]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
powerpc/powernv/ioda2: Add TCE invalidation for all attached groups
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debug.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43
44 #include <misc/cxl-base.h>
45
46 #include "powernv.h"
47 #include "pci.h"
48
49 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
50 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
51
52 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
53                             const char *fmt, ...)
54 {
55         struct va_format vaf;
56         va_list args;
57         char pfix[32];
58
59         va_start(args, fmt);
60
61         vaf.fmt = fmt;
62         vaf.va = &args;
63
64         if (pe->flags & PNV_IODA_PE_DEV)
65                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
66         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
67                 sprintf(pfix, "%04x:%02x     ",
68                         pci_domain_nr(pe->pbus), pe->pbus->number);
69 #ifdef CONFIG_PCI_IOV
70         else if (pe->flags & PNV_IODA_PE_VF)
71                 sprintf(pfix, "%04x:%02x:%2x.%d",
72                         pci_domain_nr(pe->parent_dev->bus),
73                         (pe->rid & 0xff00) >> 8,
74                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
75 #endif /* CONFIG_PCI_IOV*/
76
77         printk("%spci %s: [PE# %.3d] %pV",
78                level, pfix, pe->pe_number, &vaf);
79
80         va_end(args);
81 }
82
83 #define pe_err(pe, fmt, ...)                                    \
84         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
85 #define pe_warn(pe, fmt, ...)                                   \
86         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
87 #define pe_info(pe, fmt, ...)                                   \
88         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
89
90 static bool pnv_iommu_bypass_disabled __read_mostly;
91
92 static int __init iommu_setup(char *str)
93 {
94         if (!str)
95                 return -EINVAL;
96
97         while (*str) {
98                 if (!strncmp(str, "nobypass", 8)) {
99                         pnv_iommu_bypass_disabled = true;
100                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
101                         break;
102                 }
103                 str += strcspn(str, ",");
104                 if (*str == ',')
105                         str++;
106         }
107
108         return 0;
109 }
110 early_param("iommu", iommu_setup);
111
112 /*
113  * stdcix is only supposed to be used in hypervisor real mode as per
114  * the architecture spec
115  */
116 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
117 {
118         __asm__ __volatile__("stdcix %0,0,%1"
119                 : : "r" (val), "r" (paddr) : "memory");
120 }
121
122 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
123 {
124         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
125                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
126 }
127
128 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
129 {
130         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
131                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
132                         __func__, pe_no, phb->hose->global_number);
133                 return;
134         }
135
136         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
137                 pr_warn("%s: PE %d was assigned on PHB#%x\n",
138                         __func__, pe_no, phb->hose->global_number);
139                 return;
140         }
141
142         phb->ioda.pe_array[pe_no].phb = phb;
143         phb->ioda.pe_array[pe_no].pe_number = pe_no;
144 }
145
146 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
147 {
148         unsigned long pe;
149
150         do {
151                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
152                                         phb->ioda.total_pe, 0);
153                 if (pe >= phb->ioda.total_pe)
154                         return IODA_INVALID_PE;
155         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
156
157         phb->ioda.pe_array[pe].phb = phb;
158         phb->ioda.pe_array[pe].pe_number = pe;
159         return pe;
160 }
161
162 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
163 {
164         WARN_ON(phb->ioda.pe_array[pe].pdev);
165
166         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
167         clear_bit(pe, phb->ioda.pe_alloc);
168 }
169
170 /* The default M64 BAR is shared by all PEs */
171 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
172 {
173         const char *desc;
174         struct resource *r;
175         s64 rc;
176
177         /* Configure the default M64 BAR */
178         rc = opal_pci_set_phb_mem_window(phb->opal_id,
179                                          OPAL_M64_WINDOW_TYPE,
180                                          phb->ioda.m64_bar_idx,
181                                          phb->ioda.m64_base,
182                                          0, /* unused */
183                                          phb->ioda.m64_size);
184         if (rc != OPAL_SUCCESS) {
185                 desc = "configuring";
186                 goto fail;
187         }
188
189         /* Enable the default M64 BAR */
190         rc = opal_pci_phb_mmio_enable(phb->opal_id,
191                                       OPAL_M64_WINDOW_TYPE,
192                                       phb->ioda.m64_bar_idx,
193                                       OPAL_ENABLE_M64_SPLIT);
194         if (rc != OPAL_SUCCESS) {
195                 desc = "enabling";
196                 goto fail;
197         }
198
199         /* Mark the M64 BAR assigned */
200         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
201
202         /*
203          * Strip off the segment used by the reserved PE, which is
204          * expected to be 0 or last one of PE capabicity.
205          */
206         r = &phb->hose->mem_resources[1];
207         if (phb->ioda.reserved_pe == 0)
208                 r->start += phb->ioda.m64_segsize;
209         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
210                 r->end -= phb->ioda.m64_segsize;
211         else
212                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
213                         phb->ioda.reserved_pe);
214
215         return 0;
216
217 fail:
218         pr_warn("  Failure %lld %s M64 BAR#%d\n",
219                 rc, desc, phb->ioda.m64_bar_idx);
220         opal_pci_phb_mmio_enable(phb->opal_id,
221                                  OPAL_M64_WINDOW_TYPE,
222                                  phb->ioda.m64_bar_idx,
223                                  OPAL_DISABLE_M64);
224         return -EIO;
225 }
226
227 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
228 {
229         resource_size_t sgsz = phb->ioda.m64_segsize;
230         struct pci_dev *pdev;
231         struct resource *r;
232         int base, step, i;
233
234         /*
235          * Root bus always has full M64 range and root port has
236          * M64 range used in reality. So we're checking root port
237          * instead of root bus.
238          */
239         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
240                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
241                         r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
242                         if (!r->parent ||
243                             !pnv_pci_is_mem_pref_64(r->flags))
244                                 continue;
245
246                         base = (r->start - phb->ioda.m64_base) / sgsz;
247                         for (step = 0; step < resource_size(r) / sgsz; step++)
248                                 pnv_ioda_reserve_pe(phb, base + step);
249                 }
250         }
251 }
252
253 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
254                                  struct pci_bus *bus, int all)
255 {
256         resource_size_t segsz = phb->ioda.m64_segsize;
257         struct pci_dev *pdev;
258         struct resource *r;
259         struct pnv_ioda_pe *master_pe, *pe;
260         unsigned long size, *pe_alloc;
261         bool found;
262         int start, i, j;
263
264         /* Root bus shouldn't use M64 */
265         if (pci_is_root_bus(bus))
266                 return IODA_INVALID_PE;
267
268         /* We support only one M64 window on each bus */
269         found = false;
270         pci_bus_for_each_resource(bus, r, i) {
271                 if (r && r->parent &&
272                     pnv_pci_is_mem_pref_64(r->flags)) {
273                         found = true;
274                         break;
275                 }
276         }
277
278         /* No M64 window found ? */
279         if (!found)
280                 return IODA_INVALID_PE;
281
282         /* Allocate bitmap */
283         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
284         pe_alloc = kzalloc(size, GFP_KERNEL);
285         if (!pe_alloc) {
286                 pr_warn("%s: Out of memory !\n",
287                         __func__);
288                 return IODA_INVALID_PE;
289         }
290
291         /*
292          * Figure out reserved PE numbers by the PE
293          * the its child PEs.
294          */
295         start = (r->start - phb->ioda.m64_base) / segsz;
296         for (i = 0; i < resource_size(r) / segsz; i++)
297                 set_bit(start + i, pe_alloc);
298
299         if (all)
300                 goto done;
301
302         /*
303          * If the PE doesn't cover all subordinate buses,
304          * we need subtract from reserved PEs for children.
305          */
306         list_for_each_entry(pdev, &bus->devices, bus_list) {
307                 if (!pdev->subordinate)
308                         continue;
309
310                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
311                         if (!r || !r->parent ||
312                             !pnv_pci_is_mem_pref_64(r->flags))
313                                 continue;
314
315                         start = (r->start - phb->ioda.m64_base) / segsz;
316                         for (j = 0; j < resource_size(r) / segsz ; j++)
317                                 clear_bit(start + j, pe_alloc);
318                 }
319         }
320
321         /*
322          * the current bus might not own M64 window and that's all
323          * contributed by its child buses. For the case, we needn't
324          * pick M64 dependent PE#.
325          */
326         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
327                 kfree(pe_alloc);
328                 return IODA_INVALID_PE;
329         }
330
331         /*
332          * Figure out the master PE and put all slave PEs to master
333          * PE's list to form compound PE.
