         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
200
201         /*
202          * Strip off the segment used by the reserved PE, which is
203          * expected to be 0 or last one of PE capabicity.
204          */
205         r = &phb->hose->mem_resources[1];
206         if (phb->ioda.reserved_pe == 0)
207                 r->start += phb->ioda.m64_segsize;
208         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
209                 r->end -= phb->ioda.m64_segsize;
210         else
211                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
212                         phb->ioda.reserved_pe);
213
214         return 0;
215
216 fail:
217         pr_warn("  Failure %lld %s M64 BAR#%d\n",
218                 rc, desc, phb->ioda.m64_bar_idx);
219         opal_pci_phb_mmio_enable(phb->opal_id,
220                                  OPAL_M64_WINDOW_TYPE,
221                                  phb->ioda.m64_bar_idx,
222                                  OPAL_DISABLE_M64);
223         return -EIO;
224 }
225
226 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
227 {
228         resource_size_t sgsz = phb->ioda.m64_segsize;
229         struct pci_dev *pdev;
230         struct resource *r;
231         int base, step, i;
232
233         /*
234          * Root bus always has full M64 range and root port has
235          * M64 range used in reality. So we're checking root port
236          * instead of root bus.
237          */
238         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
239                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
240                         r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
241                         if (!r->parent ||
242                             !pnv_pci_is_mem_pref_64(r->flags))
243                                 continue;
244
245                         base = (r->start - phb->ioda.m64_base) / sgsz;
246                         for (step = 0; step < resource_size(r) / sgsz; step++)
247                                 pnv_ioda_reserve_pe(phb, base + step);
248                 }
249         }
250 }
251
252 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
253                                  struct pci_bus *bus, int all)
254 {
255         resource_size_t segsz = phb->ioda.m64_segsize;
256         struct pci_dev *pdev;
257         struct resource *r;
258         struct pnv_ioda_pe *master_pe, *pe;
259         unsigned long size, *pe_alloc;
260         bool found;
261         int start, i, j;
262
263         /* Root bus shouldn't use M64 */
264         if (pci_is_root_bus(bus))
265                 return IODA_INVALID_PE;
266
267         /* We support only one M64 window on each bus */
268         found = false;
269         pci_bus_for_each_resource(bus, r, i) {
270                 if (r && r->parent &&
271                     pnv_pci_is_mem_pref_64(r->flags)) {
272                         found = true;
273                         break;
274                 }
275         }
276
277         /* No M64 window found ? */
278         if (!found)
279                 return IODA_INVALID_PE;
280
281         /* Allocate bitmap */
282         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
283         pe_alloc = kzalloc(size, GFP_KERNEL);
284         if (!pe_alloc) {
285                 pr_warn("%s: Out of memory !\n",
286                         __func__);
287                 return IODA_INVALID_PE;
288         }
289
290         /*
291          * Figure out reserved PE numbers by the PE
292          * the its child PEs.
293          */
294         start = (r->start - phb->ioda.m64_base) / segsz;
295         for (i = 0; i < resource_size(r) / segsz; i++)
296                 set_bit(start + i, pe_alloc);
297
298         if (all)
299                 goto done;
300
301         /*
302          * If the PE doesn't cover all subordinate buses,
303          * we need subtract from reserved PEs for children.
304          */
305         list_for_each_entry(pdev, &bus->devices, bus_list) {
306                 if (!pdev->subordinate)
307                         continue;
308
309                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
310                         if (!r || !r->parent ||
311                             !pnv_pci_is_mem_pref_64(r->flags))
312                                 continue;
313
314                         start = (r->start - phb->ioda.m64_base) / segsz;
315                         for (j = 0; j < resource_size(r) / segsz ; j++)
316                                 clear_bit(start + j, pe_alloc);
317                 }
318         }
319
320         /*
321          * the current bus might not own M64 window and that's all
322          * contributed by its child buses. For the case, we needn't
323          * pick M64 dependent PE#.
324          */
325         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
326                 kfree(pe_alloc);
327                 return IODA_INVALID_PE;
328         }
329
330         /*
331          * Figure out the master PE and put all slave PEs to master
332          * PE's list to form compound PE.
333          */
334 done:
335         master_pe = NULL;
336         i = -1;
337         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
338                 phb->ioda.total_pe) {
339                 pe = &phb->ioda.pe_array[i];
340
341                 if (!master_pe) {
342                         pe->flags |= PNV_IODA_PE_MASTER;
343                         INIT_LIST_HEAD(&pe->slaves);
344                         master_pe = pe;
345                 } else {
346                         pe->flags |= PNV_IODA_PE_SLAVE;
347                         pe->master = master_pe;
348                         list_add_tail(&pe->list, &master_pe->slaves);
349                 }
350         }
351
352         kfree(pe_alloc);
353         return master_pe->pe_number;
354 }
355
356 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
357 {
358         struct pci_controller *hose = phb->hose;
359         struct device_node *dn = hose->dn;
360         struct resource *res;
361         const u32 *r;
362         u64 pci_addr;
363
364         /* FIXME: Support M64 for P7IOC */
365         if (phb->type != PNV_PHB_IODA2) {
366                 pr_info("  Not support M64 window\n");
367                 return;
368         }
369
370         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
371                 pr_info("  Firmware too old to support M64 window\n");
372                 return;
373         }
374
375         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
376         if (!r) {
377                 pr_info("  No <ibm,opal-m64-window> on %s\n",
378                         dn->full_name);
379                 return;
380         }
381
382         res = &hose->mem_resources[1];
383         res->start = of_translate_address(dn, r + 2);
384         res->end = res->start + of_read_number(r + 4, 2) - 1;
385         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
386         pci_addr = of_read_number(r, 2);
387         hose->mem_offset[1] = res->start - pci_addr;
388
389         phb->ioda.m64_size = resource_size(res);
390         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
391         phb->ioda.m64_base = pci_addr;
392
393         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
394                         res->start, res->end, pci_addr);
395
396         /* Use last M64 BAR to cover M64 window */
397         phb->ioda.m64_bar_idx = 15;
398         phb->init_m64 = pnv_ioda2_init_m64;
399         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
400         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
401 }
402
403 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
404 {
405         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
406         struct pnv_ioda_pe *slave;
407         s64 rc;
408
409         /* Fetch master PE */
410         if (pe->flags & PNV_IODA_PE_SLAVE) {
411                 pe = pe->master;
412                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
413                         return;
414
415                 pe_no = pe->pe_number;
416         }
417
418         /* Freeze master PE */
419         rc = opal_pci_eeh_freeze_set(phb->opal_id,
420                                      pe_no,
421                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
422         if (rc != OPAL_SUCCESS) {
423                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
424                         __func__, rc, phb->hose->global_number, pe_no);
425                 return;
426         }
427
428         /* Freeze slave PEs */
429         if (!(pe->flags & PNV_IODA_PE_MASTER))
430                 return;
431
432         list_for_each_entry(slave, &pe->slaves, list) {
433                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
434                                              slave->pe_number,
435                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
436                 if (rc != OPAL_SUCCESS)
437                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
438                                 __func__, rc, phb->hose->global_number,
439                                 slave->pe_number);
440         }
441 }
442
443 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
444 {
445         struct pnv_ioda_pe *pe, *slave;
446         s64 rc;
447
448         /* Find master PE */
449         pe = &phb->ioda.pe_array[pe_no];
450         if (pe->flags & PNV_IODA_PE_SLAVE) {
451                 pe = pe->master;
452                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
453                 pe_no = pe->pe_number;
454         }
455
456         /* Clear frozen state for master PE */
457         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
458         if (rc != OPAL_SUCCESS) {
459                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
460                         __func__, rc, opt, phb->hose->global_number, pe_no);
461                 return -EIO;
462         }
463
464         if (!(pe->flags & PNV_IODA_PE_MASTER))
465                 return 0;
466
467         /* Clear frozen state for slave PEs */
468         list_for_each_entry(slave, &pe->slaves, list) {
469                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
470                                              slave->pe_number,
471                                              opt);
472                 if (rc != OPAL_SUCCESS) {
473                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
474                                 __func__, rc, opt, phb->hose->global_number,
475                                 slave->pe_number);
476                         return -EIO;
477                 }
478         }
479
480         return 0;
481 }
482
483 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
484 {
485         struct pnv_ioda_pe *slave, *pe;
486         u8 fstate, state;
487         __be16 pcierr;
488         s64 rc;
489
490         /* Sanity check on PE number */
491         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
492                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
493
494         /*
495          * Fetch the master PE and the PE instance might be
496          * not initialized yet.
497          */
498         pe = &phb->ioda.pe_array[pe_no];
499         if (pe->flags & PNV_IODA_PE_SLAVE) {
500                 pe = pe->master;
501                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
502                 pe_no = pe->pe_number;
503         }
504
505         /* Check the master PE */
506         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
507                                         &state, &pcierr, NULL);
508         if (rc != OPAL_SUCCESS) {
509                 pr_warn("%s: Failure %lld getting "
510                         "PHB#%x-PE#%x state\n",
511                         __func__, rc,
512                         phb->hose->global_number, pe_no);
513                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
514         }
515
516         /* Check the slave PE */
517         if (!(pe->flags & PNV_IODA_PE_MASTER))
518                 return state;
519
520         list_for_each_entry(slave, &pe->slaves, list) {
521                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
522                                                 slave->pe_number,
523                                                 &fstate,
524                                                 &pcierr,
525                                                 NULL);
526                 if (rc != OPAL_SUCCESS) {
527                         pr_warn("%s: Failure %lld getting "
528                                 "PHB#%x-PE#%x state\n",
529                                 __func__, rc,
530                                 phb->hose->global_number, slave->pe_number);
531                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
532                 }
533
534                 /*
535                  * Override the result based on the ascending
536                  * priority.
