]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
Merge tag 'perf-urgent-for-mingo-4.11-20170317' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62                             const char *fmt, ...)
63 {
64         struct va_format vaf;
65         va_list args;
66         char pfix[32];
67
68         va_start(args, fmt);
69
70         vaf.fmt = fmt;
71         vaf.va = &args;
72
73         if (pe->flags & PNV_IODA_PE_DEV)
74                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76                 sprintf(pfix, "%04x:%02x     ",
77                         pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79         else if (pe->flags & PNV_IODA_PE_VF)
80                 sprintf(pfix, "%04x:%02x:%2x.%d",
81                         pci_domain_nr(pe->parent_dev->bus),
82                         (pe->rid & 0xff00) >> 8,
83                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86         printk("%spci %s: [PE# %.2x] %pV",
87                level, pfix, pe->pe_number, &vaf);
88
89         va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96         if (!str)
97                 return -EINVAL;
98
99         while (*str) {
100                 if (!strncmp(str, "nobypass", 8)) {
101                         pnv_iommu_bypass_disabled = true;
102                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
103                         break;
104                 }
105                 str += strcspn(str, ",");
106                 if (*str == ',')
107                         str++;
108         }
109
110         return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116         /*
117          * WARNING: We cannot rely on the resource flags. The Linux PCI
118          * allocation code sometimes decides to put a 64-bit prefetchable
119          * BAR in the 32-bit window, so we have to compare the addresses.
120          *
121          * For simplicity we only test resource start.
122          */
123         return (r->start >= phb->ioda.m64_base &&
124                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130
131         return (resource_flags & flags) == flags;
132 }
133
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136         s64 rc;
137
138         phb->ioda.pe_array[pe_no].phb = phb;
139         phb->ioda.pe_array[pe_no].pe_number = pe_no;
140
141         /*
142          * Clear the PE frozen state as it might be put into frozen state
143          * in the last PCI remove path. It's not harmful to do so when the
144          * PE is already in unfrozen state.
145          */
146         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150                         __func__, rc, phb->hose->global_number, pe_no);
151
152         return &phb->ioda.pe_array[pe_no];
153 }
154
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
156 {
157         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
159                         __func__, pe_no, phb->hose->global_number);
160                 return;
161         }
162
163         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
165                          __func__, pe_no, phb->hose->global_number);
166
167         pnv_ioda_init_pe(phb, pe_no);
168 }
169
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171 {
172         long pe;
173
174         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176                         return pnv_ioda_init_pe(phb, pe);
177         }
178
179         return NULL;
180 }
181
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183 {
184         struct pnv_phb *phb = pe->phb;
185         unsigned int pe_num = pe->pe_number;
186
187         WARN_ON(pe->pdev);
188
189         memset(pe, 0, sizeof(struct pnv_ioda_pe));
190         clear_bit(pe_num, phb->ioda.pe_alloc);
191 }
192
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
195 {
196         const char *desc;
197         struct resource *r;
198         s64 rc;
199
200         /* Configure the default M64 BAR */
201         rc = opal_pci_set_phb_mem_window(phb->opal_id,
202                                          OPAL_M64_WINDOW_TYPE,
203                                          phb->ioda.m64_bar_idx,
204                                          phb->ioda.m64_base,
205                                          0, /* unused */
206                                          phb->ioda.m64_size);
207         if (rc != OPAL_SUCCESS) {
208                 desc = "configuring";
209                 goto fail;
210         }
211
212         /* Enable the default M64 BAR */
213         rc = opal_pci_phb_mmio_enable(phb->opal_id,
214                                       OPAL_M64_WINDOW_TYPE,
215                                       phb->ioda.m64_bar_idx,
216                                       OPAL_ENABLE_M64_SPLIT);
217         if (rc != OPAL_SUCCESS) {
218                 desc = "enabling";
219                 goto fail;
220         }
221
222         /*
223          * Exclude the segments for reserved and root bus PE, which
224          * are first or last two PEs.
225          */
226         r = &phb->hose->mem_resources[1];
227         if (phb->ioda.reserved_pe_idx == 0)
228                 r->start += (2 * phb->ioda.m64_segsize);
229         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230                 r->end -= (2 * phb->ioda.m64_segsize);
231         else
232                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
233                         phb->ioda.reserved_pe_idx);
234
235         return 0;
236
237 fail:
238         pr_warn("  Failure %lld %s M64 BAR#%d\n",
239                 rc, desc, phb->ioda.m64_bar_idx);
240         opal_pci_phb_mmio_enable(phb->opal_id,
241                                  OPAL_M64_WINDOW_TYPE,
242                                  phb->ioda.m64_bar_idx,
243                                  OPAL_DISABLE_M64);
244         return -EIO;
245 }
246
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248                                          unsigned long *pe_bitmap)
249 {
250         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251         struct pnv_phb *phb = hose->private_data;
252         struct resource *r;
253         resource_size_t base, sgsz, start, end;
254         int segno, i;
255
256         base = phb->ioda.m64_base;
257         sgsz = phb->ioda.m64_segsize;
258         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259                 r = &pdev->resource[i];
260                 if (!r->parent || !pnv_pci_is_m64(phb, r))
261                         continue;
262
263                 start = _ALIGN_DOWN(r->start - base, sgsz);
264                 end = _ALIGN_UP(r->end - base, sgsz);
265                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
266                         if (pe_bitmap)
267                                 set_bit(segno, pe_bitmap);
268                         else
269                                 pnv_ioda_reserve_pe(phb, segno);
270                 }
271         }
272 }
273
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
275 {
276         struct resource *r;
277         int index;
278
279         /*
280          * There are 16 M64 BARs, each of which has 8 segments. So
281          * there are as many M64 segments as the maximum number of
282          * PEs, which is 128.
283          */
284         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285                 unsigned long base, segsz = phb->ioda.m64_segsize;
286                 int64_t rc;
287
288                 base = phb->ioda.m64_base +
289                        index * PNV_IODA1_M64_SEGS * segsz;
290                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
291                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
292                                 PNV_IODA1_M64_SEGS * segsz);
293                 if (rc != OPAL_SUCCESS) {
294                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
295                                 rc, phb->hose->global_number, index);
296                         goto fail;
297                 }
298
299                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
300                                 OPAL_M64_WINDOW_TYPE, index,
301                                 OPAL_ENABLE_M64_SPLIT);
302                 if (rc != OPAL_SUCCESS) {
303                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
304                                 rc, phb->hose->global_number, index);
305                         goto fail;
306                 }
307         }
308
309         /*
310          * Exclude the segments for reserved and root bus PE, which
311          * are first or last two PEs.
312          */
313         r = &phb->hose->mem_resources[1];
314         if (phb->ioda.reserved_pe_idx == 0)
315                 r->start += (2 * phb->ioda.m64_segsize);
316         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317                 r->end -= (2 * phb->ioda.m64_segsize);
318         else
319                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
321
322         return 0;
323
324 fail:
325         for ( ; index >= 0; index--)
326                 opal_pci_phb_mmio_enable(phb->opal_id,
327                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
328
329         return -EIO;
330 }
331
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333                                     unsigned long *pe_bitmap,
334                                     bool all)
335 {
336         struct pci_dev *pdev;
337
338         list_for_each_entry(pdev, &bus->devices, bus_list) {
339                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340
341                 if (all && pdev->subordinate)
342                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
343                                                 pe_bitmap, all);
344         }
345 }
346
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348 {
349         struct pci_controller *hose = pci_bus_to_host(bus);
350         struct pnv_phb *phb = hose->private_data;
351         struct pnv_ioda_pe *master_pe, *pe;
352         unsigned long size, *pe_alloc;
353         int i;
354
355         /* Root bus shouldn't use M64 */
356         if (pci_is_root_bus(bus))
357                 return NULL;
358
359         /* Allocate bitmap */
360         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361         pe_alloc = kzalloc(size, GFP_KERNEL);
362         if (!pe_alloc) {
363                 pr_warn("%s: Out of memory !\n",
364                         __func__);
365                 return NULL;
366         }
367
368         /* Figure out reserved PE numbers by the PE */
369         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370
371         /*
372          * the current bus might not own M64 window and that's all
373          * contributed by its child buses. For the case, we needn't
374          * pick M64 dependent PE#.
375          */
376         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377                 kfree(pe_alloc);
378                 return NULL;
379         }
380
381         /*
382          * Figure out the master PE and put all slave PEs to master
383          * PE's list to form compound PE.
384          */
385         master_pe = NULL;
386         i = -1;
387         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388                 phb->ioda.total_pe_num) {
389                 pe = &phb->ioda.pe_array[i];
390
391                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392                 if (!master_pe) {
393                         pe->flags |= PNV_IODA_PE_MASTER;
394                         INIT_LIST_HEAD(&pe->slaves);
395                         master_pe = pe;
396                 } else {
397                         pe->flags |= PNV_IODA_PE_SLAVE;
398                         pe->master = master_pe;
399                         list_add_tail(&pe->list, &master_pe->slaves);
400                 }
401
402                 /*
403                  * P7IOC supports M64DT, which helps mapping M64 segment
404                  * to one particular PE#. However, PHB3 has fixed mapping
405                  * between M64 segment and PE#. In order to have same logic
406                  * for P7IOC and PHB3, we enforce fixed mapping between M64
407                  * segment and PE# on P7IOC.
408                  */
409                 if (phb->type == PNV_PHB_IODA1) {
410                         int64_t rc;
411
412                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
414                                         pe->pe_number / PNV_IODA1_M64_SEGS,
415                                         pe->pe_number % PNV_IODA1_M64_SEGS);
416                         if (rc != OPAL_SUCCESS)
417                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418                                         __func__, rc, phb->hose->global_number,
419                                         pe->pe_number);
420                 }
421         }
422
423         kfree(pe_alloc);
424         return master_pe;
425 }
426
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
428 {
429         struct pci_controller *hose = phb->hose;
430         struct device_node *dn = hose->dn;
431         struct resource *res;
432         u32 m64_range[2], i;
433         const __be32 *r;
434         u64 pci_addr;
435
436         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437                 pr_info("  Not support M64 window\n");
438                 return;
439         }
440
441         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442                 pr_info("  Firmware too old to support M64 window\n");
443                 return;
444         }
445
446         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
447         if (!r) {
448                 pr_info("  No <ibm,opal-m64-window> on %s\n",
449                         dn->full_name);
450                 return;
451         }
452
453         /*
454          * Find the available M64 BAR range and pickup the last one for
455          * covering the whole 64-bits space. We support only one range.