334          */
335 done:
336         master_pe = NULL;
337         i = -1;
338         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
339                 phb->ioda.total_pe) {
340                 pe = &phb->ioda.pe_array[i];
341
342                 if (!master_pe) {
343                         pe->flags |= PNV_IODA_PE_MASTER;
344                         INIT_LIST_HEAD(&pe->slaves);
345                         master_pe = pe;
346                 } else {
347                         pe->flags |= PNV_IODA_PE_SLAVE;
348                         pe->master = master_pe;
349                         list_add_tail(&pe->list, &master_pe->slaves);
350                 }
351         }
352
353         kfree(pe_alloc);
354         return master_pe->pe_number;
355 }
356
357 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
358 {
359         struct pci_controller *hose = phb->hose;
360         struct device_node *dn = hose->dn;
361         struct resource *res;
362         const u32 *r;
363         u64 pci_addr;
364
365         /* FIXME: Support M64 for P7IOC */
366         if (phb->type != PNV_PHB_IODA2) {
367                 pr_info("  Not support M64 window\n");
368                 return;
369         }
370
371         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
372                 pr_info("  Firmware too old to support M64 window\n");
373                 return;
374         }
375
376         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
377         if (!r) {
378                 pr_info("  No <ibm,opal-m64-window> on %s\n",
379                         dn->full_name);
380                 return;
381         }
382
383         res = &hose->mem_resources[1];
384         res->start = of_translate_address(dn, r + 2);
385         res->end = res->start + of_read_number(r + 4, 2) - 1;
386         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
387         pci_addr = of_read_number(r, 2);
388         hose->mem_offset[1] = res->start - pci_addr;
389
390         phb->ioda.m64_size = resource_size(res);
391         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
392         phb->ioda.m64_base = pci_addr;
393
394         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
395                         res->start, res->end, pci_addr);
396
397         /* Use last M64 BAR to cover M64 window */
398         phb->ioda.m64_bar_idx = 15;
399         phb->init_m64 = pnv_ioda2_init_m64;
400         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
401         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
402 }
403
404 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
405 {
406         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
407         struct pnv_ioda_pe *slave;
408         s64 rc;
409
410         /* Fetch master PE */
411         if (pe->flags & PNV_IODA_PE_SLAVE) {
412                 pe = pe->master;
413                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
414                         return;
415
416                 pe_no = pe->pe_number;
417         }
418
419         /* Freeze master PE */
420         rc = opal_pci_eeh_freeze_set(phb->opal_id,
421                                      pe_no,
422                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
423         if (rc != OPAL_SUCCESS) {
424                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
425                         __func__, rc, phb->hose->global_number, pe_no);
426                 return;
427         }
428
429         /* Freeze slave PEs */
430         if (!(pe->flags & PNV_IODA_PE_MASTER))
431                 return;
432
433         list_for_each_entry(slave, &pe->slaves, list) {
434                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
435                                              slave->pe_number,
436                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
437                 if (rc != OPAL_SUCCESS)
438                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
439                                 __func__, rc, phb->hose->global_number,
440                                 slave->pe_number);
441         }
442 }
443
444 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
445 {
446         struct pnv_ioda_pe *pe, *slave;
447         s64 rc;
448
449         /* Find master PE */
450         pe = &phb->ioda.pe_array[pe_no];
451         if (pe->flags & PNV_IODA_PE_SLAVE) {
452                 pe = pe->master;
453                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
454                 pe_no = pe->pe_number;
455         }
456
457         /* Clear frozen state for master PE */
458         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
459         if (rc != OPAL_SUCCESS) {
460                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
461                         __func__, rc, opt, phb->hose->global_number, pe_no);
462                 return -EIO;
463         }
464
465         if (!(pe->flags & PNV_IODA_PE_MASTER))
466                 return 0;
467
468         /* Clear frozen state for slave PEs */
469         list_for_each_entry(slave, &pe->slaves, list) {
470                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
471                                              slave->pe_number,
472                                              opt);
473                 if (rc != OPAL_SUCCESS) {
474                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
475                                 __func__, rc, opt, phb->hose->global_number,
476                                 slave->pe_number);
477                         return -EIO;
478                 }
479         }
480
481         return 0;
482 }
483
484 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
485 {
486         struct pnv_ioda_pe *slave, *pe;
487         u8 fstate, state;
488         __be16 pcierr;
489         s64 rc;
490
491         /* Sanity check on PE number */
492         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
493                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
494
495         /*
496          * Fetch the master PE and the PE instance might be
497          * not initialized yet.
498          */
499         pe = &phb->ioda.pe_array[pe_no];
500         if (pe->flags & PNV_IODA_PE_SLAVE) {
501                 pe = pe->master;
502                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503                 pe_no = pe->pe_number;
504         }
505
506         /* Check the master PE */
507         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
508                                         &state, &pcierr, NULL);
509         if (rc != OPAL_SUCCESS) {
510                 pr_warn("%s: Failure %lld getting "
511                         "PHB#%x-PE#%x state\n",
512                         __func__, rc,
513                         phb->hose->global_number, pe_no);
514                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
515         }
516
517         /* Check the slave PE */
518         if (!(pe->flags & PNV_IODA_PE_MASTER))
519                 return state;
520
521         list_for_each_entry(slave, &pe->slaves, list) {
522                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
523                                                 slave->pe_number,
524                                                 &fstate,
525                                                 &pcierr,
526                                                 NULL);
527                 if (rc != OPAL_SUCCESS) {
528                         pr_warn("%s: Failure %lld getting "
529                                 "PHB#%x-PE#%x state\n",
530                                 __func__, rc,
531                                 phb->hose->global_number, slave->pe_number);
532                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
533                 }
534
535                 /*
536                  * Override the result based on the ascending
537                  * priority.
538                  */
539                 if (fstate > state)
540                         state = fstate;
541         }
542
543         return state;
544 }
545
546 /* Currently those 2 are only used when MSIs are enabled, this will change
547  * but in the meantime, we need to protect them to avoid warnings
548  */
549 #ifdef CONFIG_PCI_MSI
550 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
551 {
552         struct pci_controller *hose = pci_bus_to_host(dev->bus);
553         struct pnv_phb *phb = hose->private_data;
554         struct pci_dn *pdn = pci_get_pdn(dev);
555
556         if (!pdn)
557                 return NULL;
558         if (pdn->pe_number == IODA_INVALID_PE)
559                 return NULL;
560         return &phb->ioda.pe_array[pdn->pe_number];
561 }
562 #endif /* CONFIG_PCI_MSI */
563
564 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
565                                   struct pnv_ioda_pe *parent,
566                                   struct pnv_ioda_pe *child,
567                                   bool is_add)
568 {
569         const char *desc = is_add ? "adding" : "removing";
570         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
571                               OPAL_REMOVE_PE_FROM_DOMAIN;
572         struct pnv_ioda_pe *slave;
573         long rc;
574
575         /* Parent PE affects child PE */
576         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
577                                 child->pe_number, op);
578         if (rc != OPAL_SUCCESS) {
579                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
580                         rc, desc);
581                 return -ENXIO;
582         }
583
584         if (!(child->flags & PNV_IODA_PE_MASTER))
585                 return 0;
586
587         /* Compound case: parent PE affects slave PEs */
588         list_for_each_entry(slave, &child->slaves, list) {
589                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
590                                         slave->pe_number, op);
591                 if (rc != OPAL_SUCCESS) {
592                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
593                                 rc, desc);
594                         return -ENXIO;
595                 }
596         }
597
598         return 0;
599 }
600
601 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
602                               struct pnv_ioda_pe *pe,
603                               bool is_add)
604 {
605         struct pnv_ioda_pe *slave;
606         struct pci_dev *pdev = NULL;
607         int ret;
608
609         /*
610          * Clear PE frozen state. If it's master PE, we need
611          * clear slave PE frozen state as well.
612          */
613         if (is_add) {
614                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
615                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
616                 if (pe->flags & PNV_IODA_PE_MASTER) {
617                         list_for_each_entry(slave, &pe->slaves, list)
618                                 opal_pci_eeh_freeze_clear(phb->opal_id,
619                                                           slave->pe_number,
620                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
621                 }
622         }
623
624         /*
625          * Associate PE in PELT. We need add the PE into the
626          * corresponding PELT-V as well. Otherwise, the error
627          * originated from the PE might contribute to other
628          * PEs.
629          */
630         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
631         if (ret)
632                 return ret;
633
634         /* For compound PEs, any one affects all of them */
635         if (pe->flags & PNV_IODA_PE_MASTER) {
636                 list_for_each_entry(slave, &pe->slaves, list) {
637                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
638                         if (ret)
639                                 return ret;
640                 }
641         }
642
643         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
644                 pdev = pe->pbus->self;
645         else if (pe->flags & PNV_IODA_PE_DEV)
646                 pdev = pe->pdev->bus->self;
647 #ifdef CONFIG_PCI_IOV
648         else if (pe->flags & PNV_IODA_PE_VF)
649                 pdev = pe->parent_dev->bus->self;
650 #endif /* CONFIG_PCI_IOV */
651         while (pdev) {
652                 struct pci_dn *pdn = pci_get_pdn(pdev);
653                 struct pnv_ioda_pe *parent;
654
655                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
656                         parent = &phb->ioda.pe_array[pdn->pe_number];
657                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
658                         if (ret)
659                                 return ret;
660                 }
661
662                 pdev = pdev->bus->self;
663         }
664
665         return 0;
666 }
667
668 #ifdef CONFIG_PCI_IOV
669 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
670 {
671         struct pci_dev *parent;
672         uint8_t bcomp, dcomp, fcomp;
673         int64_t rc;
674         long rid_end, rid;
675
676         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
677         if (pe->pbus) {
678                 int count;
679
680                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
681                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
682                 parent = pe->pbus->self;
683                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
684                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
685                 else
686                         count = 1;
687
688                 switch(count) {
689                 case  1: bcomp = OpalPciBusAll;         break;
690                 case  2: bcomp = OpalPciBus7Bits;       break;
691                 case  4: bcomp = OpalPciBus6Bits;       break;
692                 case  8: bcomp = OpalPciBus5Bits;       break;
693                 case 16: bcomp = OpalPciBus4Bits;       break;
694                 case 32: bcomp = OpalPciBus3Bits;       break;
695                 default:
696                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
697                                 count);
698                         /* Do an exact match only */
699                         bcomp = OpalPciBusAll;
700                 }
701                 rid_end = pe->rid + (count << 8);
702         } else {
703                 if (pe->flags & PNV_IODA_PE_VF)
704                         parent = pe->parent_dev;
705                 else
706                         parent = pe->pdev->bus->self;
707                 bcomp = OpalPciBusAll;
708                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
709                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
710                 rid_end = pe->rid + 1;
711         }
712
713         /* Clear the reverse map */
714         for (rid = pe->rid; rid < rid_end; rid++)
715                 phb->ioda.pe_rmap[rid] = 0;
716
717         /* Release from all parents PELT-V */
718         while (parent) {
719                 struct pci_dn *pdn = pci_get_pdn(parent);
720                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
721                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
722                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
723                         /* XXX What to do in case of error ? */
724                 }
725                 parent = parent->bus->self;
726         }
727
728         opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
729                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730
731         /* Disassociate PE in PELT */
732         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
733                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
734         if (rc)
735                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
736         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
737                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
738         if (rc)
739                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
740
741         pe->pbus = NULL;
742         pe->pdev = NULL;
743         pe->parent_dev = NULL;
744
745         return 0;
746 }
747 #endif /* CONFIG_PCI_IOV */
748
749 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
750 {
751         struct pci_dev *parent;
752         uint8_t bcomp, dcomp, fcomp;
753         long rc, rid_end, rid;
754
755         /* Bus validation ? */
756         if (pe->pbus) {
757                 int count;
758
759                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
760                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
761                 parent = pe->pbus->self;
762                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
763                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
764                 else
765                         count = 1;
766
767                 switch(count) {
768                 case  1: bcomp = OpalPciBusAll;         break;
769                 case  2: bcomp = OpalPciBus7Bits;       break;
770                 case  4: bcomp = OpalPciBus6Bits;       break;
771                 case  8: bcomp = OpalPciBus5Bits;       break;
772                 case 16: bcomp = OpalPciBus4Bits;       break;
773                 case 32: bcomp = OpalPciBus3Bits;       break;
774                 default:
775                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
776                                 count);
777                         /* Do an exact match only */
778                         bcomp = OpalPciBusAll;
779                 }
780                 rid_end = pe->rid + (count << 8);
781         } else {
782 #ifdef CONFIG_PCI_IOV
783                 if (pe->flags & PNV_IODA_PE_VF)
784                         parent = pe->parent_dev;
785                 else
786 #endif /* CONFIG_PCI_IOV */
787                         parent = pe->pdev->bus->self;
788                 bcomp = OpalPciBusAll;
789                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
790                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
791                 rid_end = pe->rid + 1;
792         }
793
794         /*
795          * Associate PE in PELT. We need add the PE into the
796          * corresponding PELT-V as well. Otherwise, the error
797          * originated from the PE might contribute to other
798          * PEs.