537                  */
538                 if (fstate > state)
539                         state = fstate;
540         }
541
542         return state;
543 }
544
545 /* Currently those 2 are only used when MSIs are enabled, this will change
546  * but in the meantime, we need to protect them to avoid warnings
547  */
548 #ifdef CONFIG_PCI_MSI
549 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
550 {
551         struct pci_controller *hose = pci_bus_to_host(dev->bus);
552         struct pnv_phb *phb = hose->private_data;
553         struct pci_dn *pdn = pci_get_pdn(dev);
554
555         if (!pdn)
556                 return NULL;
557         if (pdn->pe_number == IODA_INVALID_PE)
558                 return NULL;
559         return &phb->ioda.pe_array[pdn->pe_number];
560 }
561 #endif /* CONFIG_PCI_MSI */
562
563 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
564                                   struct pnv_ioda_pe *parent,
565                                   struct pnv_ioda_pe *child,
566                                   bool is_add)
567 {
568         const char *desc = is_add ? "adding" : "removing";
569         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
570                               OPAL_REMOVE_PE_FROM_DOMAIN;
571         struct pnv_ioda_pe *slave;
572         long rc;
573
574         /* Parent PE affects child PE */
575         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
576                                 child->pe_number, op);
577         if (rc != OPAL_SUCCESS) {
578                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
579                         rc, desc);
580                 return -ENXIO;
581         }
582
583         if (!(child->flags & PNV_IODA_PE_MASTER))
584                 return 0;
585
586         /* Compound case: parent PE affects slave PEs */
587         list_for_each_entry(slave, &child->slaves, list) {
588                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
589                                         slave->pe_number, op);
590                 if (rc != OPAL_SUCCESS) {
591                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
592                                 rc, desc);
593                         return -ENXIO;
594                 }
595         }
596
597         return 0;
598 }
599
600 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
601                               struct pnv_ioda_pe *pe,
602                               bool is_add)
603 {
604         struct pnv_ioda_pe *slave;
605         struct pci_dev *pdev = NULL;
606         int ret;
607
608         /*
609          * Clear PE frozen state. If it's master PE, we need
610          * clear slave PE frozen state as well.
611          */
612         if (is_add) {
613                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
614                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
615                 if (pe->flags & PNV_IODA_PE_MASTER) {
616                         list_for_each_entry(slave, &pe->slaves, list)
617                                 opal_pci_eeh_freeze_clear(phb->opal_id,
618                                                           slave->pe_number,
619                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
620                 }
621         }
622
623         /*
624          * Associate PE in PELT. We need add the PE into the
625          * corresponding PELT-V as well. Otherwise, the error
626          * originated from the PE might contribute to other
627          * PEs.
628          */
629         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
630         if (ret)
631                 return ret;
632
633         /* For compound PEs, any one affects all of them */
634         if (pe->flags & PNV_IODA_PE_MASTER) {
635                 list_for_each_entry(slave, &pe->slaves, list) {
636                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
637                         if (ret)
638                                 return ret;
639                 }
640         }
641
642         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
643                 pdev = pe->pbus->self;
644         else if (pe->flags & PNV_IODA_PE_DEV)
645                 pdev = pe->pdev->bus->self;
646 #ifdef CONFIG_PCI_IOV
647         else if (pe->flags & PNV_IODA_PE_VF)
648                 pdev = pe->parent_dev->bus->self;
649 #endif /* CONFIG_PCI_IOV */
650         while (pdev) {
651                 struct pci_dn *pdn = pci_get_pdn(pdev);
652                 struct pnv_ioda_pe *parent;
653
654                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
655                         parent = &phb->ioda.pe_array[pdn->pe_number];
656                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
657                         if (ret)
658                                 return ret;
659                 }
660
661                 pdev = pdev->bus->self;
662         }
663
664         return 0;
665 }
666
667 #ifdef CONFIG_PCI_IOV
668 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
669 {
670         struct pci_dev *parent;
671         uint8_t bcomp, dcomp, fcomp;
672         int64_t rc;
673         long rid_end, rid;
674
675         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
676         if (pe->pbus) {
677                 int count;
678
679                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
680                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
681                 parent = pe->pbus->self;
682                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
683                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
684                 else
685                         count = 1;
686
687                 switch(count) {
688                 case  1: bcomp = OpalPciBusAll;         break;
689                 case  2: bcomp = OpalPciBus7Bits;       break;
690                 case  4: bcomp = OpalPciBus6Bits;       break;
691                 case  8: bcomp = OpalPciBus5Bits;       break;
692                 case 16: bcomp = OpalPciBus4Bits;       break;
693                 case 32: bcomp = OpalPciBus3Bits;       break;
694                 default:
695                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
696                                 count);
697                         /* Do an exact match only */
698                         bcomp = OpalPciBusAll;
699                 }
700                 rid_end = pe->rid + (count << 8);
701         } else {
702                 if (pe->flags & PNV_IODA_PE_VF)
703                         parent = pe->parent_dev;
704                 else
705                         parent = pe->pdev->bus->self;
706                 bcomp = OpalPciBusAll;
707                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
708                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
709                 rid_end = pe->rid + 1;
710         }
711
712         /* Clear the reverse map */
713         for (rid = pe->rid; rid < rid_end; rid++)
714                 phb->ioda.pe_rmap[rid] = 0;
715
716         /* Release from all parents PELT-V */
717         while (parent) {
718                 struct pci_dn *pdn = pci_get_pdn(parent);
719                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
720                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
721                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
722                         /* XXX What to do in case of error ? */
723                 }
724                 parent = parent->bus->self;
725         }
726
727         opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
728                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
729
730         /* Disassociate PE in PELT */
731         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
732                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
733         if (rc)
734                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
735         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
736                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
737         if (rc)
738                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
739
740         pe->pbus = NULL;
741         pe->pdev = NULL;
742         pe->parent_dev = NULL;
743
744         return 0;
745 }
746 #endif /* CONFIG_PCI_IOV */
747
748 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
749 {
750         struct pci_dev *parent;
751         uint8_t bcomp, dcomp, fcomp;
752         long rc, rid_end, rid;
753
754         /* Bus validation ? */
755         if (pe->pbus) {
756                 int count;
757
758                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
759                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
760                 parent = pe->pbus->self;
761                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
762                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
763                 else
764                         count = 1;
765
766                 switch(count) {
767                 case  1: bcomp = OpalPciBusAll;         break;
768                 case  2: bcomp = OpalPciBus7Bits;       break;
769                 case  4: bcomp = OpalPciBus6Bits;       break;
770                 case  8: bcomp = OpalPciBus5Bits;       break;
771                 case 16: bcomp = OpalPciBus4Bits;       break;
772                 case 32: bcomp = OpalPciBus3Bits;       break;
773                 default:
774                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
775                                 count);
776                         /* Do an exact match only */
777                         bcomp = OpalPciBusAll;
778                 }
779                 rid_end = pe->rid + (count << 8);
780         } else {
781 #ifdef CONFIG_PCI_IOV
782                 if (pe->flags & PNV_IODA_PE_VF)
783                         parent = pe->parent_dev;
784                 else
785 #endif /* CONFIG_PCI_IOV */
786                         parent = pe->pdev->bus->self;
787                 bcomp = OpalPciBusAll;
788                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
789                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
790                 rid_end = pe->rid + 1;
791         }
792
793         /*
794          * Associate PE in PELT. We need add the PE into the
795          * corresponding PELT-V as well. Otherwise, the error
796          * originated from the PE might contribute to other
797          * PEs.
798          */
799         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
800                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
801         if (rc) {
802                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
803                 return -ENXIO;
804         }
805
806         /* Configure PELTV */
807         pnv_ioda_set_peltv(phb, pe, true);
808
809         /* Setup reverse map */
810         for (rid = pe->rid; rid < rid_end; rid++)
811                 phb->ioda.pe_rmap[rid] = pe->pe_number;
812
813         /* Setup one MVTs on IODA1 */
814         if (phb->type != PNV_PHB_IODA1) {
815                 pe->mve_number = 0;
816                 goto out;
817         }
818
819         pe->mve_number = pe->pe_number;
820         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
821         if (rc != OPAL_SUCCESS) {
822                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
823                        rc, pe->mve_number);
824                 pe->mve_number = -1;
825         } else {
826                 rc = opal_pci_set_mve_enable(phb->opal_id,
827                                              pe->mve_number, OPAL_ENABLE_MVE);
828                 if (rc) {
829                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
830                                rc, pe->mve_number);
831                         pe->mve_number = -1;
832                 }
833         }
834
835 out:
836         return 0;
837 }
838
839 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
840                                        struct pnv_ioda_pe *pe)
841 {
842         struct pnv_ioda_pe *lpe;
843
844         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
845                 if (lpe->dma_weight < pe->dma_weight) {
846                         list_add_tail(&pe->dma_link, &lpe->dma_link);
847                         return;
848                 }
849         }
850         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
851 }
852
853 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
854 {
855         /* This is quite simplistic. The "base" weight of a device
856          * is 10. 0 means no DMA is to be accounted for it.
857          */
858
859         /* If it's a bridge, no DMA */
860         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
861                 return 0;
862
863         /* Reduce the weight of slow USB controllers */
864         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
865             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
866             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
867                 return 3;
868
869         /* Increase the weight of RAID (includes Obsidian) */
870         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
871                 return 15;
872
873         /* Default */
874         return 10;
875 }
876
877 #ifdef CONFIG_PCI_IOV
878 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
879 {
880         struct pci_dn *pdn = pci_get_pdn(dev);
881         int i;
882         struct resource *res, res2;
883         resource_size_t size;
884         u16 num_vfs;
885
886         if (!dev->is_physfn)
887                 return -EINVAL;
888
889         /*
890          * "offset" is in VFs.  The M64 windows are sized so that when they
891          * are segmented, each segment is the same size as the IOV BAR.
892          * Each segment is in a separate PE, and the high order bits of the
893          * address are the PE number.  Therefore, each VF's BAR is in a
894          * separate PE, and changing the IOV BAR start address changes the
895          * range of PEs the VFs are in.