456          */
457         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
458                                        m64_range, 2)) {
459                 /* In absence of the property, assume 0..15 */
460                 m64_range[0] = 0;
461                 m64_range[1] = 16;
462         }
463         /* We only support 64 bits in our allocator */
464         if (m64_range[1] > 63) {
465                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466                         __func__, m64_range[1], phb->hose->global_number);
467                 m64_range[1] = 63;
468         }
469         /* Empty range, no m64 */
470         if (m64_range[1] <= m64_range[0]) {
471                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472                         __func__, phb->hose->global_number);
473                 return;
474         }
475
476         /* Configure M64 informations */
477         res = &hose->mem_resources[1];
478         res->name = dn->full_name;
479         res->start = of_translate_address(dn, r + 2);
480         res->end = res->start + of_read_number(r + 4, 2) - 1;
481         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482         pci_addr = of_read_number(r, 2);
483         hose->mem_offset[1] = res->start - pci_addr;
484
485         phb->ioda.m64_size = resource_size(res);
486         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487         phb->ioda.m64_base = pci_addr;
488
489         /* This lines up nicely with the display from processing OF ranges */
490         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491                 res->start, res->end, pci_addr, m64_range[0],
492                 m64_range[0] + m64_range[1] - 1);
493
494         /* Mark all M64 used up by default */
495         phb->ioda.m64_bar_alloc = (unsigned long)-1;
496
497         /* Use last M64 BAR to cover M64 window */
498         m64_range[1]--;
499         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
500
501         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
502
503         /* Mark remaining ones free */
504         for (i = m64_range[0]; i < m64_range[1]; i++)
505                 clear_bit(i, &phb->ioda.m64_bar_alloc);
506
507         /*
508          * Setup init functions for M64 based on IODA version, IODA3 uses
509          * the IODA2 code.
510          */
511         if (phb->type == PNV_PHB_IODA1)
512                 phb->init_m64 = pnv_ioda1_init_m64;
513         else
514                 phb->init_m64 = pnv_ioda2_init_m64;
515         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 }
518
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
520 {
521         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522         struct pnv_ioda_pe *slave;
523         s64 rc;
524
525         /* Fetch master PE */
526         if (pe->flags & PNV_IODA_PE_SLAVE) {
527                 pe = pe->master;
528                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
529                         return;
530
531                 pe_no = pe->pe_number;
532         }
533
534         /* Freeze master PE */
535         rc = opal_pci_eeh_freeze_set(phb->opal_id,
536                                      pe_no,
537                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
538         if (rc != OPAL_SUCCESS) {
539                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540                         __func__, rc, phb->hose->global_number, pe_no);
541                 return;
542         }
543
544         /* Freeze slave PEs */
545         if (!(pe->flags & PNV_IODA_PE_MASTER))
546                 return;
547
548         list_for_each_entry(slave, &pe->slaves, list) {
549                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
550                                              slave->pe_number,
551                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
552                 if (rc != OPAL_SUCCESS)
553                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554                                 __func__, rc, phb->hose->global_number,
555                                 slave->pe_number);
556         }
557 }
558
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
560 {
561         struct pnv_ioda_pe *pe, *slave;
562         s64 rc;
563
564         /* Find master PE */
565         pe = &phb->ioda.pe_array[pe_no];
566         if (pe->flags & PNV_IODA_PE_SLAVE) {
567                 pe = pe->master;
568                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569                 pe_no = pe->pe_number;
570         }
571
572         /* Clear frozen state for master PE */
573         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574         if (rc != OPAL_SUCCESS) {
575                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576                         __func__, rc, opt, phb->hose->global_number, pe_no);
577                 return -EIO;
578         }
579
580         if (!(pe->flags & PNV_IODA_PE_MASTER))
581                 return 0;
582
583         /* Clear frozen state for slave PEs */
584         list_for_each_entry(slave, &pe->slaves, list) {
585                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
586                                              slave->pe_number,
587                                              opt);
588                 if (rc != OPAL_SUCCESS) {
589                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590                                 __func__, rc, opt, phb->hose->global_number,
591                                 slave->pe_number);
592                         return -EIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
600 {
601         struct pnv_ioda_pe *slave, *pe;
602         u8 fstate, state;
603         __be16 pcierr;
604         s64 rc;
605
606         /* Sanity check on PE number */
607         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
609
610         /*
611          * Fetch the master PE and the PE instance might be
612          * not initialized yet.
613          */
614         pe = &phb->ioda.pe_array[pe_no];
615         if (pe->flags & PNV_IODA_PE_SLAVE) {
616                 pe = pe->master;
617                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618                 pe_no = pe->pe_number;
619         }
620
621         /* Check the master PE */
622         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623                                         &state, &pcierr, NULL);
624         if (rc != OPAL_SUCCESS) {
625                 pr_warn("%s: Failure %lld getting "
626                         "PHB#%x-PE#%x state\n",
627                         __func__, rc,
628                         phb->hose->global_number, pe_no);
629                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
630         }
631
632         /* Check the slave PE */
633         if (!(pe->flags & PNV_IODA_PE_MASTER))
634                 return state;
635
636         list_for_each_entry(slave, &pe->slaves, list) {
637                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
638                                                 slave->pe_number,
639                                                 &fstate,
640                                                 &pcierr,
641                                                 NULL);
642                 if (rc != OPAL_SUCCESS) {
643                         pr_warn("%s: Failure %lld getting "
644                                 "PHB#%x-PE#%x state\n",
645                                 __func__, rc,
646                                 phb->hose->global_number, slave->pe_number);
647                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
648                 }
649
650                 /*
651                  * Override the result based on the ascending
652                  * priority.
653                  */
654                 if (fstate > state)
655                         state = fstate;
656         }
657
658         return state;
659 }
660
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662  * but in the meantime, we need to protect them to avoid warnings
663  */
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667         struct pci_controller *hose = pci_bus_to_host(dev->bus);
668         struct pnv_phb *phb = hose->private_data;
669         struct pci_dn *pdn = pci_get_pdn(dev);
670
671         if (!pdn)
672                 return NULL;
673         if (pdn->pe_number == IODA_INVALID_PE)
674                 return NULL;
675         return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 #endif /* CONFIG_PCI_MSI */
678
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680                                   struct pnv_ioda_pe *parent,
681                                   struct pnv_ioda_pe *child,
682                                   bool is_add)
683 {
684         const char *desc = is_add ? "adding" : "removing";
685         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686                               OPAL_REMOVE_PE_FROM_DOMAIN;
687         struct pnv_ioda_pe *slave;
688         long rc;
689
690         /* Parent PE affects child PE */
691         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692                                 child->pe_number, op);
693         if (rc != OPAL_SUCCESS) {
694                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
695                         rc, desc);
696                 return -ENXIO;
697         }
698
699         if (!(child->flags & PNV_IODA_PE_MASTER))
700                 return 0;
701
702         /* Compound case: parent PE affects slave PEs */
703         list_for_each_entry(slave, &child->slaves, list) {
704                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705                                         slave->pe_number, op);
706                 if (rc != OPAL_SUCCESS) {
707                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
708                                 rc, desc);
709                         return -ENXIO;
710                 }
711         }
712
713         return 0;
714 }
715
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717                               struct pnv_ioda_pe *pe,
718                               bool is_add)
719 {
720         struct pnv_ioda_pe *slave;
721         struct pci_dev *pdev = NULL;
722         int ret;
723
724         /*
725          * Clear PE frozen state. If it's master PE, we need
726          * clear slave PE frozen state as well.
727          */
728         if (is_add) {
729                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731                 if (pe->flags & PNV_IODA_PE_MASTER) {
732                         list_for_each_entry(slave, &pe->slaves, list)
733                                 opal_pci_eeh_freeze_clear(phb->opal_id,
734                                                           slave->pe_number,
735                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736                 }
737         }
738
739         /*
740          * Associate PE in PELT. We need add the PE into the
741          * corresponding PELT-V as well. Otherwise, the error
742          * originated from the PE might contribute to other
743          * PEs.