799          */
800         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
801                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
802         if (rc) {
803                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
804                 return -ENXIO;
805         }
806
807         /* Configure PELTV */
808         pnv_ioda_set_peltv(phb, pe, true);
809
810         /* Setup reverse map */
811         for (rid = pe->rid; rid < rid_end; rid++)
812                 phb->ioda.pe_rmap[rid] = pe->pe_number;
813
814         /* Setup one MVTs on IODA1 */
815         if (phb->type != PNV_PHB_IODA1) {
816                 pe->mve_number = 0;
817                 goto out;
818         }
819
820         pe->mve_number = pe->pe_number;
821         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
822         if (rc != OPAL_SUCCESS) {
823                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
824                        rc, pe->mve_number);
825                 pe->mve_number = -1;
826         } else {
827                 rc = opal_pci_set_mve_enable(phb->opal_id,
828                                              pe->mve_number, OPAL_ENABLE_MVE);
829                 if (rc) {
830                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
831                                rc, pe->mve_number);
832                         pe->mve_number = -1;
833                 }
834         }
835
836 out:
837         return 0;
838 }
839
840 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
841                                        struct pnv_ioda_pe *pe)
842 {
843         struct pnv_ioda_pe *lpe;
844
845         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
846                 if (lpe->dma_weight < pe->dma_weight) {
847                         list_add_tail(&pe->dma_link, &lpe->dma_link);
848                         return;
849                 }
850         }
851         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
852 }
853
854 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
855 {
856         /* This is quite simplistic. The "base" weight of a device
857          * is 10. 0 means no DMA is to be accounted for it.
858          */
859
860         /* If it's a bridge, no DMA */
861         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
862                 return 0;
863
864         /* Reduce the weight of slow USB controllers */
865         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
866             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
867             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
868                 return 3;
869
870         /* Increase the weight of RAID (includes Obsidian) */
871         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
872                 return 15;
873
874         /* Default */
875         return 10;
876 }
877
878 #ifdef CONFIG_PCI_IOV
879 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
880 {
881         struct pci_dn *pdn = pci_get_pdn(dev);
882         int i;
883         struct resource *res, res2;
884         resource_size_t size;
885         u16 num_vfs;
886
887         if (!dev->is_physfn)
888                 return -EINVAL;
889
890         /*
891          * "offset" is in VFs.  The M64 windows are sized so that when they
892          * are segmented, each segment is the same size as the IOV BAR.
893          * Each segment is in a separate PE, and the high order bits of the
894          * address are the PE number.  Therefore, each VF's BAR is in a
895          * separate PE, and changing the IOV BAR start address changes the
896          * range of PEs the VFs are in.
897          */
898         num_vfs = pdn->num_vfs;
899         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
900                 res = &dev->resource[i + PCI_IOV_RESOURCES];
901                 if (!res->flags || !res->parent)
902                         continue;
903
904                 if (!pnv_pci_is_mem_pref_64(res->flags))
905                         continue;
906
907                 /*
908                  * The actual IOV BAR range is determined by the start address
909                  * and the actual size for num_vfs VFs BAR.  This check is to
910                  * make sure that after shifting, the range will not overlap
911                  * with another device.
912                  */
913                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
914                 res2.flags = res->flags;
915                 res2.start = res->start + (size * offset);
916                 res2.end = res2.start + (size * num_vfs) - 1;
917
918                 if (res2.end > res->end) {
919                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
920                                 i, &res2, res, num_vfs, offset);
921                         return -EBUSY;
922                 }
923         }
924
925         /*
926          * After doing so, there would be a "hole" in the /proc/iomem when
927          * offset is a positive value. It looks like the device return some
928          * mmio back to the system, which actually no one could use it.
929          */
930         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
931                 res = &dev->resource[i + PCI_IOV_RESOURCES];
932                 if (!res->flags || !res->parent)
933                         continue;
934
935                 if (!pnv_pci_is_mem_pref_64(res->flags))
936                         continue;
937
938                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
939                 res2 = *res;
940                 res->start += size * offset;
941
942                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
943                          i, &res2, res, num_vfs, offset);
944                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
945         }
946         return 0;
947 }
948 #endif /* CONFIG_PCI_IOV */
949
950 #if 0
951 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
952 {
953         struct pci_controller *hose = pci_bus_to_host(dev->bus);
954         struct pnv_phb *phb = hose->private_data;
955         struct pci_dn *pdn = pci_get_pdn(dev);
956         struct pnv_ioda_pe *pe;
957         int pe_num;
958
959         if (!pdn) {
960                 pr_err("%s: Device tree node not associated properly\n",
961                            pci_name(dev));
962                 return NULL;
963         }
964         if (pdn->pe_number != IODA_INVALID_PE)
965                 return NULL;
966
967         /* PE#0 has been pre-set */
968         if (dev->bus->number == 0)
969                 pe_num = 0;
970         else
971                 pe_num = pnv_ioda_alloc_pe(phb);
972         if (pe_num == IODA_INVALID_PE) {
973                 pr_warning("%s: Not enough PE# available, disabling device\n",
974                            pci_name(dev));
975                 return NULL;
976         }
977
978         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
979          * pointer in the PE data structure, both should be destroyed at the
980          * same time. However, this needs to be looked at more closely again
981          * once we actually start removing things (Hotplug, SR-IOV, ...)
982          *
983          * At some point we want to remove the PDN completely anyways
984          */
985         pe = &phb->ioda.pe_array[pe_num];
986         pci_dev_get(dev);
987         pdn->pcidev = dev;
988         pdn->pe_number = pe_num;
989         pe->pdev = dev;
990         pe->pbus = NULL;
991         pe->tce32_seg = -1;
992         pe->mve_number = -1;
993         pe->rid = dev->bus->number << 8 | pdn->devfn;
994
995         pe_info(pe, "Associated device to PE\n");
996
997         if (pnv_ioda_configure_pe(phb, pe)) {
998                 /* XXX What do we do here ? */
999                 if (pe_num)
1000                         pnv_ioda_free_pe(phb, pe_num);
1001                 pdn->pe_number = IODA_INVALID_PE;
1002                 pe->pdev = NULL;
1003                 pci_dev_put(dev);
1004                 return NULL;
1005         }
1006
1007         /* Assign a DMA weight to the device */
1008         pe->dma_weight = pnv_ioda_dma_weight(dev);
1009         if (pe->dma_weight != 0) {
1010                 phb->ioda.dma_weight += pe->dma_weight;
1011                 phb->ioda.dma_pe_count++;
1012         }
1013
1014         /* Link the PE */
1015         pnv_ioda_link_pe_by_weight(phb, pe);
1016
1017         return pe;
1018 }
1019 #endif /* Useful for SRIOV case */
1020
1021 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1022 {
1023         struct pci_dev *dev;
1024
1025         list_for_each_entry(dev, &bus->devices, bus_list) {
1026                 struct pci_dn *pdn = pci_get_pdn(dev);
1027
1028                 if (pdn == NULL) {
1029                         pr_warn("%s: No device node associated with device !\n",
1030                                 pci_name(dev));
1031                         continue;
1032                 }
1033                 pdn->pe_number = pe->pe_number;
1034                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1035                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1036                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1037         }
1038 }
1039
1040 /*
1041  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1042  * single PCI bus. Another one that contains the primary PCI bus and its
1043  * subordinate PCI devices and buses. The second type of PE is normally
1044  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1045  */
1046 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1047 {
1048         struct pci_controller *hose = pci_bus_to_host(bus);
1049         struct pnv_phb *phb = hose->private_data;
1050         struct pnv_ioda_pe *pe;
1051         int pe_num = IODA_INVALID_PE;
1052
1053         /* Check if PE is determined by M64 */
1054         if (phb->pick_m64_pe)
1055                 pe_num = phb->pick_m64_pe(phb, bus, all);
1056
1057         /* The PE number isn't pinned by M64 */
1058         if (pe_num == IODA_INVALID_PE)
1059                 pe_num = pnv_ioda_alloc_pe(phb);
1060
1061         if (pe_num == IODA_INVALID_PE) {
1062                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1063                         __func__, pci_domain_nr(bus), bus->number);
1064                 return;
1065         }
1066
1067         pe = &phb->ioda.pe_array[pe_num];
1068         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1069         pe->pbus = bus;
1070         pe->pdev = NULL;
1071         pe->tce32_seg = -1;
1072         pe->mve_number = -1;
1073         pe->rid = bus->busn_res.start << 8;
1074         pe->dma_weight = 0;
1075
1076         if (all)
1077                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1078                         bus->busn_res.start, bus->busn_res.end, pe_num);
1079         else
1080                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1081                         bus->busn_res.start, pe_num);
1082
1083         if (pnv_ioda_configure_pe(phb, pe)) {
1084                 /* XXX What do we do here ? */
1085                 if (pe_num)
1086                         pnv_ioda_free_pe(phb, pe_num);
1087                 pe->pbus = NULL;
1088                 return;
1089         }
1090
1091         /* Associate it with all child devices */
1092         pnv_ioda_setup_same_PE(bus, pe);
1093
1094         /* Put PE to the list */
1095         list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
1097         /* Account for one DMA PE if at least one DMA capable device exist
1098          * below the bridge
1099          */
1100         if (pe->dma_weight != 0) {
1101                 phb->ioda.dma_weight += pe->dma_weight;
1102                 phb->ioda.dma_pe_count++;
1103         }
1104
1105         /* Link the PE */
1106         pnv_ioda_link_pe_by_weight(phb, pe);
1107 }
1108
1109 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1110 {
1111         struct pci_dev *dev;
1112
1113         pnv_ioda_setup_bus_PE(bus, 0);
1114
1115         list_for_each_entry(dev, &bus->devices, bus_list) {
1116                 if (dev->subordinate) {
1117                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1118                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1119                         else
1120                                 pnv_ioda_setup_PEs(dev->subordinate);
1121                 }
1122         }
1123 }
1124
1125 /*
1126  * Configure PEs so that the downstream PCI buses and devices
1127  * could have their associated PE#. Unfortunately, we didn't
1128  * figure out the way to identify the PLX bridge yet. So we
1129  * simply put the PCI bus and the subordinate behind the root
1130  * port to PE# here. The game rule here is expected to be changed
1131  * as soon as we can detected PLX bridge correctly.