896          */
897         num_vfs = pdn->num_vfs;
898         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
899                 res = &dev->resource[i + PCI_IOV_RESOURCES];
900                 if (!res->flags || !res->parent)
901                         continue;
902
903                 if (!pnv_pci_is_mem_pref_64(res->flags))
904                         continue;
905
906                 /*
907                  * The actual IOV BAR range is determined by the start address
908                  * and the actual size for num_vfs VFs BAR.  This check is to
909                  * make sure that after shifting, the range will not overlap
910                  * with another device.
911                  */
912                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
913                 res2.flags = res->flags;
914                 res2.start = res->start + (size * offset);
915                 res2.end = res2.start + (size * num_vfs) - 1;
916
917                 if (res2.end > res->end) {
918                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
919                                 i, &res2, res, num_vfs, offset);
920                         return -EBUSY;
921                 }
922         }
923
924         /*
925          * After doing so, there would be a "hole" in the /proc/iomem when
926          * offset is a positive value. It looks like the device return some
927          * mmio back to the system, which actually no one could use it.
928          */
929         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
930                 res = &dev->resource[i + PCI_IOV_RESOURCES];
931                 if (!res->flags || !res->parent)
932                         continue;
933
934                 if (!pnv_pci_is_mem_pref_64(res->flags))
935                         continue;
936
937                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
938                 res2 = *res;
939                 res->start += size * offset;
940
941                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
942                          i, &res2, res, num_vfs, offset);
943                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
944         }
945         return 0;
946 }
947 #endif /* CONFIG_PCI_IOV */
948
949 #if 0
950 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
951 {
952         struct pci_controller *hose = pci_bus_to_host(dev->bus);
953         struct pnv_phb *phb = hose->private_data;
954         struct pci_dn *pdn = pci_get_pdn(dev);
955         struct pnv_ioda_pe *pe;
956         int pe_num;
957
958         if (!pdn) {
959                 pr_err("%s: Device tree node not associated properly\n",
960                            pci_name(dev));
961                 return NULL;
962         }
963         if (pdn->pe_number != IODA_INVALID_PE)
964                 return NULL;
965
966         /* PE#0 has been pre-set */
967         if (dev->bus->number == 0)
968                 pe_num = 0;
969         else
970                 pe_num = pnv_ioda_alloc_pe(phb);
971         if (pe_num == IODA_INVALID_PE) {
972                 pr_warning("%s: Not enough PE# available, disabling device\n",
973                            pci_name(dev));
974                 return NULL;
975         }
976
977         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
978          * pointer in the PE data structure, both should be destroyed at the
979          * same time. However, this needs to be looked at more closely again
980          * once we actually start removing things (Hotplug, SR-IOV, ...)
981          *
982          * At some point we want to remove the PDN completely anyways
983          */
984         pe = &phb->ioda.pe_array[pe_num];
985         pci_dev_get(dev);
986         pdn->pcidev = dev;
987         pdn->pe_number = pe_num;
988         pe->pdev = dev;
989         pe->pbus = NULL;
990         pe->tce32_seg = -1;
991         pe->mve_number = -1;
992         pe->rid = dev->bus->number << 8 | pdn->devfn;
993
994         pe_info(pe, "Associated device to PE\n");
995
996         if (pnv_ioda_configure_pe(phb, pe)) {
997                 /* XXX What do we do here ? */
998                 if (pe_num)
999                         pnv_ioda_free_pe(phb, pe_num);
1000                 pdn->pe_number = IODA_INVALID_PE;
1001                 pe->pdev = NULL;
1002                 pci_dev_put(dev);
1003                 return NULL;
1004         }
1005
1006         /* Assign a DMA weight to the device */
1007         pe->dma_weight = pnv_ioda_dma_weight(dev);
1008         if (pe->dma_weight != 0) {
1009                 phb->ioda.dma_weight += pe->dma_weight;
1010                 phb->ioda.dma_pe_count++;
1011         }
1012
1013         /* Link the PE */
1014         pnv_ioda_link_pe_by_weight(phb, pe);
1015
1016         return pe;
1017 }
1018 #endif /* Useful for SRIOV case */
1019
1020 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1021 {
1022         struct pci_dev *dev;
1023
1024         list_for_each_entry(dev, &bus->devices, bus_list) {
1025                 struct pci_dn *pdn = pci_get_pdn(dev);
1026
1027                 if (pdn == NULL) {
1028                         pr_warn("%s: No device node associated with device !\n",
1029                                 pci_name(dev));
1030                         continue;
1031                 }
1032                 pdn->pe_number = pe->pe_number;
1033                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1034                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1035                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1036         }
1037 }
1038
1039 /*
1040  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1041  * single PCI bus. Another one that contains the primary PCI bus and its
1042  * subordinate PCI devices and buses. The second type of PE is normally
1043  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1044  */
1045 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1046 {
1047         struct pci_controller *hose = pci_bus_to_host(bus);
1048         struct pnv_phb *phb = hose->private_data;
1049         struct pnv_ioda_pe *pe;
1050         int pe_num = IODA_INVALID_PE;
1051
1052         /* Check if PE is determined by M64 */
1053         if (phb->pick_m64_pe)
1054                 pe_num = phb->pick_m64_pe(phb, bus, all);
1055
1056         /* The PE number isn't pinned by M64 */
1057         if (pe_num == IODA_INVALID_PE)
1058                 pe_num = pnv_ioda_alloc_pe(phb);
1059
1060         if (pe_num == IODA_INVALID_PE) {
1061                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1062                         __func__, pci_domain_nr(bus), bus->number);
1063                 return;
1064         }
1065
1066         pe = &phb->ioda.pe_array[pe_num];
1067         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1068         pe->pbus = bus;
1069         pe->pdev = NULL;
1070         pe->tce32_seg = -1;
1071         pe->mve_number = -1;
1072         pe->rid = bus->busn_res.start << 8;
1073         pe->dma_weight = 0;
1074
1075         if (all)
1076                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1077                         bus->busn_res.start, bus->busn_res.end, pe_num);
1078         else
1079                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1080                         bus->busn_res.start, pe_num);
1081
1082         if (pnv_ioda_configure_pe(phb, pe)) {
1083                 /* XXX What do we do here ? */
1084                 if (pe_num)
1085                         pnv_ioda_free_pe(phb, pe_num);
1086                 pe->pbus = NULL;
1087                 return;
1088         }
1089
1090         /* Associate it with all child devices */
1091         pnv_ioda_setup_same_PE(bus, pe);
1092
1093         /* Put PE to the list */
1094         list_add_tail(&pe->list, &phb->ioda.pe_list);
1095
1096         /* Account for one DMA PE if at least one DMA capable device exist
1097          * below the bridge
1098          */
1099         if (pe->dma_weight != 0) {
1100                 phb->ioda.dma_weight += pe->dma_weight;
1101                 phb->ioda.dma_pe_count++;
1102         }
1103
1104         /* Link the PE */
1105         pnv_ioda_link_pe_by_weight(phb, pe);
1106 }
1107
1108 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1109 {
1110         struct pci_dev *dev;
1111
1112         pnv_ioda_setup_bus_PE(bus, 0);
1113
1114         list_for_each_entry(dev, &bus->devices, bus_list) {
1115                 if (dev->subordinate) {
1116                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1117                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1118                         else
1119                                 pnv_ioda_setup_PEs(dev->subordinate);
1120                 }
1121         }
1122 }
1123
1124 /*
1125  * Configure PEs so that the downstream PCI buses and devices
1126  * could have their associated PE#. Unfortunately, we didn't
1127  * figure out the way to identify the PLX bridge yet. So we
1128  * simply put the PCI bus and the subordinate behind the root
1129  * port to PE# here. The game rule here is expected to be changed
1130  * as soon as we can detected PLX bridge correctly.