744          */
745         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
746         if (ret)
747                 return ret;
748
749         /* For compound PEs, any one affects all of them */
750         if (pe->flags & PNV_IODA_PE_MASTER) {
751                 list_for_each_entry(slave, &pe->slaves, list) {
752                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
753                         if (ret)
754                                 return ret;
755                 }
756         }
757
758         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759                 pdev = pe->pbus->self;
760         else if (pe->flags & PNV_IODA_PE_DEV)
761                 pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763         else if (pe->flags & PNV_IODA_PE_VF)
764                 pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
766         while (pdev) {
767                 struct pci_dn *pdn = pci_get_pdn(pdev);
768                 struct pnv_ioda_pe *parent;
769
770                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771                         parent = &phb->ioda.pe_array[pdn->pe_number];
772                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
773                         if (ret)
774                                 return ret;
775                 }
776
777                 pdev = pdev->bus->self;
778         }
779
780         return 0;
781 }
782
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
784 {
785         struct pci_dev *parent;
786         uint8_t bcomp, dcomp, fcomp;
787         int64_t rc;
788         long rid_end, rid;
789
790         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
791         if (pe->pbus) {
792                 int count;
793
794                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796                 parent = pe->pbus->self;
797                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
798                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
799                 else
800                         count = 1;
801
802                 switch(count) {
803                 case  1: bcomp = OpalPciBusAll;         break;
804                 case  2: bcomp = OpalPciBus7Bits;       break;
805                 case  4: bcomp = OpalPciBus6Bits;       break;
806                 case  8: bcomp = OpalPciBus5Bits;       break;
807                 case 16: bcomp = OpalPciBus4Bits;       break;
808                 case 32: bcomp = OpalPciBus3Bits;       break;
809                 default:
810                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
811                                 count);
812                         /* Do an exact match only */
813                         bcomp = OpalPciBusAll;
814                 }
815                 rid_end = pe->rid + (count << 8);
816         } else {
817 #ifdef CONFIG_PCI_IOV
818                 if (pe->flags & PNV_IODA_PE_VF)
819                         parent = pe->parent_dev;
820                 else
821 #endif
822                         parent = pe->pdev->bus->self;
823                 bcomp = OpalPciBusAll;
824                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826                 rid_end = pe->rid + 1;
827         }
828
829         /* Clear the reverse map */
830         for (rid = pe->rid; rid < rid_end; rid++)
831                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832
833         /* Release from all parents PELT-V */
834         while (parent) {
835                 struct pci_dn *pdn = pci_get_pdn(parent);
836                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839                         /* XXX What to do in case of error ? */
840                 }
841                 parent = parent->bus->self;
842         }
843
844         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
846
847         /* Disassociate PE in PELT */
848         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
850         if (rc)
851                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
854         if (rc)
855                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
856
857         pe->pbus = NULL;
858         pe->pdev = NULL;
859 #ifdef CONFIG_PCI_IOV
860         pe->parent_dev = NULL;
861 #endif
862
863         return 0;
864 }
865
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 {
868         struct pci_dev *parent;
869         uint8_t bcomp, dcomp, fcomp;
870         long rc, rid_end, rid;
871
872         /* Bus validation ? */
873         if (pe->pbus) {
874                 int count;
875
876                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878                 parent = pe->pbus->self;
879                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
880                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
881                 else
882                         count = 1;
883
884                 switch(count) {
885                 case  1: bcomp = OpalPciBusAll;         break;
886                 case  2: bcomp = OpalPciBus7Bits;       break;
887                 case  4: bcomp = OpalPciBus6Bits;       break;
888                 case  8: bcomp = OpalPciBus5Bits;       break;
889                 case 16: bcomp = OpalPciBus4Bits;       break;
890                 case 32: bcomp = OpalPciBus3Bits;       break;
891                 default:
892                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
893                                 count);
894                         /* Do an exact match only */
895                         bcomp = OpalPciBusAll;
896                 }
897                 rid_end = pe->rid + (count << 8);
898         } else {
899 #ifdef CONFIG_PCI_IOV
900                 if (pe->flags & PNV_IODA_PE_VF)
901                         parent = pe->parent_dev;
902                 else
903 #endif /* CONFIG_PCI_IOV */
904                         parent = pe->pdev->bus->self;
905                 bcomp = OpalPciBusAll;
906                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908                 rid_end = pe->rid + 1;
909         }
910
911         /*
912          * Associate PE in PELT. We need add the PE into the
913          * corresponding PELT-V as well. Otherwise, the error
914          * originated from the PE might contribute to other
915          * PEs.
916          */
917         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
919         if (rc) {
920                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
921                 return -ENXIO;
922         }
923
924         /*
925          * Configure PELTV. NPUs don't have a PELTV table so skip
926          * configuration on them.
927          */
928         if (phb->type != PNV_PHB_NPU)
929                 pnv_ioda_set_peltv(phb, pe, true);
930
931         /* Setup reverse map */
932         for (rid = pe->rid; rid < rid_end; rid++)
933                 phb->ioda.pe_rmap[rid] = pe->pe_number;
934
935         /* Setup one MVTs on IODA1 */
936         if (phb->type != PNV_PHB_IODA1) {
937                 pe->mve_number = 0;
938                 goto out;
939         }
940
941         pe->mve_number = pe->pe_number;
942         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943         if (rc != OPAL_SUCCESS) {
944                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945                        rc, pe->mve_number);
946                 pe->mve_number = -1;
947         } else {
948                 rc = opal_pci_set_mve_enable(phb->opal_id,
949                                              pe->mve_number, OPAL_ENABLE_MVE);
950                 if (rc) {
951                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952                                rc, pe->mve_number);
953                         pe->mve_number = -1;
954                 }
955         }
956
957 out:
958         return 0;
959 }
960
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
963 {
964         struct pci_dn *pdn = pci_get_pdn(dev);
965         int i;
966         struct resource *res, res2;
967         resource_size_t size;
968         u16 num_vfs;
969
970         if (!dev->is_physfn)
971                 return -EINVAL;
972
973         /*
974          * "offset" is in VFs.  The M64 windows are sized so that when they
975          * are segmented, each segment is the same size as the IOV BAR.
976          * Each segment is in a separate PE, and the high order bits of the
977          * address are the PE number.  Therefore, each VF's BAR is in a
978          * separate PE, and changing the IOV BAR start address changes the
979          * range of PEs the VFs are in.
980          */
981         num_vfs = pdn->num_vfs;
982         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983                 res = &dev->resource[i + PCI_IOV_RESOURCES];
984                 if (!res->flags || !res->parent)
985                         continue;
986
987                 /*
988                  * The actual IOV BAR range is determined by the start address
989                  * and the actual size for num_vfs VFs BAR.  This check is to
990                  * make sure that after shifting, the range will not overlap
991                  * with another device.
992                  */
993                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994                 res2.flags = res->flags;
995                 res2.start = res->start + (size * offset);
996                 res2.end = res2.start + (size * num_vfs) - 1;
997
998                 if (res2.end > res->end) {
999                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000                                 i, &res2, res, num_vfs, offset);
1001                         return -EBUSY;
1002                 }
1003         }
1004
1005         /*
1006          * After doing so, there would be a "hole" in the /proc/iomem when
1007          * offset is a positive value. It looks like the device return some
1008          * mmio back to the system, which actually no one could use it.
1009          */
1010         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1012                 if (!res->flags || !res->parent)
1013                         continue;
1014
1015                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016                 res2 = *res;
1017                 res->start += size * offset;
1018
1019                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1021                          num_vfs, offset);
1022                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1023         }
1024         return 0;
1025 }
1026 #endif /* CONFIG_PCI_IOV */
1027
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 {
1030         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031         struct pnv_phb *phb = hose->private_data;
1032         struct pci_dn *pdn = pci_get_pdn(dev);
1033         struct pnv_ioda_pe *pe;
1034
1035         if (!pdn) {
1036                 pr_err("%s: Device tree node not associated properly\n",
1037                            pci_name(dev));
1038                 return NULL;
1039         }
1040         if (pdn->pe_number != IODA_INVALID_PE)
1041                 return NULL;
1042
1043         pe = pnv_ioda_alloc_pe(phb);
1044         if (!pe) {
1045                 pr_warning("%s: Not enough PE# available, disabling device\n",
1046                            pci_name(dev));
1047                 return NULL;
1048         }
1049
1050         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051          * pointer in the PE data structure, both should be destroyed at the
1052          * same time. However, this needs to be looked at more closely again
1053          * once we actually start removing things (Hotplug, SR-IOV, ...)
1054          *
1055          * At some point we want to remove the PDN completely anyways
1056          */
1057         pci_dev_get(dev);
1058         pdn->pcidev = dev;
1059         pdn->pe_number = pe->pe_number;
1060         pe->flags = PNV_IODA_PE_DEV;
1061         pe->pdev = dev;
1062         pe->pbus = NULL;
1063         pe->mve_number = -1;
1064         pe->rid = dev->bus->number << 8 | pdn->devfn;
1065
1066         pe_info(pe, "Associated device to PE\n");
1067
1068         if (pnv_ioda_configure_pe(phb, pe)) {
1069                 /* XXX What do we do here ? */
1070                 pnv_ioda_free_pe(pe);
1071                 pdn->pe_number = IODA_INVALID_PE;
1072                 pe->pdev = NULL;
1073                 pci_dev_put(dev);
1074                 return NULL;
1075         }
1076
1077         /* Put PE to the list */
1078         list_add_tail(&pe->list, &phb->ioda.pe_list);
1079
1080         return pe;
1081 }
1082
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1084 {
1085         struct pci_dev *dev;
1086
1087         list_for_each_entry(dev, &bus->devices, bus_list) {
1088                 struct pci_dn *pdn = pci_get_pdn(dev);
1089
1090                 if (pdn == NULL) {
1091                         pr_warn("%s: No device node associated with device !\n",
1092                                 pci_name(dev));
1093                         continue;
1094                 }
1095
1096                 /*
1097                  * In partial hotplug case, the PCI device might be still
1098                  * associated with the PE and needn't attach it to the PE
1099                  * again.
1100                  */
1101                 if (pdn->pe_number != IODA_INVALID_PE)
1102                         continue;
1103
1104                 pe->device_count++;
1105                 pdn->pcidev = dev;
1106                 pdn->pe_number = pe->pe_number;
1107                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1109         }
1110 }
1111
1112 /*
1113  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114  * single PCI bus. Another one that contains the primary PCI bus and its
1115  * subordinate PCI devices and buses. The second type of PE is normally
1116  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1117  */
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119 {
1120         struct pci_controller *hose = pci_bus_to_host(bus);
1121         struct pnv_phb *phb = hose->private_data;
1122         struct pnv_ioda_pe *pe = NULL;
1123         unsigned int pe_num;
1124
1125         /*
1126          * In partial hotplug case, the PE instance might be still alive.
1127          * We should reuse it instead of allocating a new one.