1132  */
1133 static void pnv_pci_ioda_setup_PEs(void)
1134 {
1135         struct pci_controller *hose, *tmp;
1136         struct pnv_phb *phb;
1137
1138         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1139                 phb = hose->private_data;
1140
1141                 /* M64 layout might affect PE allocation */
1142                 if (phb->reserve_m64_pe)
1143                         phb->reserve_m64_pe(phb);
1144
1145                 pnv_ioda_setup_PEs(hose->bus);
1146         }
1147 }
1148
1149 #ifdef CONFIG_PCI_IOV
1150 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1151 {
1152         struct pci_bus        *bus;
1153         struct pci_controller *hose;
1154         struct pnv_phb        *phb;
1155         struct pci_dn         *pdn;
1156         int                    i, j;
1157
1158         bus = pdev->bus;
1159         hose = pci_bus_to_host(bus);
1160         phb = hose->private_data;
1161         pdn = pci_get_pdn(pdev);
1162
1163         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1164                 for (j = 0; j < M64_PER_IOV; j++) {
1165                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1166                                 continue;
1167                         opal_pci_phb_mmio_enable(phb->opal_id,
1168                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1169                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1170                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1171                 }
1172
1173         return 0;
1174 }
1175
1176 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1177 {
1178         struct pci_bus        *bus;
1179         struct pci_controller *hose;
1180         struct pnv_phb        *phb;
1181         struct pci_dn         *pdn;
1182         unsigned int           win;
1183         struct resource       *res;
1184         int                    i, j;
1185         int64_t                rc;
1186         int                    total_vfs;
1187         resource_size_t        size, start;
1188         int                    pe_num;
1189         int                    vf_groups;
1190         int                    vf_per_group;
1191
1192         bus = pdev->bus;
1193         hose = pci_bus_to_host(bus);
1194         phb = hose->private_data;
1195         pdn = pci_get_pdn(pdev);
1196         total_vfs = pci_sriov_get_totalvfs(pdev);
1197
1198         /* Initialize the m64_wins to IODA_INVALID_M64 */
1199         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1200                 for (j = 0; j < M64_PER_IOV; j++)
1201                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1202
1203         if (pdn->m64_per_iov == M64_PER_IOV) {
1204                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1205                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1206                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1207         } else {
1208                 vf_groups = 1;
1209                 vf_per_group = 1;
1210         }
1211
1212         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1213                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1214                 if (!res->flags || !res->parent)
1215                         continue;
1216
1217                 if (!pnv_pci_is_mem_pref_64(res->flags))
1218                         continue;
1219
1220                 for (j = 0; j < vf_groups; j++) {
1221                         do {
1222                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1223                                                 phb->ioda.m64_bar_idx + 1, 0);
1224
1225                                 if (win >= phb->ioda.m64_bar_idx + 1)
1226                                         goto m64_failed;
1227                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1228
1229                         pdn->m64_wins[i][j] = win;
1230
1231                         if (pdn->m64_per_iov == M64_PER_IOV) {
1232                                 size = pci_iov_resource_size(pdev,
1233                                                         PCI_IOV_RESOURCES + i);
1234                                 size = size * vf_per_group;
1235                                 start = res->start + size * j;
1236                         } else {
1237                                 size = resource_size(res);
1238                                 start = res->start;
1239                         }
1240
1241                         /* Map the M64 here */
1242                         if (pdn->m64_per_iov == M64_PER_IOV) {
1243                                 pe_num = pdn->offset + j;
1244                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1245                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1246                                                 pdn->m64_wins[i][j], 0);
1247                         }
1248
1249                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1250                                                  OPAL_M64_WINDOW_TYPE,
1251                                                  pdn->m64_wins[i][j],
1252                                                  start,
1253                                                  0, /* unused */
1254                                                  size);
1255
1256
1257                         if (rc != OPAL_SUCCESS) {
1258                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1259                                         win, rc);
1260                                 goto m64_failed;
1261                         }
1262
1263                         if (pdn->m64_per_iov == M64_PER_IOV)
1264                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1265                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1266                         else
1267                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1268                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1269
1270                         if (rc != OPAL_SUCCESS) {
1271                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1272                                         win, rc);
1273                                 goto m64_failed;
1274                         }
1275                 }
1276         }
1277         return 0;
1278
1279 m64_failed:
1280         pnv_pci_vf_release_m64(pdev);
1281         return -EBUSY;
1282 }
1283
1284 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1285 {
1286         struct pci_bus        *bus;
1287         struct pci_controller *hose;
1288         struct pnv_phb        *phb;
1289         struct iommu_table    *tbl;
1290         unsigned long         addr;
1291         int64_t               rc;
1292
1293         bus = dev->bus;
1294         hose = pci_bus_to_host(bus);
1295         phb = hose->private_data;
1296         tbl = pe->table_group.tables[0];
1297         addr = tbl->it_base;
1298
1299         opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1300                                    pe->pe_number << 1, 1, __pa(addr),
1301                                    0, 0x1000);
1302
1303         rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1304                                         pe->pe_number,
1305                                         (pe->pe_number << 1) + 1,
1306                                         pe->tce_bypass_base,
1307                                         0);
1308         if (rc)
1309                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1310
1311         pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1312         if (pe->table_group.group) {
1313                 iommu_group_put(pe->table_group.group);
1314                 BUG_ON(pe->table_group.group);
1315         }
1316         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1317         free_pages(addr, get_order(TCE32_TABLE_SIZE));
1318 }
1319
1320 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1321 {
1322         struct pci_bus        *bus;
1323         struct pci_controller *hose;
1324         struct pnv_phb        *phb;
1325         struct pnv_ioda_pe    *pe, *pe_n;
1326         struct pci_dn         *pdn;
1327         u16                    vf_index;
1328         int64_t                rc;
1329
1330         bus = pdev->bus;
1331         hose = pci_bus_to_host(bus);
1332         phb = hose->private_data;
1333         pdn = pci_get_pdn(pdev);
1334
1335         if (!pdev->is_physfn)
1336                 return;
1337
1338         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1339                 int   vf_group;
1340                 int   vf_per_group;
1341                 int   vf_index1;
1342
1343                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1344
1345                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1346                         for (vf_index = vf_group * vf_per_group;
1347                                 vf_index < (vf_group + 1) * vf_per_group &&
1348                                 vf_index < num_vfs;
1349                                 vf_index++)
1350                                 for (vf_index1 = vf_group * vf_per_group;
1351                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1352                                         vf_index1 < num_vfs;
1353                                         vf_index1++){
1354
1355                                         rc = opal_pci_set_peltv(phb->opal_id,
1356                                                 pdn->offset + vf_index,
1357                                                 pdn->offset + vf_index1,
1358                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1359
1360                                         if (rc)
1361                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1362                                                 __func__,
1363                                                 pdn->offset + vf_index1, rc);
1364                                 }
1365         }
1366
1367         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1368                 if (pe->parent_dev != pdev)
1369                         continue;
1370
1371                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1372
1373                 /* Remove from list */
1374                 mutex_lock(&phb->ioda.pe_list_mutex);
1375                 list_del(&pe->list);
1376                 mutex_unlock(&phb->ioda.pe_list_mutex);
1377
1378                 pnv_ioda_deconfigure_pe(phb, pe);
1379
1380                 pnv_ioda_free_pe(phb, pe->pe_number);
1381         }
1382 }
1383
1384 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1385 {
1386         struct pci_bus        *bus;
1387         struct pci_controller *hose;
1388         struct pnv_phb        *phb;
1389         struct pci_dn         *pdn;
1390         struct pci_sriov      *iov;
1391         u16 num_vfs;
1392
1393         bus = pdev->bus;
1394         hose = pci_bus_to_host(bus);
1395         phb = hose->private_data;
1396         pdn = pci_get_pdn(pdev);
1397         iov = pdev->sriov;
1398         num_vfs = pdn->num_vfs;
1399
1400         /* Release VF PEs */
1401         pnv_ioda_release_vf_PE(pdev, num_vfs);
1402
1403         if (phb->type == PNV_PHB_IODA2) {
1404                 if (pdn->m64_per_iov == 1)
1405                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1406
1407                 /* Release M64 windows */
1408                 pnv_pci_vf_release_m64(pdev);
1409
1410                 /* Release PE numbers */
1411                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1412                 pdn->offset = 0;
1413         }
1414 }
1415
1416 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1417                                        struct pnv_ioda_pe *pe);
1418 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1419 {
1420         struct pci_bus        *bus;
1421         struct pci_controller *hose;
1422         struct pnv_phb        *phb;
1423         struct pnv_ioda_pe    *pe;
1424         int                    pe_num;
1425         u16                    vf_index;
1426         struct pci_dn         *pdn;
1427         int64_t                rc;
1428
1429         bus = pdev->bus;
1430         hose = pci_bus_to_host(bus);
1431         phb = hose->private_data;
1432         pdn = pci_get_pdn(pdev);
1433
1434         if (!pdev->is_physfn)
1435                 return;
1436
1437         /* Reserve PE for each VF */
1438         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1439                 pe_num = pdn->offset + vf_index;
1440
1441                 pe = &phb->ioda.pe_array[pe_num];
1442                 pe->pe_number = pe_num;
1443                 pe->phb = phb;
1444                 pe->flags = PNV_IODA_PE_VF;
1445                 pe->pbus = NULL;
1446                 pe->parent_dev = pdev;
1447                 pe->tce32_seg = -1;
1448                 pe->mve_number = -1;
1449                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1450                            pci_iov_virtfn_devfn(pdev, vf_index);
1451
1452                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1453                         hose->global_number, pdev->bus->number,
1454                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1455                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1456
1457                 if (pnv_ioda_configure_pe(phb, pe)) {
1458                         /* XXX What do we do here ? */
1459                         if (pe_num)
1460                                 pnv_ioda_free_pe(phb, pe_num);
1461                         pe->pdev = NULL;
1462                         continue;
1463                 }
1464
1465                 /* Put PE to the list */
1466                 mutex_lock(&phb->ioda.pe_list_mutex);
1467                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1468                 mutex_unlock(&phb->ioda.pe_list_mutex);
1469
1470                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1471         }
1472
1473         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1474                 int   vf_group;
1475                 int   vf_per_group;
1476                 int   vf_index1;
1477
1478                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1479
1480                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1481                         for (vf_index = vf_group * vf_per_group;
1482                              vf_index < (vf_group + 1) * vf_per_group &&
1483                              vf_index < num_vfs;
1484                              vf_index++) {
1485                                 for (vf_index1 = vf_group * vf_per_group;
1486                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1487                                      vf_index1 < num_vfs;
1488                                      vf_index1++) {
1489
1490                                         rc = opal_pci_set_peltv(phb->opal_id,
1491                                                 pdn->offset + vf_index,
1492                                                 pdn->offset + vf_index1,
1493                                                 OPAL_ADD_PE_TO_DOMAIN);
1494
1495                                         if (rc)
1496                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1497                                                 __func__,
1498                                                 pdn->offset + vf_index1, rc);
1499                                 }
1500                         }
1501                 }
1502         }
1503 }
1504
1505 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1506 {
1507         struct pci_bus        *bus;
1508         struct pci_controller *hose;
1509         struct pnv_phb        *phb;
1510         struct pci_dn         *pdn;
1511         int                    ret;
1512
1513         bus = pdev->bus;
1514         hose = pci_bus_to_host(bus);
1515         phb = hose->private_data;
1516         pdn = pci_get_pdn(pdev);
1517
1518         if (phb->type == PNV_PHB_IODA2) {
1519                 /* Calculate available PE for required VFs */
1520                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1521                 pdn->offset = bitmap_find_next_zero_area(
1522                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1523                         0, num_vfs, 0);
1524                 if (pdn->offset >= phb->ioda.total_pe) {
1525                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1526                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1527                         pdn->offset = 0;
1528                         return -EBUSY;
1529                 }
1530                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1531                 pdn->num_vfs = num_vfs;
1532                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1533
1534                 /* Assign M64 window accordingly */
1535                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1536                 if (ret) {
1537                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1538                         goto m64_failed;
1539                 }
1540
1541                 /*
1542                  * When using one M64 BAR to map one IOV BAR, we need to shift
1543                  * the IOV BAR according to the PE# allocated to the VFs.