1131  */
1132 static void pnv_pci_ioda_setup_PEs(void)
1133 {
1134         struct pci_controller *hose, *tmp;
1135         struct pnv_phb *phb;
1136
1137         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1138                 phb = hose->private_data;
1139
1140                 /* M64 layout might affect PE allocation */
1141                 if (phb->reserve_m64_pe)
1142                         phb->reserve_m64_pe(phb);
1143
1144                 pnv_ioda_setup_PEs(hose->bus);
1145         }
1146 }
1147
1148 #ifdef CONFIG_PCI_IOV
1149 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1150 {
1151         struct pci_bus        *bus;
1152         struct pci_controller *hose;
1153         struct pnv_phb        *phb;
1154         struct pci_dn         *pdn;
1155         int                    i, j;
1156
1157         bus = pdev->bus;
1158         hose = pci_bus_to_host(bus);
1159         phb = hose->private_data;
1160         pdn = pci_get_pdn(pdev);
1161
1162         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1163                 for (j = 0; j < M64_PER_IOV; j++) {
1164                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1165                                 continue;
1166                         opal_pci_phb_mmio_enable(phb->opal_id,
1167                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1168                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1169                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1170                 }
1171
1172         return 0;
1173 }
1174
1175 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1176 {
1177         struct pci_bus        *bus;
1178         struct pci_controller *hose;
1179         struct pnv_phb        *phb;
1180         struct pci_dn         *pdn;
1181         unsigned int           win;
1182         struct resource       *res;
1183         int                    i, j;
1184         int64_t                rc;
1185         int                    total_vfs;
1186         resource_size_t        size, start;
1187         int                    pe_num;
1188         int                    vf_groups;
1189         int                    vf_per_group;
1190
1191         bus = pdev->bus;
1192         hose = pci_bus_to_host(bus);
1193         phb = hose->private_data;
1194         pdn = pci_get_pdn(pdev);
1195         total_vfs = pci_sriov_get_totalvfs(pdev);
1196
1197         /* Initialize the m64_wins to IODA_INVALID_M64 */
1198         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1199                 for (j = 0; j < M64_PER_IOV; j++)
1200                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1201
1202         if (pdn->m64_per_iov == M64_PER_IOV) {
1203                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1204                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1205                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1206         } else {
1207                 vf_groups = 1;
1208                 vf_per_group = 1;
1209         }
1210
1211         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1212                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1213                 if (!res->flags || !res->parent)
1214                         continue;
1215
1216                 if (!pnv_pci_is_mem_pref_64(res->flags))
1217                         continue;
1218
1219                 for (j = 0; j < vf_groups; j++) {
1220                         do {
1221                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1222                                                 phb->ioda.m64_bar_idx + 1, 0);
1223
1224                                 if (win >= phb->ioda.m64_bar_idx + 1)
1225                                         goto m64_failed;
1226                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1227
1228                         pdn->m64_wins[i][j] = win;
1229
1230                         if (pdn->m64_per_iov == M64_PER_IOV) {
1231                                 size = pci_iov_resource_size(pdev,
1232                                                         PCI_IOV_RESOURCES + i);
1233                                 size = size * vf_per_group;
1234                                 start = res->start + size * j;
1235                         } else {
1236                                 size = resource_size(res);
1237                                 start = res->start;
1238                         }
1239
1240                         /* Map the M64 here */
1241                         if (pdn->m64_per_iov == M64_PER_IOV) {
1242                                 pe_num = pdn->offset + j;
1243                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1244                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1245                                                 pdn->m64_wins[i][j], 0);
1246                         }
1247
1248                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1249                                                  OPAL_M64_WINDOW_TYPE,
1250                                                  pdn->m64_wins[i][j],
1251                                                  start,
1252                                                  0, /* unused */
1253                                                  size);
1254
1255
1256                         if (rc != OPAL_SUCCESS) {
1257                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1258                                         win, rc);
1259                                 goto m64_failed;
1260                         }
1261
1262                         if (pdn->m64_per_iov == M64_PER_IOV)
1263                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1264                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1265                         else
1266                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1267                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1268
1269                         if (rc != OPAL_SUCCESS) {
1270                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1271                                         win, rc);
1272                                 goto m64_failed;
1273                         }
1274                 }
1275         }
1276         return 0;
1277
1278 m64_failed:
1279         pnv_pci_vf_release_m64(pdev);
1280         return -EBUSY;
1281 }
1282
1283 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1284 {
1285         struct pci_bus        *bus;
1286         struct pci_controller *hose;
1287         struct pnv_phb        *phb;
1288         struct iommu_table    *tbl;
1289         unsigned long         addr;
1290         int64_t               rc;
1291
1292         bus = dev->bus;
1293         hose = pci_bus_to_host(bus);
1294         phb = hose->private_data;
1295         tbl = pe->table_group.tables[0];
1296         addr = tbl->it_base;
1297
1298         opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1299                                    pe->pe_number << 1, 1, __pa(addr),
1300                                    0, 0x1000);
1301
1302         rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1303                                         pe->pe_number,
1304                                         (pe->pe_number << 1) + 1,
1305                                         pe->tce_bypass_base,
1306                                         0);
1307         if (rc)
1308                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1309
1310         pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1311         if (pe->table_group.group) {
1312                 iommu_group_put(pe->table_group.group);
1313                 BUG_ON(pe->table_group.group);
1314         }
1315         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1316         free_pages(addr, get_order(TCE32_TABLE_SIZE));
1317 }
1318
1319 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1320 {
1321         struct pci_bus        *bus;
1322         struct pci_controller *hose;
1323         struct pnv_phb        *phb;
1324         struct pnv_ioda_pe    *pe, *pe_n;
1325         struct pci_dn         *pdn;
1326         u16                    vf_index;
1327         int64_t                rc;
1328
1329         bus = pdev->bus;
1330         hose = pci_bus_to_host(bus);
1331         phb = hose->private_data;
1332         pdn = pci_get_pdn(pdev);
1333
1334         if (!pdev->is_physfn)
1335                 return;
1336
1337         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1338                 int   vf_group;
1339                 int   vf_per_group;
1340                 int   vf_index1;
1341
1342                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1343
1344                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1345                         for (vf_index = vf_group * vf_per_group;
1346                                 vf_index < (vf_group + 1) * vf_per_group &&
1347                                 vf_index < num_vfs;
1348                                 vf_index++)
1349                                 for (vf_index1 = vf_group * vf_per_group;
1350                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1351                                         vf_index1 < num_vfs;
1352                                         vf_index1++){
1353
1354                                         rc = opal_pci_set_peltv(phb->opal_id,
1355                                                 pdn->offset + vf_index,
1356                                                 pdn->offset + vf_index1,
1357                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1358
1359                                         if (rc)
1360                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1361                                                 __func__,
1362                                                 pdn->offset + vf_index1, rc);
1363                                 }
1364         }
1365
1366         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1367                 if (pe->parent_dev != pdev)
1368                         continue;
1369
1370                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1371
1372                 /* Remove from list */
1373                 mutex_lock(&phb->ioda.pe_list_mutex);
1374                 list_del(&pe->list);
1375                 mutex_unlock(&phb->ioda.pe_list_mutex);
1376
1377                 pnv_ioda_deconfigure_pe(phb, pe);
1378
1379                 pnv_ioda_free_pe(phb, pe->pe_number);
1380         }
1381 }
1382
1383 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1384 {
1385         struct pci_bus        *bus;
1386         struct pci_controller *hose;
1387         struct pnv_phb        *phb;
1388         struct pci_dn         *pdn;
1389         struct pci_sriov      *iov;
1390         u16 num_vfs;
1391
1392         bus = pdev->bus;
1393         hose = pci_bus_to_host(bus);
1394         phb = hose->private_data;
1395         pdn = pci_get_pdn(pdev);
1396         iov = pdev->sriov;
1397         num_vfs = pdn->num_vfs;
1398
1399         /* Release VF PEs */
1400         pnv_ioda_release_vf_PE(pdev, num_vfs);
1401
1402         if (phb->type == PNV_PHB_IODA2) {
1403                 if (pdn->m64_per_iov == 1)
1404                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1405
1406                 /* Release M64 windows */
1407                 pnv_pci_vf_release_m64(pdev);
1408
1409                 /* Release PE numbers */
1410                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1411                 pdn->offset = 0;
1412         }
1413 }
1414
1415 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1416                                        struct pnv_ioda_pe *pe);
1417 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1418 {
1419         struct pci_bus        *bus;
1420         struct pci_controller *hose;
1421         struct pnv_phb        *phb;
1422         struct pnv_ioda_pe    *pe;
1423         int                    pe_num;
1424         u16                    vf_index;
1425         struct pci_dn         *pdn;
1426         int64_t                rc;
1427
1428         bus = pdev->bus;
1429         hose = pci_bus_to_host(bus);
1430         phb = hose->private_data;
1431         pdn = pci_get_pdn(pdev);
1432
1433         if (!pdev->is_physfn)
1434                 return;
1435
1436         /* Reserve PE for each VF */
1437         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1438                 pe_num = pdn->offset + vf_index;
1439
1440                 pe = &phb->ioda.pe_array[pe_num];
1441                 pe->pe_number = pe_num;
1442                 pe->phb = phb;
1443                 pe->flags = PNV_IODA_PE_VF;
1444                 pe->pbus = NULL;
1445                 pe->parent_dev = pdev;
1446                 pe->tce32_seg = -1;
1447                 pe->mve_number = -1;
1448                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1449                            pci_iov_virtfn_devfn(pdev, vf_index);
1450
1451                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1452                         hose->global_number, pdev->bus->number,
1453                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1454                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1455
1456                 if (pnv_ioda_configure_pe(phb, pe)) {
1457                         /* XXX What do we do here ? */
1458                         if (pe_num)
1459                                 pnv_ioda_free_pe(phb, pe_num);
1460                         pe->pdev = NULL;
1461                         continue;
1462                 }
1463
1464                 /* Put PE to the list */
1465                 mutex_lock(&phb->ioda.pe_list_mutex);
1466                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1467                 mutex_unlock(&phb->ioda.pe_list_mutex);
1468
1469                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1470         }
1471
1472         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1473                 int   vf_group;
1474                 int   vf_per_group;
1475                 int   vf_index1;
1476
1477                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1478
1479                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1480                         for (vf_index = vf_group * vf_per_group;
1481                              vf_index < (vf_group + 1) * vf_per_group &&
1482                              vf_index < num_vfs;
1483                              vf_index++) {
1484                                 for (vf_index1 = vf_group * vf_per_group;
1485                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1486                                      vf_index1 < num_vfs;
1487                                      vf_index1++) {
1488
1489                                         rc = opal_pci_set_peltv(phb->opal_id,
1490                                                 pdn->offset + vf_index,
1491                                                 pdn->offset + vf_index1,
1492                                                 OPAL_ADD_PE_TO_DOMAIN);
1493
1494                                         if (rc)
1495                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1496                                                 __func__,
1497                                                 pdn->offset + vf_index1, rc);
1498                                 }
1499                         }
1500                 }
1501         }
1502 }
1503
1504 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1505 {
1506         struct pci_bus        *bus;
1507         struct pci_controller *hose;
1508         struct pnv_phb        *phb;
1509         struct pci_dn         *pdn;
1510         int                    ret;
1511
1512         bus = pdev->bus;
1513         hose = pci_bus_to_host(bus);
1514         phb = hose->private_data;
1515         pdn = pci_get_pdn(pdev);
1516
1517         if (phb->type == PNV_PHB_IODA2) {
1518                 /* Calculate available PE for required VFs */
1519                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1520                 pdn->offset = bitmap_find_next_zero_area(
1521                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1522                         0, num_vfs, 0);
1523                 if (pdn->offset >= phb->ioda.total_pe) {
1524                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1525                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1526                         pdn->offset = 0;
1527                         return -EBUSY;
1528                 }
1529                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1530                 pdn->num_vfs = num_vfs;
1531                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1532
1533                 /* Assign M64 window accordingly */
1534                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1535                 if (ret) {
1536                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1537                         goto m64_failed;
1538                 }
1539
1540                 /*
1541                  * When using one M64 BAR to map one IOV BAR, we need to shift
1542                  * the IOV BAR according to the PE# allocated to the VFs.
1543                  * Otherwise, the PE# for the VF will conflict with others.