1128          */
1129         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130         if (pe_num != IODA_INVALID_PE) {
1131                 pe = &phb->ioda.pe_array[pe_num];
1132                 pnv_ioda_setup_same_PE(bus, pe);
1133                 return NULL;
1134         }
1135
1136         /* PE number for root bus should have been reserved */
1137         if (pci_is_root_bus(bus) &&
1138             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1140
1141         /* Check if PE is determined by M64 */
1142         if (!pe && phb->pick_m64_pe)
1143                 pe = phb->pick_m64_pe(bus, all);
1144
1145         /* The PE number isn't pinned by M64 */
1146         if (!pe)
1147                 pe = pnv_ioda_alloc_pe(phb);
1148
1149         if (!pe) {
1150                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151                         __func__, pci_domain_nr(bus), bus->number);
1152                 return NULL;
1153         }
1154
1155         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156         pe->pbus = bus;
1157         pe->pdev = NULL;
1158         pe->mve_number = -1;
1159         pe->rid = bus->busn_res.start << 8;
1160
1161         if (all)
1162                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164         else
1165                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166                         bus->busn_res.start, pe->pe_number);
1167
1168         if (pnv_ioda_configure_pe(phb, pe)) {
1169                 /* XXX What do we do here ? */
1170                 pnv_ioda_free_pe(pe);
1171                 pe->pbus = NULL;
1172                 return NULL;
1173         }
1174
1175         /* Associate it with all child devices */
1176         pnv_ioda_setup_same_PE(bus, pe);
1177
1178         /* Put PE to the list */
1179         list_add_tail(&pe->list, &phb->ioda.pe_list);
1180
1181         return pe;
1182 }
1183
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1185 {
1186         int pe_num, found_pe = false, rc;
1187         long rid;
1188         struct pnv_ioda_pe *pe;
1189         struct pci_dev *gpu_pdev;
1190         struct pci_dn *npu_pdn;
1191         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192         struct pnv_phb *phb = hose->private_data;
1193
1194         /*
1195          * Due to a hardware errata PE#0 on the NPU is reserved for
1196          * error handling. This means we only have three PEs remaining
1197          * which need to be assigned to four links, implying some
1198          * links must share PEs.
1199          *
1200          * To achieve this we assign PEs such that NPUs linking the
1201          * same GPU get assigned the same PE.
1202          */
1203         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205                 pe = &phb->ioda.pe_array[pe_num];
1206                 if (!pe->pdev)
1207                         continue;
1208
1209                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1210                         /*
1211                          * This device has the same peer GPU so should
1212                          * be assigned the same PE as the existing
1213                          * peer NPU.
1214                          */
1215                         dev_info(&npu_pdev->dev,
1216                                 "Associating to existing PE %x\n", pe_num);
1217                         pci_dev_get(npu_pdev);
1218                         npu_pdn = pci_get_pdn(npu_pdev);
1219                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220                         npu_pdn->pcidev = npu_pdev;
1221                         npu_pdn->pe_number = pe_num;
1222                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1223
1224                         /* Map the PE to this link */
1225                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1226                                         OpalPciBusAll,
1227                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1228                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1229                                         OPAL_MAP_PE);
1230                         WARN_ON(rc != OPAL_SUCCESS);
1231                         found_pe = true;
1232                         break;
1233                 }
1234         }
1235
1236         if (!found_pe)
1237                 /*
1238                  * Could not find an existing PE so allocate a new
1239                  * one.
1240                  */
1241                 return pnv_ioda_setup_dev_PE(npu_pdev);
1242         else
1243                 return pe;
1244 }
1245
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 {
1248         struct pci_dev *pdev;
1249
1250         list_for_each_entry(pdev, &bus->devices, bus_list)
1251                 pnv_ioda_setup_npu_PE(pdev);
1252 }
1253
1254 static void pnv_pci_ioda_setup_PEs(void)
1255 {
1256         struct pci_controller *hose, *tmp;
1257         struct pnv_phb *phb;
1258
1259         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260                 phb = hose->private_data;
1261                 if (phb->type == PNV_PHB_NPU) {
1262                         /* PE#0 is needed for error reporting */
1263                         pnv_ioda_reserve_pe(phb, 0);
1264                         pnv_ioda_setup_npu_PEs(hose->bus);
1265                 }
1266         }
1267 }
1268
1269 #ifdef CONFIG_PCI_IOV
1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 {
1272         struct pci_bus        *bus;
1273         struct pci_controller *hose;
1274         struct pnv_phb        *phb;
1275         struct pci_dn         *pdn;
1276         int                    i, j;
1277         int                    m64_bars;
1278
1279         bus = pdev->bus;
1280         hose = pci_bus_to_host(bus);
1281         phb = hose->private_data;
1282         pdn = pci_get_pdn(pdev);
1283
1284         if (pdn->m64_single_mode)
1285                 m64_bars = num_vfs;
1286         else
1287                 m64_bars = 1;
1288
1289         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290                 for (j = 0; j < m64_bars; j++) {
1291                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292                                 continue;
1293                         opal_pci_phb_mmio_enable(phb->opal_id,
1294                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1295                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1296                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1297                 }
1298
1299         kfree(pdn->m64_map);
1300         return 0;
1301 }
1302
1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305         struct pci_bus        *bus;
1306         struct pci_controller *hose;
1307         struct pnv_phb        *phb;
1308         struct pci_dn         *pdn;
1309         unsigned int           win;
1310         struct resource       *res;
1311         int                    i, j;
1312         int64_t                rc;
1313         int                    total_vfs;
1314         resource_size_t        size, start;
1315         int                    pe_num;
1316         int                    m64_bars;
1317
1318         bus = pdev->bus;
1319         hose = pci_bus_to_host(bus);
1320         phb = hose->private_data;
1321         pdn = pci_get_pdn(pdev);
1322         total_vfs = pci_sriov_get_totalvfs(pdev);
1323
1324         if (pdn->m64_single_mode)
1325                 m64_bars = num_vfs;
1326         else
1327                 m64_bars = 1;
1328
1329         pdn->m64_map = kmalloc_array(m64_bars,
1330                                      sizeof(*pdn->m64_map),
1331                                      GFP_KERNEL);
1332         if (!pdn->m64_map)
1333                 return -ENOMEM;
1334         /* Initialize the m64_map to IODA_INVALID_M64 */
1335         for (i = 0; i < m64_bars ; i++)
1336                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1337                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1338
1339
1340         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1341                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1342                 if (!res->flags || !res->parent)
1343                         continue;
1344
1345                 for (j = 0; j < m64_bars; j++) {
1346                         do {
1347                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1348                                                 phb->ioda.m64_bar_idx + 1, 0);
1349
1350                                 if (win >= phb->ioda.m64_bar_idx + 1)
1351                                         goto m64_failed;
1352                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1353
1354                         pdn->m64_map[j][i] = win;
1355
1356                         if (pdn->m64_single_mode) {
1357                                 size = pci_iov_resource_size(pdev,
1358                                                         PCI_IOV_RESOURCES + i);
1359                                 start = res->start + size * j;
1360                         } else {
1361                                 size = resource_size(res);
1362                                 start = res->start;
1363                         }
1364
1365                         /* Map the M64 here */
1366                         if (pdn->m64_single_mode) {
1367                                 pe_num = pdn->pe_num_map[j];
1368                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1369                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1370                                                 pdn->m64_map[j][i], 0);
1371                         }
1372
1373                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1374                                                  OPAL_M64_WINDOW_TYPE,
1375                                                  pdn->m64_map[j][i],
1376                                                  start,
1377                                                  0, /* unused */
1378                                                  size);
1379
1380
1381                         if (rc != OPAL_SUCCESS) {
1382                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1383                                         win, rc);
1384                                 goto m64_failed;
1385                         }
1386
1387                         if (pdn->m64_single_mode)
1388                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390                         else
1391                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393
1394                         if (rc != OPAL_SUCCESS) {
1395                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1396                                         win, rc);
1397                                 goto m64_failed;
1398                         }
1399                 }
1400         }
1401         return 0;
1402
1403 m64_failed:
1404         pnv_pci_vf_release_m64(pdev, num_vfs);
1405         return -EBUSY;
1406 }
1407
1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1409                 int num);
1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1411
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414         struct iommu_table    *tbl;
1415         int64_t               rc;
1416
1417         tbl = pe->table_group.tables[0];
1418         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419         if (rc)
1420                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421
1422         pnv_pci_ioda2_set_bypass(pe, false);
1423         if (pe->table_group.group) {
1424                 iommu_group_put(pe->table_group.group);
1425                 BUG_ON(pe->table_group.group);
1426         }
1427         pnv_pci_ioda2_table_free_pages(tbl);
1428         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 }
1430
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433         struct pci_bus        *bus;
1434         struct pci_controller *hose;
1435         struct pnv_phb        *phb;
1436         struct pnv_ioda_pe    *pe, *pe_n;
1437         struct pci_dn         *pdn;
1438
1439         bus = pdev->bus;
1440         hose = pci_bus_to_host(bus);
1441         phb = hose->private_data;
1442         pdn = pci_get_pdn(pdev);
1443
1444         if (!pdev->is_physfn)
1445                 return;
1446
1447         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448                 if (pe->parent_dev != pdev)
1449                         continue;
1450
1451                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452
1453                 /* Remove from list */
1454                 mutex_lock(&phb->ioda.pe_list_mutex);
1455                 list_del(&pe->list);
1456                 mutex_unlock(&phb->ioda.pe_list_mutex);
1457
1458                 pnv_ioda_deconfigure_pe(phb, pe);
1459
1460                 pnv_ioda_free_pe(pe);
1461         }
1462 }
1463
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466         struct pci_bus        *bus;
1467         struct pci_controller *hose;
1468         struct pnv_phb        *phb;
1469         struct pnv_ioda_pe    *pe;
1470         struct pci_dn         *pdn;
1471         u16                    num_vfs, i;
1472
1473         bus = pdev->bus;
1474         hose = pci_bus_to_host(bus);
1475         phb = hose->private_data;
1476         pdn = pci_get_pdn(pdev);
1477         num_vfs = pdn->num_vfs;
1478
1479         /* Release VF PEs */
1480         pnv_ioda_release_vf_PE(pdev);
1481
1482         if (phb->type == PNV_PHB_IODA2) {
1483                 if (!pdn->m64_single_mode)
1484                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485
1486                 /* Release M64 windows */
1487                 pnv_pci_vf_release_m64(pdev, num_vfs);
1488
1489                 /* Release PE numbers */
1490                 if (pdn->m64_single_mode) {
1491                         for (i = 0; i < num_vfs; i++) {
1492                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493                                         continue;
1494
1495                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496                                 pnv_ioda_free_pe(pe);
1497                         }
1498                 } else
1499                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500                 /* Releasing pe_num_map */
1501                 kfree(pdn->pe_num_map);
1502         }
1503 }
1504
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506                                        struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509         struct pci_bus        *bus;
1510         struct pci_controller *hose;
1511         struct pnv_phb        *phb;
1512         struct pnv_ioda_pe    *pe;
1513         int                    pe_num;
1514         u16                    vf_index;
1515         struct pci_dn         *pdn;
1516
1517         bus = pdev->bus;
1518         hose = pci_bus_to_host(bus);
1519         phb = hose->private_data;
1520         pdn = pci_get_pdn(pdev);
1521
1522         if (!pdev->is_physfn)
1523                 return;
1524
1525         /* Reserve PE for each VF */
1526         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527                 if (pdn->m64_single_mode)
1528                         pe_num = pdn->pe_num_map[vf_index];
1529                 else
1530                         pe_num = *pdn->pe_num_map + vf_index;
1531
1532                 pe = &phb->ioda.pe_array[pe_num];
1533                 pe->pe_number = pe_num;
1534                 pe->phb = phb;
1535                 pe->flags = PNV_IODA_PE_VF;
1536                 pe->pbus = NULL;
1537                 pe->parent_dev = pdev;