1544                  * Otherwise, the PE# for the VF will conflict with others.
1545                  */
1546                 if (pdn->m64_per_iov == 1) {
1547                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1548                         if (ret)
1549                                 goto m64_failed;
1550                 }
1551         }
1552
1553         /* Setup VF PEs */
1554         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1555
1556         return 0;
1557
1558 m64_failed:
1559         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1560         pdn->offset = 0;
1561
1562         return ret;
1563 }
1564
1565 int pcibios_sriov_disable(struct pci_dev *pdev)
1566 {
1567         pnv_pci_sriov_disable(pdev);
1568
1569         /* Release PCI data */
1570         remove_dev_pci_data(pdev);
1571         return 0;
1572 }
1573
1574 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1575 {
1576         /* Allocate PCI data */
1577         add_dev_pci_data(pdev);
1578
1579         pnv_pci_sriov_enable(pdev, num_vfs);
1580         return 0;
1581 }
1582 #endif /* CONFIG_PCI_IOV */
1583
1584 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1585 {
1586         struct pci_dn *pdn = pci_get_pdn(pdev);
1587         struct pnv_ioda_pe *pe;
1588
1589         /*
1590          * The function can be called while the PE#
1591          * hasn't been assigned. Do nothing for the
1592          * case.
1593          */
1594         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1595                 return;
1596
1597         pe = &phb->ioda.pe_array[pdn->pe_number];
1598         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1599         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1600         /*
1601          * Note: iommu_add_device() will fail here as
1602          * for physical PE: the device is already added by now;
1603          * for virtual PE: sysfs entries are not ready yet and
1604          * tce_iommu_bus_notifier will add the device to a group later.
1605          */
1606 }
1607
1608 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1609 {
1610         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1611         struct pnv_phb *phb = hose->private_data;
1612         struct pci_dn *pdn = pci_get_pdn(pdev);
1613         struct pnv_ioda_pe *pe;
1614         uint64_t top;
1615         bool bypass = false;
1616
1617         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1618                 return -ENODEV;;
1619
1620         pe = &phb->ioda.pe_array[pdn->pe_number];
1621         if (pe->tce_bypass_enabled) {
1622                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1623                 bypass = (dma_mask >= top);
1624         }
1625
1626         if (bypass) {
1627                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1628                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1629                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1630         } else {
1631                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1632                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1633                 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1634         }
1635         *pdev->dev.dma_mask = dma_mask;
1636         return 0;
1637 }
1638
1639 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1640                                               struct pci_dev *pdev)
1641 {
1642         struct pci_dn *pdn = pci_get_pdn(pdev);
1643         struct pnv_ioda_pe *pe;
1644         u64 end, mask;
1645
1646         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1647                 return 0;
1648
1649         pe = &phb->ioda.pe_array[pdn->pe_number];
1650         if (!pe->tce_bypass_enabled)
1651                 return __dma_get_required_mask(&pdev->dev);
1652
1653
1654         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1655         mask = 1ULL << (fls64(end) - 1);
1656         mask += mask - 1;
1657
1658         return mask;
1659 }
1660
1661 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1662                                    struct pci_bus *bus)
1663 {
1664         struct pci_dev *dev;
1665
1666         list_for_each_entry(dev, &bus->devices, bus_list) {
1667                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1668                 iommu_add_device(&dev->dev);
1669
1670                 if (dev->subordinate)
1671                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1672         }
1673 }
1674
1675 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1676                 unsigned long index, unsigned long npages, bool rm)
1677 {
1678         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1679                         &tbl->it_group_list, struct iommu_table_group_link,
1680                         next);
1681         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1682                         struct pnv_ioda_pe, table_group);
1683         __be64 __iomem *invalidate = rm ?
1684                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1685                 pe->phb->ioda.tce_inval_reg;
1686         unsigned long start, end, inc;
1687         const unsigned shift = tbl->it_page_shift;
1688
1689         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1690         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1691                         npages - 1);
1692
1693         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1694         if (tbl->it_busno) {
1695                 start <<= shift;
1696                 end <<= shift;
1697                 inc = 128ull << shift;
1698                 start |= tbl->it_busno;
1699                 end |= tbl->it_busno;
1700         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1701                 /* p7ioc-style invalidation, 2 TCEs per write */
1702                 start |= (1ull << 63);
1703                 end |= (1ull << 63);
1704                 inc = 16;
1705         } else {
1706                 /* Default (older HW) */
1707                 inc = 128;
1708         }
1709
1710         end |= inc - 1; /* round up end to be different than start */
1711
1712         mb(); /* Ensure above stores are visible */
1713         while (start <= end) {
1714                 if (rm)
1715                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1716                 else
1717                         __raw_writeq(cpu_to_be64(start), invalidate);
1718                 start += inc;
1719         }
1720
1721         /*
1722          * The iommu layer will do another mb() for us on build()
1723          * and we don't care on free()
1724          */
1725 }
1726
1727 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1728                 long npages, unsigned long uaddr,
1729                 enum dma_data_direction direction,
1730                 struct dma_attrs *attrs)
1731 {
1732         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1733                         attrs);
1734
1735         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1736                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1737
1738         return ret;
1739 }
1740
1741 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1742                 long npages)
1743 {
1744         pnv_tce_free(tbl, index, npages);
1745
1746         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1747                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1748 }
1749
1750 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1751         .set = pnv_ioda1_tce_build,
1752         .clear = pnv_ioda1_tce_free,
1753         .get = pnv_tce_get,
1754 };
1755
1756 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1757 {
1758         /* 01xb - invalidate TCEs that match the specified PE# */
1759         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1760         struct pnv_phb *phb = pe->phb;
1761
1762         if (!phb->ioda.tce_inval_reg)
1763                 return;
1764
1765         mb(); /* Ensure above stores are visible */
1766         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1767 }
1768
1769 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1770                 __be64 __iomem *invalidate, unsigned shift,
1771                 unsigned long index, unsigned long npages)
1772 {
1773         unsigned long start, end, inc;
1774
1775         /* We'll invalidate DMA address in PE scope */
1776         start = 0x2ull << 60;
1777         start |= (pe_number & 0xFF);
1778         end = start;
1779
1780         /* Figure out the start, end and step */
1781         start |= (index << shift);
1782         end |= ((index + npages - 1) << shift);
1783         inc = (0x1ull << shift);
1784         mb();
1785
1786         while (start <= end) {
1787                 if (rm)
1788                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1789                 else
1790                         __raw_writeq(cpu_to_be64(start), invalidate);
1791                 start += inc;
1792         }
1793 }
1794
1795 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1796                 unsigned long index, unsigned long npages, bool rm)
1797 {
1798         struct iommu_table_group_link *tgl;
1799
1800         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1801                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1802                                 struct pnv_ioda_pe, table_group);
1803                 __be64 __iomem *invalidate = rm ?
1804                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1805                         pe->phb->ioda.tce_inval_reg;
1806
1807                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1808                         invalidate, tbl->it_page_shift,
1809                         index, npages);
1810         }
1811 }
1812
1813 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1814                 long npages, unsigned long uaddr,
1815                 enum dma_data_direction direction,
1816                 struct dma_attrs *attrs)
1817 {
1818         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1819                         attrs);
1820
1821         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1822                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1823
1824         return ret;
1825 }
1826
1827 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1828                 long npages)
1829 {
1830         pnv_tce_free(tbl, index, npages);
1831
1832         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1833                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1834 }
1835
1836 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1837         .set = pnv_ioda2_tce_build,
1838         .clear = pnv_ioda2_tce_free,
1839         .get = pnv_tce_get,
1840 };
1841
1842 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1843                                       struct pnv_ioda_pe *pe, unsigned int base,
1844                                       unsigned int segs)
1845 {
1846
1847         struct page *tce_mem = NULL;
1848         struct iommu_table *tbl;
1849         unsigned int i;
1850         int64_t rc;
1851         void *addr;
1852
1853         /* XXX FIXME: Handle 64-bit only DMA devices */
1854         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1855         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1856
1857         /* We shouldn't already have a 32-bit DMA associated */
1858         if (WARN_ON(pe->tce32_seg >= 0))
1859                 return;
1860
1861         tbl = pnv_pci_table_alloc(phb->hose->node);
1862         iommu_register_group(&pe->table_group, phb->hose->global_number,
1863                         pe->pe_number);
1864         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1865
1866         /* Grab a 32-bit TCE table */
1867         pe->tce32_seg = base;
1868         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1869                 (base << 28), ((base + segs) << 28) - 1);
1870
1871         /* XXX Currently, we allocate one big contiguous table for the
1872          * TCEs. We only really need one chunk per 256M of TCE space
1873          * (ie per segment) but that's an optimization for later, it
1874          * requires some added smarts with our get/put_tce implementation
1875          */
1876         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1877                                    get_order(TCE32_TABLE_SIZE * segs));
1878         if (!tce_mem) {
1879                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1880                 goto fail;
1881         }
1882         addr = page_address(tce_mem);
1883         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1884
1885         /* Configure HW */
1886         for (i = 0; i < segs; i++) {
1887                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1888                                               pe->pe_number,
1889                                               base + i, 1,
1890                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1891                                               TCE32_TABLE_SIZE, 0x1000);
1892                 if (rc) {
1893                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1894                                " err %ld\n", rc);
1895                         goto fail;
1896                 }
1897         }
1898
1899         /* Setup linux iommu table */
1900         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1901                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1902
1903         /* OPAL variant of P7IOC SW invalidated TCEs */
1904         if (phb->ioda.tce_inval_reg)
1905                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1906                                  TCE_PCI_SWINV_FREE   |
1907                                  TCE_PCI_SWINV_PAIR);
1908
1909         tbl->it_ops = &pnv_ioda1_iommu_ops;
1910         iommu_init_table(tbl, phb->hose->node);
1911
1912         if (pe->flags & PNV_IODA_PE_DEV) {
1913                 /*
1914                  * Setting table base here only for carrying iommu_group
1915                  * further down to let iommu_add_device() do the job.