1544                  */
1545                 if (pdn->m64_per_iov == 1) {
1546                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1547                         if (ret)
1548                                 goto m64_failed;
1549                 }
1550         }
1551
1552         /* Setup VF PEs */
1553         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1554
1555         return 0;
1556
1557 m64_failed:
1558         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1559         pdn->offset = 0;
1560
1561         return ret;
1562 }
1563
1564 int pcibios_sriov_disable(struct pci_dev *pdev)
1565 {
1566         pnv_pci_sriov_disable(pdev);
1567
1568         /* Release PCI data */
1569         remove_dev_pci_data(pdev);
1570         return 0;
1571 }
1572
1573 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1574 {
1575         /* Allocate PCI data */
1576         add_dev_pci_data(pdev);
1577
1578         pnv_pci_sriov_enable(pdev, num_vfs);
1579         return 0;
1580 }
1581 #endif /* CONFIG_PCI_IOV */
1582
1583 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1584 {
1585         struct pci_dn *pdn = pci_get_pdn(pdev);
1586         struct pnv_ioda_pe *pe;
1587
1588         /*
1589          * The function can be called while the PE#
1590          * hasn't been assigned. Do nothing for the
1591          * case.
1592          */
1593         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1594                 return;
1595
1596         pe = &phb->ioda.pe_array[pdn->pe_number];
1597         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1598         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1599         /*
1600          * Note: iommu_add_device() will fail here as
1601          * for physical PE: the device is already added by now;
1602          * for virtual PE: sysfs entries are not ready yet and
1603          * tce_iommu_bus_notifier will add the device to a group later.
1604          */
1605 }
1606
1607 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1608 {
1609         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1610         struct pnv_phb *phb = hose->private_data;
1611         struct pci_dn *pdn = pci_get_pdn(pdev);
1612         struct pnv_ioda_pe *pe;
1613         uint64_t top;
1614         bool bypass = false;
1615
1616         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1617                 return -ENODEV;;
1618
1619         pe = &phb->ioda.pe_array[pdn->pe_number];
1620         if (pe->tce_bypass_enabled) {
1621                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1622                 bypass = (dma_mask >= top);
1623         }
1624
1625         if (bypass) {
1626                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1627                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1628                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1629         } else {
1630                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1631                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1632                 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1633         }
1634         *pdev->dev.dma_mask = dma_mask;
1635         return 0;
1636 }
1637
1638 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1639                                               struct pci_dev *pdev)
1640 {
1641         struct pci_dn *pdn = pci_get_pdn(pdev);
1642         struct pnv_ioda_pe *pe;
1643         u64 end, mask;
1644
1645         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1646                 return 0;
1647
1648         pe = &phb->ioda.pe_array[pdn->pe_number];
1649         if (!pe->tce_bypass_enabled)
1650                 return __dma_get_required_mask(&pdev->dev);
1651
1652
1653         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1654         mask = 1ULL << (fls64(end) - 1);
1655         mask += mask - 1;
1656
1657         return mask;
1658 }
1659
1660 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1661                                    struct pci_bus *bus)
1662 {
1663         struct pci_dev *dev;
1664
1665         list_for_each_entry(dev, &bus->devices, bus_list) {
1666                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1667                 iommu_add_device(&dev->dev);
1668
1669                 if (dev->subordinate)
1670                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1671         }
1672 }
1673
1674 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1675                 unsigned long index, unsigned long npages, bool rm)
1676 {
1677         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1678                         &tbl->it_group_list, struct iommu_table_group_link,
1679                         next);
1680         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1681                         struct pnv_ioda_pe, table_group);
1682         __be64 __iomem *invalidate = rm ?
1683                 (__be64 __iomem *)pe->tce_inval_reg_phys :
1684                 (__be64 __iomem *)tbl->it_index;
1685         unsigned long start, end, inc;
1686         const unsigned shift = tbl->it_page_shift;
1687
1688         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1689         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1690                         npages - 1);
1691
1692         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1693         if (tbl->it_busno) {
1694                 start <<= shift;
1695                 end <<= shift;
1696                 inc = 128ull << shift;
1697                 start |= tbl->it_busno;
1698                 end |= tbl->it_busno;
1699         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1700                 /* p7ioc-style invalidation, 2 TCEs per write */
1701                 start |= (1ull << 63);
1702                 end |= (1ull << 63);
1703                 inc = 16;
1704         } else {
1705                 /* Default (older HW) */
1706                 inc = 128;
1707         }
1708
1709         end |= inc - 1; /* round up end to be different than start */
1710
1711         mb(); /* Ensure above stores are visible */
1712         while (start <= end) {
1713                 if (rm)
1714                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1715                 else
1716                         __raw_writeq(cpu_to_be64(start), invalidate);
1717                 start += inc;
1718         }
1719
1720         /*
1721          * The iommu layer will do another mb() for us on build()
1722          * and we don't care on free()
1723          */
1724 }
1725
1726 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1727                 long npages, unsigned long uaddr,
1728                 enum dma_data_direction direction,
1729                 struct dma_attrs *attrs)
1730 {
1731         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1732                         attrs);
1733
1734         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1735                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1736
1737         return ret;
1738 }
1739
1740 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1741                 long npages)
1742 {
1743         pnv_tce_free(tbl, index, npages);
1744
1745         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1746                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1747 }
1748
1749 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1750         .set = pnv_ioda1_tce_build,
1751         .clear = pnv_ioda1_tce_free,
1752         .get = pnv_tce_get,
1753 };
1754
1755 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1756                 unsigned long index, unsigned long npages, bool rm)
1757 {
1758         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1759                         &tbl->it_group_list, struct iommu_table_group_link,
1760                         next);
1761         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1762                         struct pnv_ioda_pe, table_group);
1763         unsigned long start, end, inc;
1764         __be64 __iomem *invalidate = rm ?
1765                 (__be64 __iomem *)pe->tce_inval_reg_phys :
1766                 (__be64 __iomem *)tbl->it_index;
1767         const unsigned shift = tbl->it_page_shift;
1768
1769         /* We'll invalidate DMA address in PE scope */
1770         start = 0x2ull << 60;
1771         start |= (pe->pe_number & 0xFF);
1772         end = start;
1773
1774         /* Figure out the start, end and step */
1775         start |= (index << shift);
1776         end |= ((index + npages - 1) << shift);
1777         inc = (0x1ull << shift);
1778         mb();
1779
1780         while (start <= end) {
1781                 if (rm)
1782                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1783                 else
1784                         __raw_writeq(cpu_to_be64(start), invalidate);
1785                 start += inc;
1786         }
1787 }
1788
1789 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1790                 long npages, unsigned long uaddr,
1791                 enum dma_data_direction direction,
1792                 struct dma_attrs *attrs)
1793 {
1794         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1795                         attrs);
1796
1797         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1798                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1799
1800         return ret;
1801 }
1802
1803 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1804                 long npages)
1805 {
1806         pnv_tce_free(tbl, index, npages);
1807
1808         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1809                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1810 }
1811
1812 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1813         .set = pnv_ioda2_tce_build,
1814         .clear = pnv_ioda2_tce_free,
1815         .get = pnv_tce_get,
1816 };
1817
1818 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1819                                       struct pnv_ioda_pe *pe, unsigned int base,
1820                                       unsigned int segs)
1821 {
1822
1823         struct page *tce_mem = NULL;
1824         const __be64 *swinvp;
1825         struct iommu_table *tbl;
1826         unsigned int i;
1827         int64_t rc;
1828         void *addr;
1829
1830         /* XXX FIXME: Handle 64-bit only DMA devices */
1831         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1832         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1833
1834         /* We shouldn't already have a 32-bit DMA associated */
1835         if (WARN_ON(pe->tce32_seg >= 0))
1836                 return;
1837
1838         tbl = pnv_pci_table_alloc(phb->hose->node);
1839         iommu_register_group(&pe->table_group, phb->hose->global_number,
1840                         pe->pe_number);
1841         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1842
1843         /* Grab a 32-bit TCE table */
1844         pe->tce32_seg = base;
1845         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1846                 (base << 28), ((base + segs) << 28) - 1);
1847
1848         /* XXX Currently, we allocate one big contiguous table for the
1849          * TCEs. We only really need one chunk per 256M of TCE space
1850          * (ie per segment) but that's an optimization for later, it
1851          * requires some added smarts with our get/put_tce implementation
1852          */
1853         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1854                                    get_order(TCE32_TABLE_SIZE * segs));
1855         if (!tce_mem) {
1856                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1857                 goto fail;
1858         }
1859         addr = page_address(tce_mem);
1860         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1861
1862         /* Configure HW */
1863         for (i = 0; i < segs; i++) {
1864                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1865                                               pe->pe_number,
1866                                               base + i, 1,
1867                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1868                                               TCE32_TABLE_SIZE, 0x1000);
1869                 if (rc) {
1870                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1871                                " err %ld\n", rc);
1872                         goto fail;
1873                 }
1874         }
1875
1876         /* Setup linux iommu table */
1877         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1878                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1879
1880         /* OPAL variant of P7IOC SW invalidated TCEs */
1881         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1882         if (swinvp) {
1883                 /* We need a couple more fields -- an address and a data
1884                  * to or.  Since the bus is only printed out on table free
1885                  * errors, and on the first pass the data will be a relative
1886                  * bus number, print that out instead.
1887                  */
1888                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1889                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1890                                 8);
1891                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1892                                  TCE_PCI_SWINV_FREE   |
1893                                  TCE_PCI_SWINV_PAIR);
1894         }
1895         tbl->it_ops = &pnv_ioda1_iommu_ops;
1896         iommu_init_table(tbl, phb->hose->node);
1897
1898         if (pe->flags & PNV_IODA_PE_DEV) {
1899                 /*
1900                  * Setting table base here only for carrying iommu_group
1901                  * further down to let iommu_add_device() do the job.