1538                 pe->mve_number = -1;
1539                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540                            pci_iov_virtfn_devfn(pdev, vf_index);
1541
1542                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543                         hose->global_number, pdev->bus->number,
1544                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546
1547                 if (pnv_ioda_configure_pe(phb, pe)) {
1548                         /* XXX What do we do here ? */
1549                         pnv_ioda_free_pe(pe);
1550                         pe->pdev = NULL;
1551                         continue;
1552                 }
1553
1554                 /* Put PE to the list */
1555                 mutex_lock(&phb->ioda.pe_list_mutex);
1556                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1557                 mutex_unlock(&phb->ioda.pe_list_mutex);
1558
1559                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560         }
1561 }
1562
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565         struct pci_bus        *bus;
1566         struct pci_controller *hose;
1567         struct pnv_phb        *phb;
1568         struct pnv_ioda_pe    *pe;
1569         struct pci_dn         *pdn;
1570         int                    ret;
1571         u16                    i;
1572
1573         bus = pdev->bus;
1574         hose = pci_bus_to_host(bus);
1575         phb = hose->private_data;
1576         pdn = pci_get_pdn(pdev);
1577
1578         if (phb->type == PNV_PHB_IODA2) {
1579                 if (!pdn->vfs_expanded) {
1580                         dev_info(&pdev->dev, "don't support this SRIOV device"
1581                                 " with non 64bit-prefetchable IOV BAR\n");
1582                         return -ENOSPC;
1583                 }
1584
1585                 /*
1586                  * When M64 BARs functions in Single PE mode, the number of VFs
1587                  * could be enabled must be less than the number of M64 BARs.
1588                  */
1589                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591                         return -EBUSY;
1592                 }
1593
1594                 /* Allocating pe_num_map */
1595                 if (pdn->m64_single_mode)
1596                         pdn->pe_num_map = kmalloc_array(num_vfs,
1597                                                         sizeof(*pdn->pe_num_map),
1598                                                         GFP_KERNEL);
1599                 else
1600                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601
1602                 if (!pdn->pe_num_map)
1603                         return -ENOMEM;
1604
1605                 if (pdn->m64_single_mode)
1606                         for (i = 0; i < num_vfs; i++)
1607                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1608
1609                 /* Calculate available PE for required VFs */
1610                 if (pdn->m64_single_mode) {
1611                         for (i = 0; i < num_vfs; i++) {
1612                                 pe = pnv_ioda_alloc_pe(phb);
1613                                 if (!pe) {
1614                                         ret = -EBUSY;
1615                                         goto m64_failed;
1616                                 }
1617
1618                                 pdn->pe_num_map[i] = pe->pe_number;
1619                         }
1620                 } else {
1621                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1622                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1623                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624                                 0, num_vfs, 0);
1625                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628                                 kfree(pdn->pe_num_map);
1629                                 return -EBUSY;
1630                         }
1631                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633                 }
1634                 pdn->num_vfs = num_vfs;
1635
1636                 /* Assign M64 window accordingly */
1637                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638                 if (ret) {
1639                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640                         goto m64_failed;
1641                 }
1642
1643                 /*
1644                  * When using one M64 BAR to map one IOV BAR, we need to shift
1645                  * the IOV BAR according to the PE# allocated to the VFs.
1646                  * Otherwise, the PE# for the VF will conflict with others.
1647                  */
1648                 if (!pdn->m64_single_mode) {
1649                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650                         if (ret)
1651                                 goto m64_failed;
1652                 }
1653         }
1654
1655         /* Setup VF PEs */
1656         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657
1658         return 0;
1659
1660 m64_failed:
1661         if (pdn->m64_single_mode) {
1662                 for (i = 0; i < num_vfs; i++) {
1663                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664                                 continue;
1665
1666                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667                         pnv_ioda_free_pe(pe);
1668                 }
1669         } else
1670                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671
1672         /* Releasing pe_num_map */
1673         kfree(pdn->pe_num_map);
1674
1675         return ret;
1676 }
1677
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680         pnv_pci_sriov_disable(pdev);
1681
1682         /* Release PCI data */
1683         remove_dev_pci_data(pdev);
1684         return 0;
1685 }
1686
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689         /* Allocate PCI data */
1690         add_dev_pci_data(pdev);
1691
1692         return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698         struct pci_dn *pdn = pci_get_pdn(pdev);
1699         struct pnv_ioda_pe *pe;
1700
1701         /*
1702          * The function can be called while the PE#
1703          * hasn't been assigned. Do nothing for the
1704          * case.
1705          */
1706         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707                 return;
1708
1709         pe = &phb->ioda.pe_array[pdn->pe_number];
1710         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713         /*
1714          * Note: iommu_add_device() will fail here as
1715          * for physical PE: the device is already added by now;
1716          * for virtual PE: sysfs entries are not ready yet and
1717          * tce_iommu_bus_notifier will add the device to a group later.
1718          */
1719 }
1720
1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722 {
1723         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1724         struct pnv_phb *phb = hose->private_data;
1725         struct pci_dn *pdn = pci_get_pdn(pdev);
1726         struct pnv_ioda_pe *pe;
1727         uint64_t top;
1728         bool bypass = false;
1729
1730         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1731                 return -ENODEV;;
1732
1733         pe = &phb->ioda.pe_array[pdn->pe_number];
1734         if (pe->tce_bypass_enabled) {
1735                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1736                 bypass = (dma_mask >= top);
1737         }
1738
1739         if (bypass) {
1740                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1741                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1742         } else {
1743                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1744                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1745         }
1746         *pdev->dev.dma_mask = dma_mask;
1747
1748         /* Update peer npu devices */
1749         pnv_npu_try_dma_set_bypass(pdev, bypass);
1750
1751         return 0;
1752 }
1753
1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755 {
1756         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1757         struct pnv_phb *phb = hose->private_data;
1758         struct pci_dn *pdn = pci_get_pdn(pdev);
1759         struct pnv_ioda_pe *pe;
1760         u64 end, mask;
1761
1762         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1763                 return 0;
1764
1765         pe = &phb->ioda.pe_array[pdn->pe_number];
1766         if (!pe->tce_bypass_enabled)
1767                 return __dma_get_required_mask(&pdev->dev);
1768
1769
1770         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1771         mask = 1ULL << (fls64(end) - 1);
1772         mask += mask - 1;
1773
1774         return mask;
1775 }
1776
1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778                                    struct pci_bus *bus)
1779 {
1780         struct pci_dev *dev;
1781
1782         list_for_each_entry(dev, &bus->devices, bus_list) {
1783                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1784                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1785                 iommu_add_device(&dev->dev);
1786
1787                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1788                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1789         }
1790 }
1791
1792 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1793                                                      bool real_mode)
1794 {
1795         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1796                 (phb->regs + 0x210);
1797 }
1798
1799 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1800                 unsigned long index, unsigned long npages, bool rm)
1801 {
1802         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1803                         &tbl->it_group_list, struct iommu_table_group_link,
1804                         next);
1805         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1806                         struct pnv_ioda_pe, table_group);
1807         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1808         unsigned long start, end, inc;
1809
1810         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1811         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1812                         npages - 1);
1813
1814         /* p7ioc-style invalidation, 2 TCEs per write */
1815         start |= (1ull << 63);
1816         end |= (1ull << 63);
1817         inc = 16;
1818         end |= inc - 1; /* round up end to be different than start */
1819
1820         mb(); /* Ensure above stores are visible */
1821         while (start <= end) {
1822                 if (rm)
1823                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1824                 else
1825                         __raw_writeq(cpu_to_be64(start), invalidate);
1826                 start += inc;
1827         }
1828
1829         /*
1830          * The iommu layer will do another mb() for us on build()
1831          * and we don't care on free()
1832          */
1833 }
1834
1835 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1836                 long npages, unsigned long uaddr,
1837                 enum dma_data_direction direction,
1838                 unsigned long attrs)
1839 {
1840         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1841                         attrs);
1842
1843         if (!ret)
1844                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1845
1846         return ret;
1847 }
1848
1849 #ifdef CONFIG_IOMMU_API
1850 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1851                 unsigned long *hpa, enum dma_data_direction *direction)
1852 {
1853         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1854
1855         if (!ret)
1856                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1857
1858         return ret;
1859 }
1860 #endif
1861
1862 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1863                 long npages)
1864 {
1865         pnv_tce_free(tbl, index, npages);
1866
1867         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1868 }
1869
1870 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1871         .set = pnv_ioda1_tce_build,
1872 #ifdef CONFIG_IOMMU_API
1873         .exchange = pnv_ioda1_tce_xchg,
1874 #endif
1875         .clear = pnv_ioda1_tce_free,
1876         .get = pnv_tce_get,
1877 };
1878
1879 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1880 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1881 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1882
1883 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1884 {
1885         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1886         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1887
1888         mb(); /* Ensure previous TCE table stores are visible */
1889         if (rm)
1890                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1891         else
1892                 __raw_writeq(cpu_to_be64(val), invalidate);
1893 }
1894
1895 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1896 {
1897         /* 01xb - invalidate TCEs that match the specified PE# */
1898         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1899         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1900
1901         mb(); /* Ensure above stores are visible */
1902         __raw_writeq(cpu_to_be64(val), invalidate);
1903 }
1904
1905 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1906                                         unsigned shift, unsigned long index,
1907                                         unsigned long npages)
1908 {
1909         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910         unsigned long start, end, inc;
1911
1912         /* We'll invalidate DMA address in PE scope */
1913         start = PHB3_TCE_KILL_INVAL_ONE;
1914         start |= (pe->pe_number & 0xFF);
1915         end = start;
1916
1917         /* Figure out the start, end and step */
1918         start |= (index << shift);
1919         end |= ((index + npages - 1) << shift);
1920         inc = (0x1ull << shift);
1921         mb();
1922
1923         while (start <= end) {
1924                 if (rm)
1925                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1926                 else
1927                         __raw_writeq(cpu_to_be64(start), invalidate);
1928                 start += inc;
1929         }
1930 }
1931
1932 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1933 {
1934         struct pnv_phb *phb = pe->phb;
1935
1936         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1937                 pnv_pci_phb3_tce_invalidate_pe(pe);
1938         else
1939                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1940                                   pe->pe_number, 0, 0, 0);
1941 }
1942
1943 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1944                 unsigned long index, unsigned long npages, bool rm)
1945 {
1946         struct iommu_table_group_link *tgl;
1947
1948         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1949                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1950                                 struct pnv_ioda_pe, table_group);
1951                 struct pnv_phb *phb = pe->phb;
1952                 unsigned int shift = tbl->it_page_shift;
1953
1954                 /*
1955                  * NVLink1 can use the TCE kill register directly as
1956                  * it's the same as PHB3. NVLink2 is different and
1957                  * should go via the OPAL call.