1916                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1917                  */
1918                 set_iommu_table_base(&pe->pdev->dev, tbl);
1919                 iommu_add_device(&pe->pdev->dev);
1920         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1921                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1922
1923         return;
1924  fail:
1925         /* XXX Failure: Try to fallback to 64-bit only ? */
1926         if (pe->tce32_seg >= 0)
1927                 pe->tce32_seg = -1;
1928         if (tce_mem)
1929                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1930         if (tbl) {
1931                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1932                 iommu_free_table(tbl, "pnv");
1933         }
1934 }
1935
1936 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1937 {
1938         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1939         int64_t rc;
1940
1941         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1942         if (enable) {
1943                 phys_addr_t top = memblock_end_of_DRAM();
1944
1945                 top = roundup_pow_of_two(top);
1946                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1947                                                      pe->pe_number,
1948                                                      window_id,
1949                                                      pe->tce_bypass_base,
1950                                                      top);
1951         } else {
1952                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1953                                                      pe->pe_number,
1954                                                      window_id,
1955                                                      pe->tce_bypass_base,
1956                                                      0);
1957         }
1958         if (rc)
1959                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1960         else
1961                 pe->tce_bypass_enabled = enable;
1962 }
1963
1964 #ifdef CONFIG_IOMMU_API
1965 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1966 {
1967         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1968                                                 table_group);
1969
1970         iommu_take_ownership(table_group->tables[0]);
1971         pnv_pci_ioda2_set_bypass(pe, false);
1972 }
1973
1974 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1975 {
1976         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1977                                                 table_group);
1978
1979         iommu_release_ownership(table_group->tables[0]);
1980         pnv_pci_ioda2_set_bypass(pe, true);
1981 }
1982
1983 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1984         .take_ownership = pnv_ioda2_take_ownership,
1985         .release_ownership = pnv_ioda2_release_ownership,
1986 };
1987 #endif
1988
1989 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
1990 {
1991         const __be64 *swinvp;
1992
1993         /* OPAL variant of PHB3 invalidated TCEs */
1994         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1995         if (!swinvp)
1996                 return;
1997
1998         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
1999         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2000 }
2001
2002 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2003                                        struct pnv_ioda_pe *pe)
2004 {
2005         struct page *tce_mem = NULL;
2006         void *addr;
2007         struct iommu_table *tbl;
2008         unsigned int tce_table_size, end;
2009         int64_t rc;
2010
2011         /* We shouldn't already have a 32-bit DMA associated */
2012         if (WARN_ON(pe->tce32_seg >= 0))
2013                 return;
2014
2015         /* TVE #1 is selected by PCI address bit 59 */
2016         pe->tce_bypass_base = 1ull << 59;
2017
2018         tbl = pnv_pci_table_alloc(phb->hose->node);
2019         iommu_register_group(&pe->table_group, phb->hose->global_number,
2020                         pe->pe_number);
2021         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2022
2023         /* The PE will reserve all possible 32-bits space */
2024         pe->tce32_seg = 0;
2025         end = (1 << ilog2(phb->ioda.m32_pci_base));
2026         tce_table_size = (end / 0x1000) * 8;
2027         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2028                 end);
2029
2030         /* Allocate TCE table */
2031         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2032                                    get_order(tce_table_size));
2033         if (!tce_mem) {
2034                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
2035                 goto fail;
2036         }
2037         addr = page_address(tce_mem);
2038         memset(addr, 0, tce_table_size);
2039
2040         /*
2041          * Map TCE table through TVT. The TVE index is the PE number
2042          * shifted by 1 bit for 32-bits DMA space.
2043          */
2044         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2045                                         pe->pe_number << 1, 1, __pa(addr),
2046                                         tce_table_size, 0x1000);
2047         if (rc) {
2048                 pe_err(pe, "Failed to configure 32-bit TCE table,"
2049                        " err %ld\n", rc);
2050                 goto fail;
2051         }
2052
2053         pnv_pci_ioda2_tce_invalidate_entire(pe);
2054
2055         /* Setup linux iommu table */
2056         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
2057                         IOMMU_PAGE_SHIFT_4K);
2058
2059         /* OPAL variant of PHB3 invalidated TCEs */
2060         if (phb->ioda.tce_inval_reg)
2061                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2062
2063         tbl->it_ops = &pnv_ioda2_iommu_ops;
2064         iommu_init_table(tbl, phb->hose->node);
2065 #ifdef CONFIG_IOMMU_API
2066         pe->table_group.ops = &pnv_pci_ioda2_ops;
2067 #endif
2068
2069         if (pe->flags & PNV_IODA_PE_DEV) {
2070                 /*
2071                  * Setting table base here only for carrying iommu_group
2072                  * further down to let iommu_add_device() do the job.
2073                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2074                  */
2075                 set_iommu_table_base(&pe->pdev->dev, tbl);
2076                 iommu_add_device(&pe->pdev->dev);
2077         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2078                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2079
2080         /* Also create a bypass window */
2081         if (!pnv_iommu_bypass_disabled)
2082                 pnv_pci_ioda2_set_bypass(pe, true);
2083
2084         return;
2085 fail:
2086         if (pe->tce32_seg >= 0)
2087                 pe->tce32_seg = -1;
2088         if (tce_mem)
2089                 __free_pages(tce_mem, get_order(tce_table_size));
2090         if (tbl) {
2091                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2092                 iommu_free_table(tbl, "pnv");
2093         }
2094 }
2095
2096 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2097 {
2098         struct pci_controller *hose = phb->hose;
2099         unsigned int residual, remaining, segs, tw, base;
2100         struct pnv_ioda_pe *pe;
2101
2102         /* If we have more PE# than segments available, hand out one
2103          * per PE until we run out and let the rest fail. If not,
2104          * then we assign at least one segment per PE, plus more based
2105          * on the amount of devices under that PE
2106          */
2107         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2108                 residual = 0;
2109         else
2110                 residual = phb->ioda.tce32_count -
2111                         phb->ioda.dma_pe_count;
2112
2113         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2114                 hose->global_number, phb->ioda.tce32_count);
2115         pr_info("PCI: %d PE# for a total weight of %d\n",
2116                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2117
2118         pnv_pci_ioda_setup_opal_tce_kill(phb);
2119
2120         /* Walk our PE list and configure their DMA segments, hand them
2121          * out one base segment plus any residual segments based on
2122          * weight
2123          */
2124         remaining = phb->ioda.tce32_count;
2125         tw = phb->ioda.dma_weight;
2126         base = 0;
2127         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2128                 if (!pe->dma_weight)
2129                         continue;
2130                 if (!remaining) {
2131                         pe_warn(pe, "No DMA32 resources available\n");
2132                         continue;
2133                 }
2134                 segs = 1;
2135                 if (residual) {
2136                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2137                         if (segs > remaining)
2138                                 segs = remaining;
2139                 }
2140
2141                 /*
2142                  * For IODA2 compliant PHB3, we needn't care about the weight.
2143                  * The all available 32-bits DMA space will be assigned to
2144                  * the specific PE.
2145                  */
2146                 if (phb->type == PNV_PHB_IODA1) {
2147                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2148                                 pe->dma_weight, segs);
2149                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2150                 } else {
2151                         pe_info(pe, "Assign DMA32 space\n");
2152                         segs = 0;
2153                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2154                 }
2155
2156                 remaining -= segs;
2157                 base += segs;
2158         }
2159 }
2160
2161 #ifdef CONFIG_PCI_MSI
2162 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2163 {
2164         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2165         struct irq_chip *chip = irq_data_get_irq_chip(d);
2166         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2167                                            ioda.irq_chip);
2168         int64_t rc;
2169
2170         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2171         WARN_ON_ONCE(rc);
2172
2173         icp_native_eoi(d);
2174 }
2175
2176
2177 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2178 {
2179         struct irq_data *idata;
2180         struct irq_chip *ichip;
2181
2182         if (phb->type != PNV_PHB_IODA2)
2183                 return;
2184
2185         if (!phb->ioda.irq_chip_init) {
2186                 /*
2187                  * First time we setup an MSI IRQ, we need to setup the
2188                  * corresponding IRQ chip to route correctly.
2189                  */
2190                 idata = irq_get_irq_data(virq);
2191                 ichip = irq_data_get_irq_chip(idata);
2192                 phb->ioda.irq_chip_init = 1;
2193                 phb->ioda.irq_chip = *ichip;
2194                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2195         }
2196         irq_set_chip(virq, &phb->ioda.irq_chip);
2197 }
2198
2199 #ifdef CONFIG_CXL_BASE
2200
2201 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2202 {
2203         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2204
2205         return of_node_get(hose->dn);
2206 }
2207 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2208
2209 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2210 {
2211         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2212         struct pnv_phb *phb = hose->private_data;
2213         struct pnv_ioda_pe *pe;
2214         int rc;
2215
2216         pe = pnv_ioda_get_pe(dev);
2217         if (!pe)
2218                 return -ENODEV;
2219
2220         pe_info(pe, "Switching PHB to CXL\n");
2221
2222         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2223         if (rc)
2224                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2225
2226         return rc;
2227 }
2228 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2229
2230 /* Find PHB for cxl dev and allocate MSI hwirqs?