1902                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1903                  */
1904                 set_iommu_table_base(&pe->pdev->dev, tbl);
1905                 iommu_add_device(&pe->pdev->dev);
1906         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1907                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1908
1909         return;
1910  fail:
1911         /* XXX Failure: Try to fallback to 64-bit only ? */
1912         if (pe->tce32_seg >= 0)
1913                 pe->tce32_seg = -1;
1914         if (tce_mem)
1915                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1916         if (tbl) {
1917                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1918                 iommu_free_table(tbl, "pnv");
1919         }
1920 }
1921
1922 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1923 {
1924         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1925         int64_t rc;
1926
1927         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1928         if (enable) {
1929                 phys_addr_t top = memblock_end_of_DRAM();
1930
1931                 top = roundup_pow_of_two(top);
1932                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1933                                                      pe->pe_number,
1934                                                      window_id,
1935                                                      pe->tce_bypass_base,
1936                                                      top);
1937         } else {
1938                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1939                                                      pe->pe_number,
1940                                                      window_id,
1941                                                      pe->tce_bypass_base,
1942                                                      0);
1943         }
1944         if (rc)
1945                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1946         else
1947                 pe->tce_bypass_enabled = enable;
1948 }
1949
1950 #ifdef CONFIG_IOMMU_API
1951 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1952 {
1953         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1954                                                 table_group);
1955
1956         iommu_take_ownership(table_group->tables[0]);
1957         pnv_pci_ioda2_set_bypass(pe, false);
1958 }
1959
1960 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1961 {
1962         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1963                                                 table_group);
1964
1965         iommu_release_ownership(table_group->tables[0]);
1966         pnv_pci_ioda2_set_bypass(pe, true);
1967 }
1968
1969 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1970         .take_ownership = pnv_ioda2_take_ownership,
1971         .release_ownership = pnv_ioda2_release_ownership,
1972 };
1973 #endif
1974
1975 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1976                                        struct pnv_ioda_pe *pe)
1977 {
1978         struct page *tce_mem = NULL;
1979         void *addr;
1980         const __be64 *swinvp;
1981         struct iommu_table *tbl;
1982         unsigned int tce_table_size, end;
1983         int64_t rc;
1984
1985         /* We shouldn't already have a 32-bit DMA associated */
1986         if (WARN_ON(pe->tce32_seg >= 0))
1987                 return;
1988
1989         /* TVE #1 is selected by PCI address bit 59 */
1990         pe->tce_bypass_base = 1ull << 59;
1991
1992         tbl = pnv_pci_table_alloc(phb->hose->node);
1993         iommu_register_group(&pe->table_group, phb->hose->global_number,
1994                         pe->pe_number);
1995         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1996
1997         /* The PE will reserve all possible 32-bits space */
1998         pe->tce32_seg = 0;
1999         end = (1 << ilog2(phb->ioda.m32_pci_base));
2000         tce_table_size = (end / 0x1000) * 8;
2001         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2002                 end);
2003
2004         /* Allocate TCE table */
2005         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2006                                    get_order(tce_table_size));
2007         if (!tce_mem) {
2008                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
2009                 goto fail;
2010         }
2011         addr = page_address(tce_mem);
2012         memset(addr, 0, tce_table_size);
2013
2014         /*
2015          * Map TCE table through TVT. The TVE index is the PE number
2016          * shifted by 1 bit for 32-bits DMA space.
2017          */
2018         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2019                                         pe->pe_number << 1, 1, __pa(addr),
2020                                         tce_table_size, 0x1000);
2021         if (rc) {
2022                 pe_err(pe, "Failed to configure 32-bit TCE table,"
2023                        " err %ld\n", rc);
2024                 goto fail;
2025         }
2026
2027         /* Setup linux iommu table */
2028         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
2029                         IOMMU_PAGE_SHIFT_4K);
2030
2031         /* OPAL variant of PHB3 invalidated TCEs */
2032         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2033         if (swinvp) {
2034                 /* We need a couple more fields -- an address and a data
2035                  * to or.  Since the bus is only printed out on table free
2036                  * errors, and on the first pass the data will be a relative
2037                  * bus number, print that out instead.
2038                  */
2039                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
2040                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
2041                                 8);
2042                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2043         }
2044         tbl->it_ops = &pnv_ioda2_iommu_ops;
2045         iommu_init_table(tbl, phb->hose->node);
2046 #ifdef CONFIG_IOMMU_API
2047         pe->table_group.ops = &pnv_pci_ioda2_ops;
2048 #endif
2049
2050         if (pe->flags & PNV_IODA_PE_DEV) {
2051                 /*
2052                  * Setting table base here only for carrying iommu_group
2053                  * further down to let iommu_add_device() do the job.
2054                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2055                  */
2056                 set_iommu_table_base(&pe->pdev->dev, tbl);
2057                 iommu_add_device(&pe->pdev->dev);
2058         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2059                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2060
2061         /* Also create a bypass window */
2062         if (!pnv_iommu_bypass_disabled)
2063                 pnv_pci_ioda2_set_bypass(pe, true);
2064
2065         return;
2066 fail:
2067         if (pe->tce32_seg >= 0)
2068                 pe->tce32_seg = -1;
2069         if (tce_mem)
2070                 __free_pages(tce_mem, get_order(tce_table_size));
2071         if (tbl) {
2072                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2073                 iommu_free_table(tbl, "pnv");
2074         }
2075 }
2076
2077 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2078 {
2079         struct pci_controller *hose = phb->hose;
2080         unsigned int residual, remaining, segs, tw, base;
2081         struct pnv_ioda_pe *pe;
2082
2083         /* If we have more PE# than segments available, hand out one
2084          * per PE until we run out and let the rest fail. If not,
2085          * then we assign at least one segment per PE, plus more based
2086          * on the amount of devices under that PE
2087          */
2088         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2089                 residual = 0;
2090         else
2091                 residual = phb->ioda.tce32_count -
2092                         phb->ioda.dma_pe_count;
2093
2094         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2095                 hose->global_number, phb->ioda.tce32_count);
2096         pr_info("PCI: %d PE# for a total weight of %d\n",
2097                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2098
2099         /* Walk our PE list and configure their DMA segments, hand them
2100          * out one base segment plus any residual segments based on
2101          * weight
2102          */
2103         remaining = phb->ioda.tce32_count;
2104         tw = phb->ioda.dma_weight;
2105         base = 0;
2106         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2107                 if (!pe->dma_weight)
2108                         continue;
2109                 if (!remaining) {
2110                         pe_warn(pe, "No DMA32 resources available\n");
2111                         continue;
2112                 }
2113                 segs = 1;
2114                 if (residual) {
2115                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2116                         if (segs > remaining)
2117                                 segs = remaining;
2118                 }
2119
2120                 /*
2121                  * For IODA2 compliant PHB3, we needn't care about the weight.
2122                  * The all available 32-bits DMA space will be assigned to
2123                  * the specific PE.
2124                  */
2125                 if (phb->type == PNV_PHB_IODA1) {
2126                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2127                                 pe->dma_weight, segs);
2128                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2129                 } else {
2130                         pe_info(pe, "Assign DMA32 space\n");
2131                         segs = 0;
2132                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2133                 }
2134
2135                 remaining -= segs;
2136                 base += segs;
2137         }
2138 }
2139
2140 #ifdef CONFIG_PCI_MSI
2141 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2142 {
2143         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2144         struct irq_chip *chip = irq_data_get_irq_chip(d);
2145         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2146                                            ioda.irq_chip);
2147         int64_t rc;
2148
2149         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2150         WARN_ON_ONCE(rc);
2151
2152         icp_native_eoi(d);
2153 }
2154
2155
2156 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2157 {
2158         struct irq_data *idata;
2159         struct irq_chip *ichip;
2160
2161         if (phb->type != PNV_PHB_IODA2)
2162                 return;
2163
2164         if (!phb->ioda.irq_chip_init) {
2165                 /*
2166                  * First time we setup an MSI IRQ, we need to setup the
2167                  * corresponding IRQ chip to route correctly.
2168                  */
2169                 idata = irq_get_irq_data(virq);
2170                 ichip = irq_data_get_irq_chip(idata);
2171                 phb->ioda.irq_chip_init = 1;
2172                 phb->ioda.irq_chip = *ichip;
2173                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2174         }
2175         irq_set_chip(virq, &phb->ioda.irq_chip);
2176 }
2177
2178 #ifdef CONFIG_CXL_BASE
2179
2180 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2181 {
2182         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2183
2184         return of_node_get(hose->dn);
2185 }
2186 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2187
2188 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2189 {
2190         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2191         struct pnv_phb *phb = hose->private_data;
2192         struct pnv_ioda_pe *pe;
2193         int rc;
2194
2195         pe = pnv_ioda_get_pe(dev);
2196         if (!pe)
2197                 return -ENODEV;
2198
2199         pe_info(pe, "Switching PHB to CXL\n");
2200
2201         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2202         if (rc)
2203                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2204
2205         return rc;
2206 }
2207 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2208
2209 /* Find PHB for cxl dev and allocate MSI hwirqs?