1958                  */
1959                 if (phb->model == PNV_PHB_MODEL_NPU) {
1960                         /*
1961                          * The NVLink hardware does not support TCE kill
1962                          * per TCE entry so we have to invalidate
1963                          * the entire cache for it.
1964                          */
1965                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1966                         continue;
1967                 }
1968                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1969                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1970                                                     index, npages);
1971                 else
1972                         opal_pci_tce_kill(phb->opal_id,
1973                                           OPAL_PCI_TCE_KILL_PAGES,
1974                                           pe->pe_number, 1u << shift,
1975                                           index << shift, npages);
1976         }
1977 }
1978
1979 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1980                 long npages, unsigned long uaddr,
1981                 enum dma_data_direction direction,
1982                 unsigned long attrs)
1983 {
1984         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1985                         attrs);
1986
1987         if (!ret)
1988                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1989
1990         return ret;
1991 }
1992
1993 #ifdef CONFIG_IOMMU_API
1994 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1995                 unsigned long *hpa, enum dma_data_direction *direction)
1996 {
1997         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1998
1999         if (!ret)
2000                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2001
2002         return ret;
2003 }
2004 #endif
2005
2006 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2007                 long npages)
2008 {
2009         pnv_tce_free(tbl, index, npages);
2010
2011         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2012 }
2013
2014 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2015 {
2016         pnv_pci_ioda2_table_free_pages(tbl);
2017         iommu_free_table(tbl, "pnv");
2018 }
2019
2020 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2021         .set = pnv_ioda2_tce_build,
2022 #ifdef CONFIG_IOMMU_API
2023         .exchange = pnv_ioda2_tce_xchg,
2024 #endif
2025         .clear = pnv_ioda2_tce_free,
2026         .get = pnv_tce_get,
2027         .free = pnv_ioda2_table_free,
2028 };
2029
2030 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2031 {
2032         unsigned int *weight = (unsigned int *)data;
2033
2034         /* This is quite simplistic. The "base" weight of a device
2035          * is 10. 0 means no DMA is to be accounted for it.
2036          */
2037         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2038                 return 0;
2039
2040         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2041             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2042             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2043                 *weight += 3;
2044         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2045                 *weight += 15;
2046         else
2047                 *weight += 10;
2048
2049         return 0;
2050 }
2051
2052 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2053 {
2054         unsigned int weight = 0;
2055
2056         /* SRIOV VF has same DMA32 weight as its PF */
2057 #ifdef CONFIG_PCI_IOV
2058         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2059                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2060                 return weight;
2061         }
2062 #endif
2063
2064         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2065                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2066         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2067                 struct pci_dev *pdev;
2068
2069                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2070                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2071         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2072                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2073         }
2074
2075         return weight;
2076 }
2077
2078 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2079                                        struct pnv_ioda_pe *pe)
2080 {
2081
2082         struct page *tce_mem = NULL;
2083         struct iommu_table *tbl;
2084         unsigned int weight, total_weight = 0;
2085         unsigned int tce32_segsz, base, segs, avail, i;
2086         int64_t rc;
2087         void *addr;
2088
2089         /* XXX FIXME: Handle 64-bit only DMA devices */
2090         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2091         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2092         weight = pnv_pci_ioda_pe_dma_weight(pe);
2093         if (!weight)
2094                 return;
2095
2096         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2097                      &total_weight);
2098         segs = (weight * phb->ioda.dma32_count) / total_weight;
2099         if (!segs)
2100                 segs = 1;
2101
2102         /*
2103          * Allocate contiguous DMA32 segments. We begin with the expected
2104          * number of segments. With one more attempt, the number of DMA32
2105          * segments to be allocated is decreased by one until one segment
2106          * is allocated successfully.
2107          */
2108         do {
2109                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2110                         for (avail = 0, i = base; i < base + segs; i++) {
2111                                 if (phb->ioda.dma32_segmap[i] ==
2112                                     IODA_INVALID_PE)
2113                                         avail++;
2114                         }
2115
2116                         if (avail == segs)
2117                                 goto found;
2118                 }
2119         } while (--segs);
2120
2121         if (!segs) {
2122                 pe_warn(pe, "No available DMA32 segments\n");
2123                 return;
2124         }
2125
2126 found:
2127         tbl = pnv_pci_table_alloc(phb->hose->node);
2128         iommu_register_group(&pe->table_group, phb->hose->global_number,
2129                         pe->pe_number);
2130         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2131
2132         /* Grab a 32-bit TCE table */
2133         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2134                 weight, total_weight, base, segs);
2135         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2136                 base * PNV_IODA1_DMA32_SEGSIZE,
2137                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2138
2139         /* XXX Currently, we allocate one big contiguous table for the
2140          * TCEs. We only really need one chunk per 256M of TCE space
2141          * (ie per segment) but that's an optimization for later, it
2142          * requires some added smarts with our get/put_tce implementation
2143          *
2144          * Each TCE page is 4KB in size and each TCE entry occupies 8
2145          * bytes
2146          */
2147         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2148         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2149                                    get_order(tce32_segsz * segs));
2150         if (!tce_mem) {
2151                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2152                 goto fail;
2153         }
2154         addr = page_address(tce_mem);
2155         memset(addr, 0, tce32_segsz * segs);
2156
2157         /* Configure HW */
2158         for (i = 0; i < segs; i++) {
2159                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2160                                               pe->pe_number,
2161                                               base + i, 1,
2162                                               __pa(addr) + tce32_segsz * i,
2163                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2164                 if (rc) {
2165                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2166                                " err %ld\n", rc);
2167                         goto fail;
2168                 }
2169         }
2170
2171         /* Setup DMA32 segment mapping */
2172         for (i = base; i < base + segs; i++)
2173                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2174
2175         /* Setup linux iommu table */
2176         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2177                                   base * PNV_IODA1_DMA32_SEGSIZE,
2178                                   IOMMU_PAGE_SHIFT_4K);
2179
2180         tbl->it_ops = &pnv_ioda1_iommu_ops;
2181         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2182         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2183         iommu_init_table(tbl, phb->hose->node);
2184
2185         if (pe->flags & PNV_IODA_PE_DEV) {
2186                 /*
2187                  * Setting table base here only for carrying iommu_group
2188                  * further down to let iommu_add_device() do the job.
2189                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2190                  */
2191                 set_iommu_table_base(&pe->pdev->dev, tbl);
2192                 iommu_add_device(&pe->pdev->dev);
2193         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2194                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2195
2196         return;
2197  fail:
2198         /* XXX Failure: Try to fallback to 64-bit only ? */
2199         if (tce_mem)
2200                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2201         if (tbl) {
2202                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2203                 iommu_free_table(tbl, "pnv");
2204         }
2205 }
2206
2207 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2208                 int num, struct iommu_table *tbl)
2209 {
2210         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2211                         table_group);
2212         struct pnv_phb *phb = pe->phb;
2213         int64_t rc;
2214         const unsigned long size = tbl->it_indirect_levels ?
2215                         tbl->it_level_size : tbl->it_size;
2216         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2217         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2218
2219         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2220                         start_addr, start_addr + win_size - 1,
2221                         IOMMU_PAGE_SIZE(tbl));
2222
2223         /*
2224          * Map TCE table through TVT. The TVE index is the PE number
2225          * shifted by 1 bit for 32-bits DMA space.