2231  * Returns the absolute hardware IRQ number
2232  */
2233 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2234 {
2235         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2236         struct pnv_phb *phb = hose->private_data;
2237         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2238
2239         if (hwirq < 0) {
2240                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2241                 return -ENOSPC;
2242         }
2243
2244         return phb->msi_base + hwirq;
2245 }
2246 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2247
2248 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2249 {
2250         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2251         struct pnv_phb *phb = hose->private_data;
2252
2253         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2254 }
2255 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2256
2257 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2258                                   struct pci_dev *dev)
2259 {
2260         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2261         struct pnv_phb *phb = hose->private_data;
2262         int i, hwirq;
2263
2264         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2265                 if (!irqs->range[i])
2266                         continue;
2267                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2268                          i, irqs->offset[i],
2269                          irqs->range[i]);
2270                 hwirq = irqs->offset[i] - phb->msi_base;
2271                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2272                                        irqs->range[i]);
2273         }
2274 }
2275 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2276
2277 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2278                                struct pci_dev *dev, int num)
2279 {
2280         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2281         struct pnv_phb *phb = hose->private_data;
2282         int i, hwirq, try;
2283
2284         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2285
2286         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2287         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2288                 try = num;
2289                 while (try) {
2290                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2291                         if (hwirq >= 0)
2292                                 break;
2293                         try /= 2;
2294                 }
2295                 if (!try)
2296                         goto fail;
2297
2298                 irqs->offset[i] = phb->msi_base + hwirq;
2299                 irqs->range[i] = try;
2300                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2301                          i, irqs->offset[i], irqs->range[i]);
2302                 num -= try;
2303         }
2304         if (num)
2305                 goto fail;
2306
2307         return 0;
2308 fail:
2309         pnv_cxl_release_hwirq_ranges(irqs, dev);
2310         return -ENOSPC;
2311 }
2312 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2313
2314 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2315 {
2316         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2317         struct pnv_phb *phb = hose->private_data;
2318
2319         return phb->msi_bmp.irq_count;
2320 }
2321 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2322
2323 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2324                            unsigned int virq)
2325 {
2326         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2327         struct pnv_phb *phb = hose->private_data;
2328         unsigned int xive_num = hwirq - phb->msi_base;
2329         struct pnv_ioda_pe *pe;
2330         int rc;
2331
2332         if (!(pe = pnv_ioda_get_pe(dev)))
2333                 return -ENODEV;
2334
2335         /* Assign XIVE to PE */
2336         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2337         if (rc) {
2338                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2339                         "hwirq 0x%x XIVE 0x%x PE\n",
2340                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2341                 return -EIO;
2342         }
2343         set_msi_irq_chip(phb, virq);
2344
2345         return 0;
2346 }
2347 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2348 #endif
2349
2350 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2351                                   unsigned int hwirq, unsigned int virq,
2352                                   unsigned int is_64, struct msi_msg *msg)
2353 {
2354         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2355         unsigned int xive_num = hwirq - phb->msi_base;
2356         __be32 data;
2357         int rc;
2358
2359         /* No PE assigned ? bail out ... no MSI for you ! */
2360         if (pe == NULL)
2361                 return -ENXIO;
2362
2363         /* Check if we have an MVE */
2364         if (pe->mve_number < 0)
2365                 return -ENXIO;
2366
2367         /* Force 32-bit MSI on some broken devices */
2368         if (dev->no_64bit_msi)
2369                 is_64 = 0;
2370
2371         /* Assign XIVE to PE */
2372         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2373         if (rc) {
2374                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2375                         pci_name(dev), rc, xive_num);
2376                 return -EIO;
2377         }
2378
2379         if (is_64) {
2380                 __be64 addr64;
2381
2382                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2383                                      &addr64, &data);
2384                 if (rc) {
2385                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2386                                 pci_name(dev), rc);
2387                         return -EIO;
2388                 }
2389                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2390                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2391         } else {
2392                 __be32 addr32;
2393
2394                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2395                                      &addr32, &data);
2396                 if (rc) {
2397                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2398                                 pci_name(dev), rc);
2399                         return -EIO;
2400                 }
2401                 msg->address_hi = 0;
2402                 msg->address_lo = be32_to_cpu(addr32);
2403         }
2404         msg->data = be32_to_cpu(data);
2405
2406         set_msi_irq_chip(phb, virq);
2407
2408         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2409                  " address=%x_%08x data=%x PE# %d\n",
2410                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2411                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2412
2413         return 0;
2414 }
2415
2416 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2417 {
2418         unsigned int count;
2419         const __be32 *prop = of_get_property(phb->hose->dn,
2420                                              "ibm,opal-msi-ranges", NULL);
2421         if (!prop) {
2422                 /* BML Fallback */
2423                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2424         }
2425         if (!prop)
2426                 return;
2427
2428         phb->msi_base = be32_to_cpup(prop);
2429         count = be32_to_cpup(prop + 1);
2430         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2431                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2432                        phb->hose->global_number);
2433                 return;
2434         }
2435
2436         phb->msi_setup = pnv_pci_ioda_msi_setup;
2437         phb->msi32_support = 1;
2438         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2439                 count, phb->msi_base);
2440 }
2441 #else
2442 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2443 #endif /* CONFIG_PCI_MSI */
2444
2445 #ifdef CONFIG_PCI_IOV
2446 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2447 {
2448         struct pci_controller *hose;
2449         struct pnv_phb *phb;
2450         struct resource *res;
2451         int i;
2452         resource_size_t size;
2453         struct pci_dn *pdn;
2454         int mul, total_vfs;
2455
2456         if (!pdev->is_physfn || pdev->is_added)
2457                 return;
2458
2459         hose = pci_bus_to_host(pdev->bus);
2460         phb = hose->private_data;
2461
2462         pdn = pci_get_pdn(pdev);
2463         pdn->vfs_expanded = 0;
2464
2465         total_vfs = pci_sriov_get_totalvfs(pdev);
2466         pdn->m64_per_iov = 1;
2467         mul = phb->ioda.total_pe;
2468
2469         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2470                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2471                 if (!res->flags || res->parent)
2472                         continue;
2473                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2474                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2475                                  i, res);
2476                         continue;
2477                 }
2478
2479                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2480
2481                 /* bigger than 64M */
2482                 if (size > (1 << 26)) {
2483                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2484                                  i, res);
2485                         pdn->m64_per_iov = M64_PER_IOV;
2486                         mul = roundup_pow_of_two(total_vfs);
2487                         break;
2488                 }
2489         }
2490
2491         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2492                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2493                 if (!res->flags || res->parent)
2494                         continue;
2495                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2496                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2497                                  i, res);
2498                         continue;
2499                 }
2500
2501                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2502                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2503                 res->end = res->start + size * mul - 1;
2504                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2505                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2506                          i, res, mul);
2507         }
2508         pdn->vfs_expanded = mul;
2509 }
2510 #endif /* CONFIG_PCI_IOV */
2511
2512 /*
2513  * This function is supposed to be called on basis of PE from top
2514  * to bottom style. So the the I/O or MMIO segment assigned to
2515  * parent PE could be overrided by its child PEs if necessary.
2516  */
2517 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2518                                   struct pnv_ioda_pe *pe)
2519 {
2520         struct pnv_phb *phb = hose->private_data;
2521         struct pci_bus_region region;
2522         struct resource *res;
2523         int i, index;
2524         int rc;
2525
2526         /*
2527          * NOTE: We only care PCI bus based PE for now. For PCI
2528          * device based PE, for example SRIOV sensitive VF should
2529          * be figured out later.
2530          */
2531         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2532
2533         pci_bus_for_each_resource(pe->pbus, res, i) {
2534                 if (!res || !res->flags ||
2535                     res->start > res->end)
2536                         continue;
2537
2538                 if (res->flags & IORESOURCE_IO) {
2539                         region.start = res->start - phb->ioda.io_pci_base;
2540                         region.end   = res->end - phb->ioda.io_pci_base;
2541                         index = region.start / phb->ioda.io_segsize;
2542
2543                         while (index < phb->ioda.total_pe &&
2544                                region.start <= region.end) {
2545                                 phb->ioda.io_segmap[index] = pe->pe_number;
2546                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2547                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2548                                 if (rc != OPAL_SUCCESS) {
2549                                         pr_err("%s: OPAL error %d when mapping IO "
2550                                                "segment #%d to PE#%d\n",
2551                                                __func__, rc, index, pe->pe_number);
2552                                         break;
2553                                 }
2554
2555                                 region.start += phb->ioda.io_segsize;
2556                                 index++;
2557                         }
2558                 } else if ((res->flags & IORESOURCE_MEM) &&
2559                            !pnv_pci_is_mem_pref_64(res->flags)) {
2560                         region.start = res->start -
2561                                        hose->mem_offset[0] -
2562                                        phb->ioda.m32_pci_base;
2563                         region.end   = res->end -
2564                                        hose->mem_offset[0] -
2565                                        phb->ioda.m32_pci_base;
2566                         index = region.start / phb->ioda.m32_segsize;
2567
2568                         while (index < phb->ioda.total_pe &&
2569                                region.start <= region.end) {
2570                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2571                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2572                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2573                                 if (rc != OPAL_SUCCESS) {
2574                                         pr_err("%s: OPAL error %d when mapping M32 "
2575                                                "segment#%d to PE#%d",
2576                                                __func__, rc, index, pe->pe_number);
2577                                         break;
2578                                 }
2579
2580                                 region.start += phb->ioda.m32_segsize;
2581                                 index++;
2582                         }
2583                 }
2584         }
2585 }
2586
2587 static void pnv_pci_ioda_setup_seg(void)
2588 {
2589         struct pci_controller *tmp, *hose;
2590         struct pnv_phb *phb;
2591         struct pnv_ioda_pe *pe;
2592
2593         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2594                 phb = hose->private_data;
2595                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2596                         pnv_ioda_setup_pe_seg(hose, pe);
2597                 }
2598         }
2599 }
2600
2601 static void pnv_pci_ioda_setup_DMA(void)
2602 {
2603         struct pci_controller *hose, *tmp;
2604         struct pnv_phb *phb;
2605
2606         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2607                 pnv_ioda_setup_dma(hose->private_data);
2608
2609                 /* Mark the PHB initialization done */
2610                 phb = hose->private_data;
2611                 phb->initialized = 1;
2612         }
2613 }
2614
2615 static void pnv_pci_ioda_create_dbgfs(void)
2616 {
2617 #ifdef CONFIG_DEBUG_FS
2618         struct pci_controller *hose, *tmp;
2619         struct pnv_phb *phb;
2620         char name[16];
2621
2622         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2623                 phb = hose->private_data;
2624
2625                 sprintf(name, "PCI%04x", hose->global_number);
2626                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2627                 if (!phb->dbgfs)
2628                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2629                                 __func__, hose->global_number);
2630         }
2631 #endif /* CONFIG_DEBUG_FS */
2632 }
2633
2634 static void pnv_pci_ioda_fixup(void)
2635 {
2636         pnv_pci_ioda_setup_PEs();
2637         pnv_pci_ioda_setup_seg();
2638         pnv_pci_ioda_setup_DMA();
2639
2640         pnv_pci_ioda_create_dbgfs();
2641
2642 #ifdef CONFIG_EEH
2643         eeh_init();
2644         eeh_addr_cache_build();
2645 #endif
2646 }
2647
2648 /*
2649  * Returns the alignment for I/O or memory windows for P2P
2650  * bridges. That actually depends on how PEs are segmented.