2210  * Returns the absolute hardware IRQ number
2211  */
2212 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2213 {
2214         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2215         struct pnv_phb *phb = hose->private_data;
2216         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2217
2218         if (hwirq < 0) {
2219                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2220                 return -ENOSPC;
2221         }
2222
2223         return phb->msi_base + hwirq;
2224 }
2225 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2226
2227 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2228 {
2229         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2230         struct pnv_phb *phb = hose->private_data;
2231
2232         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2233 }
2234 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2235
2236 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2237                                   struct pci_dev *dev)
2238 {
2239         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2240         struct pnv_phb *phb = hose->private_data;
2241         int i, hwirq;
2242
2243         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2244                 if (!irqs->range[i])
2245                         continue;
2246                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2247                          i, irqs->offset[i],
2248                          irqs->range[i]);
2249                 hwirq = irqs->offset[i] - phb->msi_base;
2250                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2251                                        irqs->range[i]);
2252         }
2253 }
2254 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2255
2256 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2257                                struct pci_dev *dev, int num)
2258 {
2259         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2260         struct pnv_phb *phb = hose->private_data;
2261         int i, hwirq, try;
2262
2263         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2264
2265         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2266         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2267                 try = num;
2268                 while (try) {
2269                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2270                         if (hwirq >= 0)
2271                                 break;
2272                         try /= 2;
2273                 }
2274                 if (!try)
2275                         goto fail;
2276
2277                 irqs->offset[i] = phb->msi_base + hwirq;
2278                 irqs->range[i] = try;
2279                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2280                          i, irqs->offset[i], irqs->range[i]);
2281                 num -= try;
2282         }
2283         if (num)
2284                 goto fail;
2285
2286         return 0;
2287 fail:
2288         pnv_cxl_release_hwirq_ranges(irqs, dev);
2289         return -ENOSPC;
2290 }
2291 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2292
2293 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2294 {
2295         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2296         struct pnv_phb *phb = hose->private_data;
2297
2298         return phb->msi_bmp.irq_count;
2299 }
2300 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2301
2302 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2303                            unsigned int virq)
2304 {
2305         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2306         struct pnv_phb *phb = hose->private_data;
2307         unsigned int xive_num = hwirq - phb->msi_base;
2308         struct pnv_ioda_pe *pe;
2309         int rc;
2310
2311         if (!(pe = pnv_ioda_get_pe(dev)))
2312                 return -ENODEV;
2313
2314         /* Assign XIVE to PE */
2315         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2316         if (rc) {
2317                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2318                         "hwirq 0x%x XIVE 0x%x PE\n",
2319                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2320                 return -EIO;
2321         }
2322         set_msi_irq_chip(phb, virq);
2323
2324         return 0;
2325 }
2326 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2327 #endif
2328
2329 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2330                                   unsigned int hwirq, unsigned int virq,
2331                                   unsigned int is_64, struct msi_msg *msg)
2332 {
2333         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2334         unsigned int xive_num = hwirq - phb->msi_base;
2335         __be32 data;
2336         int rc;
2337
2338         /* No PE assigned ? bail out ... no MSI for you ! */
2339         if (pe == NULL)
2340                 return -ENXIO;
2341
2342         /* Check if we have an MVE */
2343         if (pe->mve_number < 0)
2344                 return -ENXIO;
2345
2346         /* Force 32-bit MSI on some broken devices */
2347         if (dev->no_64bit_msi)
2348                 is_64 = 0;
2349
2350         /* Assign XIVE to PE */
2351         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2352         if (rc) {
2353                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2354                         pci_name(dev), rc, xive_num);
2355                 return -EIO;
2356         }
2357
2358         if (is_64) {
2359                 __be64 addr64;
2360
2361                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2362                                      &addr64, &data);
2363                 if (rc) {
2364                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2365                                 pci_name(dev), rc);
2366                         return -EIO;
2367                 }
2368                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2369                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2370         } else {
2371                 __be32 addr32;
2372
2373                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2374                                      &addr32, &data);
2375                 if (rc) {
2376                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2377                                 pci_name(dev), rc);
2378                         return -EIO;
2379                 }
2380                 msg->address_hi = 0;
2381                 msg->address_lo = be32_to_cpu(addr32);
2382         }
2383         msg->data = be32_to_cpu(data);
2384
2385         set_msi_irq_chip(phb, virq);
2386
2387         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2388                  " address=%x_%08x data=%x PE# %d\n",
2389                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2390                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2391
2392         return 0;
2393 }
2394
2395 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2396 {
2397         unsigned int count;
2398         const __be32 *prop = of_get_property(phb->hose->dn,
2399                                              "ibm,opal-msi-ranges", NULL);
2400         if (!prop) {
2401                 /* BML Fallback */
2402                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2403         }
2404         if (!prop)
2405                 return;
2406
2407         phb->msi_base = be32_to_cpup(prop);
2408         count = be32_to_cpup(prop + 1);
2409         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2410                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2411                        phb->hose->global_number);
2412                 return;
2413         }
2414
2415         phb->msi_setup = pnv_pci_ioda_msi_setup;
2416         phb->msi32_support = 1;
2417         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2418                 count, phb->msi_base);
2419 }
2420 #else
2421 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2422 #endif /* CONFIG_PCI_MSI */
2423
2424 #ifdef CONFIG_PCI_IOV
2425 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2426 {
2427         struct pci_controller *hose;
2428         struct pnv_phb *phb;
2429         struct resource *res;
2430         int i;
2431         resource_size_t size;
2432         struct pci_dn *pdn;
2433         int mul, total_vfs;
2434
2435         if (!pdev->is_physfn || pdev->is_added)
2436                 return;
2437
2438         hose = pci_bus_to_host(pdev->bus);
2439         phb = hose->private_data;
2440
2441         pdn = pci_get_pdn(pdev);
2442         pdn->vfs_expanded = 0;
2443
2444         total_vfs = pci_sriov_get_totalvfs(pdev);
2445         pdn->m64_per_iov = 1;
2446         mul = phb->ioda.total_pe;
2447
2448         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2449                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2450                 if (!res->flags || res->parent)
2451                         continue;
2452                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2453                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2454                                  i, res);
2455                         continue;
2456                 }
2457
2458                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2459
2460                 /* bigger than 64M */
2461                 if (size > (1 << 26)) {
2462                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2463                                  i, res);
2464                         pdn->m64_per_iov = M64_PER_IOV;
2465                         mul = roundup_pow_of_two(total_vfs);
2466                         break;
2467                 }
2468         }
2469
2470         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2471                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2472                 if (!res->flags || res->parent)
2473                         continue;
2474                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2475                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2476                                  i, res);
2477                         continue;
2478                 }
2479
2480                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2481                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2482                 res->end = res->start + size * mul - 1;
2483                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2484                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2485                          i, res, mul);
2486         }
2487         pdn->vfs_expanded = mul;
2488 }
2489 #endif /* CONFIG_PCI_IOV */
2490
2491 /*
2492  * This function is supposed to be called on basis of PE from top
2493  * to bottom style. So the the I/O or MMIO segment assigned to
2494  * parent PE could be overrided by its child PEs if necessary.
2495  */
2496 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2497                                   struct pnv_ioda_pe *pe)
2498 {
2499         struct pnv_phb *phb = hose->private_data;
2500         struct pci_bus_region region;
2501         struct resource *res;
2502         int i, index;
2503         int rc;
2504
2505         /*
2506          * NOTE: We only care PCI bus based PE for now. For PCI
2507          * device based PE, for example SRIOV sensitive VF should
2508          * be figured out later.
2509          */
2510         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2511
2512         pci_bus_for_each_resource(pe->pbus, res, i) {
2513                 if (!res || !res->flags ||
2514                     res->start > res->end)
2515                         continue;
2516
2517                 if (res->flags & IORESOURCE_IO) {
2518                         region.start = res->start - phb->ioda.io_pci_base;
2519                         region.end   = res->end - phb->ioda.io_pci_base;
2520                         index = region.start / phb->ioda.io_segsize;
2521
2522                         while (index < phb->ioda.total_pe &&
2523                                region.start <= region.end) {
2524                                 phb->ioda.io_segmap[index] = pe->pe_number;
2525                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2526                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2527                                 if (rc != OPAL_SUCCESS) {
2528                                         pr_err("%s: OPAL error %d when mapping IO "
2529                                                "segment #%d to PE#%d\n",
2530                                                __func__, rc, index, pe->pe_number);
2531                                         break;
2532                                 }
2533
2534                                 region.start += phb->ioda.io_segsize;
2535                                 index++;
2536                         }
2537                 } else if ((res->flags & IORESOURCE_MEM) &&
2538                            !pnv_pci_is_mem_pref_64(res->flags)) {
2539                         region.start = res->start -
2540                                        hose->mem_offset[0] -
2541                                        phb->ioda.m32_pci_base;
2542                         region.end   = res->end -
2543                                        hose->mem_offset[0] -
2544                                        phb->ioda.m32_pci_base;
2545                         index = region.start / phb->ioda.m32_segsize;
2546
2547                         while (index < phb->ioda.total_pe &&
2548                                region.start <= region.end) {
2549                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2550                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2551                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2552                                 if (rc != OPAL_SUCCESS) {
2553                                         pr_err("%s: OPAL error %d when mapping M32 "
2554                                                "segment#%d to PE#%d",
2555                                                __func__, rc, index, pe->pe_number);
2556                                         break;
2557                                 }
2558
2559                                 region.start += phb->ioda.m32_segsize;
2560                                 index++;
2561                         }
2562                 }
2563         }
2564 }
2565
2566 static void pnv_pci_ioda_setup_seg(void)
2567 {
2568         struct pci_controller *tmp, *hose;
2569         struct pnv_phb *phb;
2570         struct pnv_ioda_pe *pe;
2571
2572         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2573                 phb = hose->private_data;
2574                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2575                         pnv_ioda_setup_pe_seg(hose, pe);
2576                 }
2577         }
2578 }
2579
2580 static void pnv_pci_ioda_setup_DMA(void)
2581 {
2582         struct pci_controller *hose, *tmp;
2583         struct pnv_phb *phb;
2584
2585         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2586                 pnv_ioda_setup_dma(hose->private_data);
2587
2588                 /* Mark the PHB initialization done */
2589                 phb = hose->private_data;
2590                 phb->initialized = 1;
2591         }
2592 }
2593
2594 static void pnv_pci_ioda_create_dbgfs(void)
2595 {
2596 #ifdef CONFIG_DEBUG_FS
2597         struct pci_controller *hose, *tmp;
2598         struct pnv_phb *phb;
2599         char name[16];
2600
2601         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2602                 phb = hose->private_data;
2603
2604                 sprintf(name, "PCI%04x", hose->global_number);
2605                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2606                 if (!phb->dbgfs)
2607                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2608                                 __func__, hose->global_number);
2609         }
2610 #endif /* CONFIG_DEBUG_FS */
2611 }
2612
2613 static void pnv_pci_ioda_fixup(void)
2614 {
2615         pnv_pci_ioda_setup_PEs();
2616         pnv_pci_ioda_setup_seg();
2617         pnv_pci_ioda_setup_DMA();
2618
2619         pnv_pci_ioda_create_dbgfs();
2620
2621 #ifdef CONFIG_EEH
2622         eeh_init();
2623         eeh_addr_cache_build();
2624 #endif
2625 }
2626
2627 /*
2628  * Returns the alignment for I/O or memory windows for P2P
2629  * bridges. That actually depends on how PEs are segmented.