2226          */
2227         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2228                         pe->pe_number,
2229                         (pe->pe_number << 1) + num,
2230                         tbl->it_indirect_levels + 1,
2231                         __pa(tbl->it_base),
2232                         size << 3,
2233                         IOMMU_PAGE_SIZE(tbl));
2234         if (rc) {
2235                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2236                 return rc;
2237         }
2238
2239         pnv_pci_link_table_and_group(phb->hose->node, num,
2240                         tbl, &pe->table_group);
2241         pnv_pci_ioda2_tce_invalidate_pe(pe);
2242
2243         return 0;
2244 }
2245
2246 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2247 {
2248         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2249         int64_t rc;
2250
2251         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2252         if (enable) {
2253                 phys_addr_t top = memblock_end_of_DRAM();
2254
2255                 top = roundup_pow_of_two(top);
2256                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2257                                                      pe->pe_number,
2258                                                      window_id,
2259                                                      pe->tce_bypass_base,
2260                                                      top);
2261         } else {
2262                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2263                                                      pe->pe_number,
2264                                                      window_id,
2265                                                      pe->tce_bypass_base,
2266                                                      0);
2267         }
2268         if (rc)
2269                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2270         else
2271                 pe->tce_bypass_enabled = enable;
2272 }
2273
2274 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2275                 __u32 page_shift, __u64 window_size, __u32 levels,
2276                 struct iommu_table *tbl);
2277
2278 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2279                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2280                 struct iommu_table **ptbl)
2281 {
2282         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2283                         table_group);
2284         int nid = pe->phb->hose->node;
2285         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2286         long ret;
2287         struct iommu_table *tbl;
2288
2289         tbl = pnv_pci_table_alloc(nid);
2290         if (!tbl)
2291                 return -ENOMEM;
2292
2293         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2294                         bus_offset, page_shift, window_size,
2295                         levels, tbl);
2296         if (ret) {
2297                 iommu_free_table(tbl, "pnv");
2298                 return ret;
2299         }
2300
2301         tbl->it_ops = &pnv_ioda2_iommu_ops;
2302
2303         *ptbl = tbl;
2304
2305         return 0;
2306 }
2307
2308 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2309 {
2310         struct iommu_table *tbl = NULL;
2311         long rc;
2312
2313         /*
2314          * crashkernel= specifies the kdump kernel's maximum memory at
2315          * some offset and there is no guaranteed the result is a power
2316          * of 2, which will cause errors later.
2317          */
2318         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2319
2320         /*
2321          * In memory constrained environments, e.g. kdump kernel, the
2322          * DMA window can be larger than available memory, which will
2323          * cause errors later.
2324          */
2325         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2326
2327         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2328                         IOMMU_PAGE_SHIFT_4K,
2329                         window_size,
2330                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2331         if (rc) {
2332                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2333                                 rc);
2334                 return rc;
2335         }
2336
2337         iommu_init_table(tbl, pe->phb->hose->node);
2338
2339         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2340         if (rc) {
2341                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2342                                 rc);
2343                 pnv_ioda2_table_free(tbl);
2344                 return rc;
2345         }
2346
2347         if (!pnv_iommu_bypass_disabled)
2348                 pnv_pci_ioda2_set_bypass(pe, true);
2349
2350         /*
2351          * Setting table base here only for carrying iommu_group
2352          * further down to let iommu_add_device() do the job.
2353          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2354          */
2355         if (pe->flags & PNV_IODA_PE_DEV)
2356                 set_iommu_table_base(&pe->pdev->dev, tbl);
2357
2358         return 0;
2359 }
2360
2361 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2362 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2363                 int num)
2364 {
2365         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2366                         table_group);
2367         struct pnv_phb *phb = pe->phb;
2368         long ret;
2369
2370         pe_info(pe, "Removing DMA window #%d\n", num);
2371
2372         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2373                         (pe->pe_number << 1) + num,
2374                         0/* levels */, 0/* table address */,
2375                         0/* table size */, 0/* page size */);
2376         if (ret)
2377                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2378         else
2379                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2380
2381         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2382
2383         return ret;
2384 }
2385 #endif
2386
2387 #ifdef CONFIG_IOMMU_API
2388 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2389                 __u64 window_size, __u32 levels)
2390 {
2391         unsigned long bytes = 0;
2392         const unsigned window_shift = ilog2(window_size);
2393         unsigned entries_shift = window_shift - page_shift;
2394         unsigned table_shift = entries_shift + 3;
2395         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2396         unsigned long direct_table_size;
2397
2398         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2399                         (window_size > memory_hotplug_max()) ||
2400                         !is_power_of_2(window_size))
2401                 return 0;
2402
2403         /* Calculate a direct table size from window_size and levels */
2404         entries_shift = (entries_shift + levels - 1) / levels;
2405         table_shift = entries_shift + 3;
2406         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2407         direct_table_size =  1UL << table_shift;
2408
2409         for ( ; levels; --levels) {
2410                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2411
2412                 tce_table_size /= direct_table_size;
2413                 tce_table_size <<= 3;
2414                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2415         }
2416
2417         return bytes;
2418 }
2419
2420 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2421 {
2422         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2423                                                 table_group);
2424         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2425         struct iommu_table *tbl = pe->table_group.tables[0];
2426
2427         pnv_pci_ioda2_set_bypass(pe, false);
2428         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2429         pnv_ioda2_table_free(tbl);
2430 }
2431
2432 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2433 {
2434         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2435                                                 table_group);
2436
2437         pnv_pci_ioda2_setup_default_config(pe);
2438 }
2439
2440 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2441         .get_table_size = pnv_pci_ioda2_get_table_size,
2442         .create_table = pnv_pci_ioda2_create_table,
2443         .set_window = pnv_pci_ioda2_set_window,
2444         .unset_window = pnv_pci_ioda2_unset_window,
2445         .take_ownership = pnv_ioda2_take_ownership,
2446         .release_ownership = pnv_ioda2_release_ownership,
2447 };
2448
2449 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2450 {
2451         struct pci_controller *hose;
2452         struct pnv_phb *phb;
2453         struct pnv_ioda_pe **ptmppe = opaque;
2454         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2455         struct pci_dn *pdn = pci_get_pdn(pdev);
2456
2457         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2458                 return 0;
2459
2460         hose = pci_bus_to_host(pdev->bus);
2461         phb = hose->private_data;
2462         if (phb->type != PNV_PHB_NPU)
2463                 return 0;
2464
2465         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2466
2467         return 1;
2468 }
2469
2470 /*
2471  * This returns PE of associated NPU.
2472  * This assumes that NPU is in the same IOMMU group with GPU and there is
2473  * no other PEs.
2474  */
2475 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2476                 struct iommu_table_group *table_group)
2477 {
2478         struct pnv_ioda_pe *npe = NULL;
2479         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2480                         gpe_table_group_to_npe_cb);
2481
2482         BUG_ON(!ret || !npe);
2483
2484         return npe;
2485 }
2486
2487 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2488                 int num, struct iommu_table *tbl)
2489 {
2490         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2491
2492         if (ret)
2493                 return ret;
2494
2495         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2496         if (ret)
2497                 pnv_pci_ioda2_unset_window(table_group, num);
2498
2499         return ret;
2500 }
2501
2502 static long pnv_pci_ioda2_npu_unset_window(
2503                 struct iommu_table_group *table_group,
2504                 int num)
2505 {
2506         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2507
2508         if (ret)
2509                 return ret;
2510
2511         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2512 }
2513
2514 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2515 {
2516         /*
2517          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2518          * the iommu_table if 32bit DMA is enabled.
2519          */
2520         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2521         pnv_ioda2_take_ownership(table_group);
2522 }
2523
2524 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2525         .get_table_size = pnv_pci_ioda2_get_table_size,
2526         .create_table = pnv_pci_ioda2_create_table,
2527         .set_window = pnv_pci_ioda2_npu_set_window,
2528         .unset_window = pnv_pci_ioda2_npu_unset_window,
2529         .take_ownership = pnv_ioda2_npu_take_ownership,
2530         .release_ownership = pnv_ioda2_release_ownership,
2531 };
2532
2533 static void pnv_pci_ioda_setup_iommu_api(void)
2534 {
2535         struct pci_controller *hose, *tmp;
2536         struct pnv_phb *phb;
2537         struct pnv_ioda_pe *pe, *gpe;
2538
2539         /*
2540          * Now we have all PHBs discovered, time to add NPU devices to
2541          * the corresponding IOMMU groups.
2542          */
2543         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2544                 phb = hose->private_data;
2545
2546                 if (phb->type != PNV_PHB_NPU)
2547                         continue;
2548
2549                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2550                         gpe = pnv_pci_npu_setup_iommu(pe);
2551                         if (gpe)
2552                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2553                 }
2554         }
2555 }
2556 #else /* !CONFIG_IOMMU_API */
2557 static void pnv_pci_ioda_setup_iommu_api(void) { };
2558 #endif
2559
2560 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2561                 unsigned levels, unsigned long limit,
2562                 unsigned long *current_offset, unsigned long *total_allocated)
2563 {
2564         struct page *tce_mem = NULL;
2565         __be64 *addr, *tmp;
2566         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2567         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2568         unsigned entries = 1UL << (shift - 3);
2569         long i;
2570
2571         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2572         if (!tce_mem) {
2573                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2574                 return NULL;
2575         }
2576         addr = page_address(tce_mem);
2577         memset(addr, 0, allocated);
2578         *total_allocated += allocated;
2579
2580         --levels;
2581         if (!levels) {
2582                 *current_offset += allocated;
2583                 return addr;
2584         }
2585
2586         for (i = 0; i < entries; ++i) {
2587                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2588                                 levels, limit, current_offset, total_allocated);
2589                 if (!tmp)
2590                         break;
2591
2592                 addr[i] = cpu_to_be64(__pa(tmp) |
2593                                 TCE_PCI_READ | TCE_PCI_WRITE);
2594
2595                 if (*current_offset >= limit)
2596                         break;
2597         }
2598
2599         return addr;
2600 }
2601
2602 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2603                 unsigned long size, unsigned level);
2604
2605 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2606                 __u32 page_shift, __u64 window_size, __u32 levels,
2607                 struct iommu_table *tbl)
2608 {
2609         void *addr;
2610         unsigned long offset = 0, level_shift, total_allocated = 0;
2611         const unsigned window_shift = ilog2(window_size);
2612         unsigned entries_shift = window_shift - page_shift;
2613         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2614         const unsigned long tce_table_size = 1UL << table_shift;
2615
2616         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2617                 return -EINVAL;
2618
2619         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2620                 return -EINVAL;
2621
2622         /* Adjust direct table size from window_size and levels */
2623         entries_shift = (entries_shift + levels - 1) / levels;
2624         level_shift = entries_shift + 3;
2625         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2626
2627         /* Allocate TCE table */
2628         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2629                         levels, tce_table_size, &offset, &total_allocated);
2630
2631         /* addr==NULL means that the first level allocation failed */
2632         if (!addr)
2633                 return -ENOMEM;
2634
2635         /*
2636          * First level was allocated but some lower level failed as
2637          * we did not allocate as much as we wanted,
2638          * release partially allocated table.