2651  * For now, we return I/O or M32 segment size for PE sensitive
2652  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2653  * 1MiB for memory) will be returned.
2654  *
2655  * The current PCI bus might be put into one PE, which was
2656  * create against the parent PCI bridge. For that case, we
2657  * needn't enlarge the alignment so that we can save some
2658  * resources.
2659  */
2660 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2661                                                 unsigned long type)
2662 {
2663         struct pci_dev *bridge;
2664         struct pci_controller *hose = pci_bus_to_host(bus);
2665         struct pnv_phb *phb = hose->private_data;
2666         int num_pci_bridges = 0;
2667
2668         bridge = bus->self;
2669         while (bridge) {
2670                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2671                         num_pci_bridges++;
2672                         if (num_pci_bridges >= 2)
2673                                 return 1;
2674                 }
2675
2676                 bridge = bridge->bus->self;
2677         }
2678
2679         /* We fail back to M32 if M64 isn't supported */
2680         if (phb->ioda.m64_segsize &&
2681             pnv_pci_is_mem_pref_64(type))
2682                 return phb->ioda.m64_segsize;
2683         if (type & IORESOURCE_MEM)
2684                 return phb->ioda.m32_segsize;
2685
2686         return phb->ioda.io_segsize;
2687 }
2688
2689 #ifdef CONFIG_PCI_IOV
2690 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2691                                                       int resno)
2692 {
2693         struct pci_dn *pdn = pci_get_pdn(pdev);
2694         resource_size_t align, iov_align;
2695
2696         iov_align = resource_size(&pdev->resource[resno]);
2697         if (iov_align)
2698                 return iov_align;
2699
2700         align = pci_iov_resource_size(pdev, resno);
2701         if (pdn->vfs_expanded)
2702                 return pdn->vfs_expanded * align;
2703
2704         return align;
2705 }
2706 #endif /* CONFIG_PCI_IOV */
2707
2708 /* Prevent enabling devices for which we couldn't properly
2709  * assign a PE
2710  */
2711 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2712 {
2713         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2714         struct pnv_phb *phb = hose->private_data;
2715         struct pci_dn *pdn;
2716
2717         /* The function is probably called while the PEs have
2718          * not be created yet. For example, resource reassignment
2719          * during PCI probe period. We just skip the check if
2720          * PEs isn't ready.
2721          */
2722         if (!phb->initialized)
2723                 return true;
2724
2725         pdn = pci_get_pdn(dev);
2726         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2727                 return false;
2728
2729         return true;
2730 }
2731
2732 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2733                                u32 devfn)
2734 {
2735         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2736 }
2737
2738 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2739 {
2740         struct pnv_phb *phb = hose->private_data;
2741
2742         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2743                        OPAL_ASSERT_RESET);
2744 }
2745
2746 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2747        .dma_dev_setup = pnv_pci_dma_dev_setup,
2748 #ifdef CONFIG_PCI_MSI
2749        .setup_msi_irqs = pnv_setup_msi_irqs,
2750        .teardown_msi_irqs = pnv_teardown_msi_irqs,
2751 #endif
2752        .enable_device_hook = pnv_pci_enable_device_hook,
2753        .window_alignment = pnv_pci_window_alignment,
2754        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2755        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
2756        .shutdown = pnv_pci_ioda_shutdown,
2757 };
2758
2759 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2760                                          u64 hub_id, int ioda_type)
2761 {
2762         struct pci_controller *hose;
2763         struct pnv_phb *phb;
2764         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
2765         const __be64 *prop64;
2766         const __be32 *prop32;
2767         int len;
2768         u64 phb_id;
2769         void *aux;
2770         long rc;
2771
2772         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
2773
2774         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2775         if (!prop64) {
2776                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2777                 return;
2778         }
2779         phb_id = be64_to_cpup(prop64);
2780         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2781
2782         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
2783
2784         /* Allocate PCI controller */
2785         phb->hose = hose = pcibios_alloc_controller(np);
2786         if (!phb->hose) {
2787                 pr_err("  Can't allocate PCI controller for %s\n",
2788                        np->full_name);
2789                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
2790                 return;
2791         }
2792
2793         spin_lock_init(&phb->lock);
2794         prop32 = of_get_property(np, "bus-range", &len);
2795         if (prop32 && len == 8) {
2796                 hose->first_busno = be32_to_cpu(prop32[0]);
2797                 hose->last_busno = be32_to_cpu(prop32[1]);
2798         } else {
2799                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
2800                 hose->first_busno = 0;
2801                 hose->last_busno = 0xff;
2802         }
2803         hose->private_data = phb;
2804         phb->hub_id = hub_id;
2805         phb->opal_id = phb_id;
2806         phb->type = ioda_type;
2807         mutex_init(&phb->ioda.pe_alloc_mutex);
2808
2809         /* Detect specific models for error handling */
2810         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2811                 phb->model = PNV_PHB_MODEL_P7IOC;
2812         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2813                 phb->model = PNV_PHB_MODEL_PHB3;
2814         else
2815                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2816
2817         /* Parse 32-bit and IO ranges (if any) */
2818         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2819
2820         /* Get registers */
2821         phb->regs = of_iomap(np, 0);
2822         if (phb->regs == NULL)
2823                 pr_err("  Failed to map registers !\n");
2824
2825         /* Initialize more IODA stuff */
2826         phb->ioda.total_pe = 1;
2827         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2828         if (prop32)
2829                 phb->ioda.total_pe = be32_to_cpup(prop32);
2830         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2831         if (prop32)
2832                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
2833
2834         /* Parse 64-bit MMIO range */
2835         pnv_ioda_parse_m64_window(phb);
2836
2837         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2838         /* FW Has already off top 64k of M32 space (MSI space) */
2839         phb->ioda.m32_size += 0x10000;
2840
2841         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2842         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2843         phb->ioda.io_size = hose->pci_io_size;
2844         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2845         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2846
2847         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2848         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2849         m32map_off = size;
2850         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2851         if (phb->type == PNV_PHB_IODA1) {
2852                 iomap_off = size;
2853                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2854         }
2855         pemap_off = size;
2856         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2857         aux = memblock_virt_alloc(size, 0);
2858         phb->ioda.pe_alloc = aux;
2859         phb->ioda.m32_segmap = aux + m32map_off;
2860         if (phb->type == PNV_PHB_IODA1)
2861                 phb->ioda.io_segmap = aux + iomap_off;
2862         phb->ioda.pe_array = aux + pemap_off;
2863         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2864
2865         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2866         INIT_LIST_HEAD(&phb->ioda.pe_list);
2867         mutex_init(&phb->ioda.pe_list_mutex);
2868
2869         /* Calculate how many 32-bit TCE segments we have */
2870         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2871
2872 #if 0 /* We should really do that ... */
2873         rc = opal_pci_set_phb_mem_window(opal->phb_id,
2874                                          window_type,
2875                                          window_num,
2876                                          starting_real_address,
2877                                          starting_pci_address,
2878                                          segment_size);
2879 #endif
2880
2881         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2882                 phb->ioda.total_pe, phb->ioda.reserved_pe,
2883                 phb->ioda.m32_size, phb->ioda.m32_segsize);
2884         if (phb->ioda.m64_size)
2885                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2886                         phb->ioda.m64_size, phb->ioda.m64_segsize);
2887         if (phb->ioda.io_size)
2888                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
2889                         phb->ioda.io_size, phb->ioda.io_segsize);
2890
2891
2892         phb->hose->ops = &pnv_pci_ops;
2893         phb->get_pe_state = pnv_ioda_get_pe_state;
2894         phb->freeze_pe = pnv_ioda_freeze_pe;
2895         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2896
2897         /* Setup RID -> PE mapping function */
2898         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2899
2900         /* Setup TCEs */
2901         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2902         phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2903
2904         /* Setup MSI support */
2905         pnv_pci_init_ioda_msis(phb);
2906
2907         /*
2908          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2909          * to let the PCI core do resource assignment. It's supposed
2910          * that the PCI core will do correct I/O and MMIO alignment
2911          * for the P2P bridge bars so that each PCI bus (excluding
2912          * the child P2P bridges) can form individual PE.
2913          */
2914         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2915         hose->controller_ops = pnv_pci_ioda_controller_ops;
2916
2917 #ifdef CONFIG_PCI_IOV
2918         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
2919         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2920 #endif
2921
2922         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2923
2924         /* Reset IODA tables to a clean state */
2925         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2926         if (rc)
2927                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2928
2929         /* If we're running in kdump kerenl, the previous kerenl never
2930          * shutdown PCI devices correctly. We already got IODA table
2931          * cleaned out. So we have to issue PHB reset to stop all PCI
2932          * transactions from previous kerenl.
2933          */
2934         if (is_kdump_kernel()) {
2935                 pr_info("  Issue PHB reset ...\n");
2936                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2937                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2938         }
2939
2940         /* Remove M64 resource if we can't configure it successfully */
2941         if (!phb->init_m64 || phb->init_m64(phb))
2942                 hose->mem_resources[1].flags = 0;
2943 }
2944
2945 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2946 {
2947         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2948 }
2949
2950 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2951 {
2952         struct device_node *phbn;
2953         const __be64 *prop64;
2954         u64 hub_id;
2955
2956         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2957
2958         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2959         if (!prop64) {
2960                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2961                 return;
2962         }
2963         hub_id = be64_to_cpup(prop64);
2964         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2965
2966         /* Count child PHBs */
2967         for_each_child_of_node(np, phbn) {
2968                 /* Look for IODA1 PHBs */
2969                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2970                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2971         }
2972 }