2630  * For now, we return I/O or M32 segment size for PE sensitive
2631  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2632  * 1MiB for memory) will be returned.
2633  *
2634  * The current PCI bus might be put into one PE, which was
2635  * create against the parent PCI bridge. For that case, we
2636  * needn't enlarge the alignment so that we can save some
2637  * resources.
2638  */
2639 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2640                                                 unsigned long type)
2641 {
2642         struct pci_dev *bridge;
2643         struct pci_controller *hose = pci_bus_to_host(bus);
2644         struct pnv_phb *phb = hose->private_data;
2645         int num_pci_bridges = 0;
2646
2647         bridge = bus->self;
2648         while (bridge) {
2649                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2650                         num_pci_bridges++;
2651                         if (num_pci_bridges >= 2)
2652                                 return 1;
2653                 }
2654
2655                 bridge = bridge->bus->self;
2656         }
2657
2658         /* We fail back to M32 if M64 isn't supported */
2659         if (phb->ioda.m64_segsize &&
2660             pnv_pci_is_mem_pref_64(type))
2661                 return phb->ioda.m64_segsize;
2662         if (type & IORESOURCE_MEM)
2663                 return phb->ioda.m32_segsize;
2664
2665         return phb->ioda.io_segsize;
2666 }
2667
2668 #ifdef CONFIG_PCI_IOV
2669 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2670                                                       int resno)
2671 {
2672         struct pci_dn *pdn = pci_get_pdn(pdev);
2673         resource_size_t align, iov_align;
2674
2675         iov_align = resource_size(&pdev->resource[resno]);
2676         if (iov_align)
2677                 return iov_align;
2678
2679         align = pci_iov_resource_size(pdev, resno);
2680         if (pdn->vfs_expanded)
2681                 return pdn->vfs_expanded * align;
2682
2683         return align;
2684 }
2685 #endif /* CONFIG_PCI_IOV */
2686
2687 /* Prevent enabling devices for which we couldn't properly
2688  * assign a PE
2689  */
2690 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2691 {
2692         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2693         struct pnv_phb *phb = hose->private_data;
2694         struct pci_dn *pdn;
2695
2696         /* The function is probably called while the PEs have
2697          * not be created yet. For example, resource reassignment
2698          * during PCI probe period. We just skip the check if
2699          * PEs isn't ready.
2700          */
2701         if (!phb->initialized)
2702                 return true;
2703
2704         pdn = pci_get_pdn(dev);
2705         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2706                 return false;
2707
2708         return true;
2709 }
2710
2711 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2712                                u32 devfn)
2713 {
2714         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2715 }
2716
2717 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2718 {
2719         struct pnv_phb *phb = hose->private_data;
2720
2721         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2722                        OPAL_ASSERT_RESET);
2723 }
2724
2725 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2726        .dma_dev_setup = pnv_pci_dma_dev_setup,
2727 #ifdef CONFIG_PCI_MSI
2728        .setup_msi_irqs = pnv_setup_msi_irqs,
2729        .teardown_msi_irqs = pnv_teardown_msi_irqs,
2730 #endif
2731        .enable_device_hook = pnv_pci_enable_device_hook,
2732        .window_alignment = pnv_pci_window_alignment,
2733        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2734        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
2735        .shutdown = pnv_pci_ioda_shutdown,
2736 };
2737
2738 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2739                                          u64 hub_id, int ioda_type)
2740 {
2741         struct pci_controller *hose;
2742         struct pnv_phb *phb;
2743         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
2744         const __be64 *prop64;
2745         const __be32 *prop32;
2746         int len;
2747         u64 phb_id;
2748         void *aux;
2749         long rc;
2750
2751         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
2752
2753         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2754         if (!prop64) {
2755                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2756                 return;
2757         }
2758         phb_id = be64_to_cpup(prop64);
2759         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2760
2761         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
2762
2763         /* Allocate PCI controller */
2764         phb->hose = hose = pcibios_alloc_controller(np);
2765         if (!phb->hose) {
2766                 pr_err("  Can't allocate PCI controller for %s\n",
2767                        np->full_name);
2768                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
2769                 return;
2770         }
2771
2772         spin_lock_init(&phb->lock);
2773         prop32 = of_get_property(np, "bus-range", &len);
2774         if (prop32 && len == 8) {
2775                 hose->first_busno = be32_to_cpu(prop32[0]);
2776                 hose->last_busno = be32_to_cpu(prop32[1]);
2777         } else {
2778                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
2779                 hose->first_busno = 0;
2780                 hose->last_busno = 0xff;
2781         }
2782         hose->private_data = phb;
2783         phb->hub_id = hub_id;
2784         phb->opal_id = phb_id;
2785         phb->type = ioda_type;
2786         mutex_init(&phb->ioda.pe_alloc_mutex);
2787
2788         /* Detect specific models for error handling */
2789         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2790                 phb->model = PNV_PHB_MODEL_P7IOC;
2791         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2792                 phb->model = PNV_PHB_MODEL_PHB3;
2793         else
2794                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2795
2796         /* Parse 32-bit and IO ranges (if any) */
2797         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2798
2799         /* Get registers */
2800         phb->regs = of_iomap(np, 0);
2801         if (phb->regs == NULL)
2802                 pr_err("  Failed to map registers !\n");
2803
2804         /* Initialize more IODA stuff */
2805         phb->ioda.total_pe = 1;
2806         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2807         if (prop32)
2808                 phb->ioda.total_pe = be32_to_cpup(prop32);
2809         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2810         if (prop32)
2811                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
2812
2813         /* Parse 64-bit MMIO range */
2814         pnv_ioda_parse_m64_window(phb);
2815
2816         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2817         /* FW Has already off top 64k of M32 space (MSI space) */
2818         phb->ioda.m32_size += 0x10000;
2819
2820         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2821         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2822         phb->ioda.io_size = hose->pci_io_size;
2823         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2824         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2825
2826         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2827         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2828         m32map_off = size;
2829         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2830         if (phb->type == PNV_PHB_IODA1) {
2831                 iomap_off = size;
2832                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2833         }
2834         pemap_off = size;
2835         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2836         aux = memblock_virt_alloc(size, 0);
2837         phb->ioda.pe_alloc = aux;
2838         phb->ioda.m32_segmap = aux + m32map_off;
2839         if (phb->type == PNV_PHB_IODA1)
2840                 phb->ioda.io_segmap = aux + iomap_off;
2841         phb->ioda.pe_array = aux + pemap_off;
2842         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2843
2844         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2845         INIT_LIST_HEAD(&phb->ioda.pe_list);
2846         mutex_init(&phb->ioda.pe_list_mutex);
2847
2848         /* Calculate how many 32-bit TCE segments we have */
2849         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2850
2851 #if 0 /* We should really do that ... */
2852         rc = opal_pci_set_phb_mem_window(opal->phb_id,
2853                                          window_type,
2854                                          window_num,
2855                                          starting_real_address,
2856                                          starting_pci_address,
2857                                          segment_size);
2858 #endif
2859
2860         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2861                 phb->ioda.total_pe, phb->ioda.reserved_pe,
2862                 phb->ioda.m32_size, phb->ioda.m32_segsize);
2863         if (phb->ioda.m64_size)
2864                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2865                         phb->ioda.m64_size, phb->ioda.m64_segsize);
2866         if (phb->ioda.io_size)
2867                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
2868                         phb->ioda.io_size, phb->ioda.io_segsize);
2869
2870
2871         phb->hose->ops = &pnv_pci_ops;
2872         phb->get_pe_state = pnv_ioda_get_pe_state;
2873         phb->freeze_pe = pnv_ioda_freeze_pe;
2874         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2875
2876         /* Setup RID -> PE mapping function */
2877         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2878
2879         /* Setup TCEs */
2880         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2881         phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2882
2883         /* Setup MSI support */
2884         pnv_pci_init_ioda_msis(phb);
2885
2886         /*
2887          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2888          * to let the PCI core do resource assignment. It's supposed
2889          * that the PCI core will do correct I/O and MMIO alignment
2890          * for the P2P bridge bars so that each PCI bus (excluding
2891          * the child P2P bridges) can form individual PE.
2892          */
2893         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2894         hose->controller_ops = pnv_pci_ioda_controller_ops;
2895
2896 #ifdef CONFIG_PCI_IOV
2897         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
2898         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2899 #endif
2900
2901         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2902
2903         /* Reset IODA tables to a clean state */
2904         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2905         if (rc)
2906                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2907
2908         /* If we're running in kdump kerenl, the previous kerenl never
2909          * shutdown PCI devices correctly. We already got IODA table
2910          * cleaned out. So we have to issue PHB reset to stop all PCI
2911          * transactions from previous kerenl.
2912          */
2913         if (is_kdump_kernel()) {
2914                 pr_info("  Issue PHB reset ...\n");
2915                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2916                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2917         }
2918
2919         /* Remove M64 resource if we can't configure it successfully */
2920         if (!phb->init_m64 || phb->init_m64(phb))
2921                 hose->mem_resources[1].flags = 0;
2922 }
2923
2924 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2925 {
2926         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2927 }
2928
2929 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2930 {
2931         struct device_node *phbn;
2932         const __be64 *prop64;
2933         u64 hub_id;
2934
2935         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2936
2937         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2938         if (!prop64) {
2939                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2940                 return;
2941         }
2942         hub_id = be64_to_cpup(prop64);
2943         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2944
2945         /* Count child PHBs */
2946         for_each_child_of_node(np, phbn) {
2947                 /* Look for IODA1 PHBs */
2948                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2949                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2950         }
2951 }