2639          */
2640         if (offset < tce_table_size) {
2641                 pnv_pci_ioda2_table_do_free_pages(addr,
2642                                 1ULL << (level_shift - 3), levels - 1);
2643                 return -ENOMEM;
2644         }
2645
2646         /* Setup linux iommu table */
2647         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2648                         page_shift);
2649         tbl->it_level_size = 1ULL << (level_shift - 3);
2650         tbl->it_indirect_levels = levels - 1;
2651         tbl->it_allocated_size = total_allocated;
2652
2653         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2654                         window_size, tce_table_size, bus_offset);
2655
2656         return 0;
2657 }
2658
2659 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2660                 unsigned long size, unsigned level)
2661 {
2662         const unsigned long addr_ul = (unsigned long) addr &
2663                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2664
2665         if (level) {
2666                 long i;
2667                 u64 *tmp = (u64 *) addr_ul;
2668
2669                 for (i = 0; i < size; ++i) {
2670                         unsigned long hpa = be64_to_cpu(tmp[i]);
2671
2672                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2673                                 continue;
2674
2675                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2676                                         level - 1);
2677                 }
2678         }
2679
2680         free_pages(addr_ul, get_order(size << 3));
2681 }
2682
2683 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2684 {
2685         const unsigned long size = tbl->it_indirect_levels ?
2686                         tbl->it_level_size : tbl->it_size;
2687
2688         if (!tbl->it_size)
2689                 return;
2690
2691         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2692                         tbl->it_indirect_levels);
2693 }
2694
2695 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2696                                        struct pnv_ioda_pe *pe)
2697 {
2698         int64_t rc;
2699
2700         if (!pnv_pci_ioda_pe_dma_weight(pe))
2701                 return;
2702
2703         /* TVE #1 is selected by PCI address bit 59 */
2704         pe->tce_bypass_base = 1ull << 59;
2705
2706         iommu_register_group(&pe->table_group, phb->hose->global_number,
2707                         pe->pe_number);
2708
2709         /* The PE will reserve all possible 32-bits space */
2710         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2711                 phb->ioda.m32_pci_base);
2712
2713         /* Setup linux iommu table */
2714         pe->table_group.tce32_start = 0;
2715         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2716         pe->table_group.max_dynamic_windows_supported =
2717                         IOMMU_TABLE_GROUP_MAX_TABLES;
2718         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2719         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2720 #ifdef CONFIG_IOMMU_API
2721         pe->table_group.ops = &pnv_pci_ioda2_ops;
2722 #endif
2723
2724         rc = pnv_pci_ioda2_setup_default_config(pe);
2725         if (rc)
2726                 return;
2727
2728         if (pe->flags & PNV_IODA_PE_DEV)
2729                 iommu_add_device(&pe->pdev->dev);
2730         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2731                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2732 }
2733
2734 #ifdef CONFIG_PCI_MSI
2735 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2736 {
2737         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2738                                            ioda.irq_chip);
2739
2740         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2741 }
2742
2743 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2744 {
2745         int64_t rc;
2746         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2747         struct irq_chip *chip = irq_data_get_irq_chip(d);
2748
2749         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2750         WARN_ON_ONCE(rc);
2751
2752         icp_native_eoi(d);
2753 }
2754
2755
2756 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2757 {
2758         struct irq_data *idata;
2759         struct irq_chip *ichip;
2760
2761         /* The MSI EOI OPAL call is only needed on PHB3 */
2762         if (phb->model != PNV_PHB_MODEL_PHB3)
2763                 return;
2764
2765         if (!phb->ioda.irq_chip_init) {
2766                 /*
2767                  * First time we setup an MSI IRQ, we need to setup the
2768                  * corresponding IRQ chip to route correctly.
2769                  */
2770                 idata = irq_get_irq_data(virq);
2771                 ichip = irq_data_get_irq_chip(idata);
2772                 phb->ioda.irq_chip_init = 1;
2773                 phb->ioda.irq_chip = *ichip;
2774                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2775         }
2776         irq_set_chip(virq, &phb->ioda.irq_chip);
2777 }
2778
2779 /*
2780  * Returns true iff chip is something that we could call
2781  * pnv_opal_pci_msi_eoi for.
2782  */
2783 bool is_pnv_opal_msi(struct irq_chip *chip)
2784 {
2785         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2786 }
2787 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2788
2789 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2790                                   unsigned int hwirq, unsigned int virq,
2791                                   unsigned int is_64, struct msi_msg *msg)
2792 {
2793         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2794         unsigned int xive_num = hwirq - phb->msi_base;
2795         __be32 data;
2796         int rc;
2797
2798         /* No PE assigned ? bail out ... no MSI for you ! */
2799         if (pe == NULL)
2800                 return -ENXIO;
2801
2802         /* Check if we have an MVE */
2803         if (pe->mve_number < 0)
2804                 return -ENXIO;
2805
2806         /* Force 32-bit MSI on some broken devices */
2807         if (dev->no_64bit_msi)
2808                 is_64 = 0;
2809
2810         /* Assign XIVE to PE */
2811         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812         if (rc) {
2813                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2814                         pci_name(dev), rc, xive_num);
2815                 return -EIO;
2816         }
2817
2818         if (is_64) {
2819                 __be64 addr64;
2820
2821                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2822                                      &addr64, &data);
2823                 if (rc) {
2824                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2825                                 pci_name(dev), rc);
2826                         return -EIO;
2827                 }
2828                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2829                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2830         } else {
2831                 __be32 addr32;
2832
2833                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2834                                      &addr32, &data);
2835                 if (rc) {
2836                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2837                                 pci_name(dev), rc);
2838                         return -EIO;
2839                 }
2840                 msg->address_hi = 0;
2841                 msg->address_lo = be32_to_cpu(addr32);
2842         }
2843         msg->data = be32_to_cpu(data);
2844
2845         pnv_set_msi_irq_chip(phb, virq);
2846
2847         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2848                  " address=%x_%08x data=%x PE# %x\n",
2849                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2850                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2851
2852         return 0;
2853 }
2854
2855 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2856 {
2857         unsigned int count;
2858         const __be32 *prop = of_get_property(phb->hose->dn,
2859                                              "ibm,opal-msi-ranges", NULL);
2860         if (!prop) {
2861                 /* BML Fallback */
2862                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2863         }
2864         if (!prop)
2865                 return;
2866
2867         phb->msi_base = be32_to_cpup(prop);
2868         count = be32_to_cpup(prop + 1);
2869         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2870                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2871                        phb->hose->global_number);
2872                 return;
2873         }
2874
2875         phb->msi_setup = pnv_pci_ioda_msi_setup;
2876         phb->msi32_support = 1;
2877         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2878                 count, phb->msi_base);
2879 }
2880 #else
2881 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2882 #endif /* CONFIG_PCI_MSI */
2883
2884 #ifdef CONFIG_PCI_IOV
2885 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2886 {
2887         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2888         struct pnv_phb *phb = hose->private_data;
2889         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2890         struct resource *res;
2891         int i;
2892         resource_size_t size, total_vf_bar_sz;
2893         struct pci_dn *pdn;
2894         int mul, total_vfs;
2895
2896         if (!pdev->is_physfn || pdev->is_added)
2897                 return;
2898
2899         pdn = pci_get_pdn(pdev);
2900         pdn->vfs_expanded = 0;
2901         pdn->m64_single_mode = false;
2902
2903         total_vfs = pci_sriov_get_totalvfs(pdev);
2904         mul = phb->ioda.total_pe_num;
2905         total_vf_bar_sz = 0;
2906
2907         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2908                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2909                 if (!res->flags || res->parent)
2910                         continue;
2911                 if (!pnv_pci_is_m64_flags(res->flags)) {
2912                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2913                                         " non M64 VF BAR%d: %pR. \n",
2914                                  i, res);
2915                         goto truncate_iov;
2916                 }
2917
2918                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2919                                 i + PCI_IOV_RESOURCES);
2920
2921                 /*
2922                  * If bigger than quarter of M64 segment size, just round up
2923                  * power of two.
2924                  *
2925                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2926                  * with other devices, IOV BAR size is expanded to be
2927                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2928                  * segment size , the expanded size would equal to half of the
2929                  * whole M64 space size, which will exhaust the M64 Space and
2930                  * limit the system flexibility.  This is a design decision to
2931                  * set the boundary to quarter of the M64 segment size.
2932                  */
2933                 if (total_vf_bar_sz > gate) {
2934                         mul = roundup_pow_of_two(total_vfs);
2935                         dev_info(&pdev->dev,
2936                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2937                                 total_vf_bar_sz, gate, mul);
2938                         pdn->m64_single_mode = true;
2939                         break;
2940                 }
2941         }
2942
2943         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2944                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2945                 if (!res->flags || res->parent)
2946                         continue;
2947
2948                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2949                 /*
2950                  * On PHB3, the minimum size alignment of M64 BAR in single
2951                  * mode is 32MB.
2952                  */
2953                 if (pdn->m64_single_mode && (size < SZ_32M))
2954                         goto truncate_iov;
2955                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2956                 res->end = res->start + size * mul - 1;
2957                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2958                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2959                          i, res, mul);
2960         }
2961         pdn->vfs_expanded = mul;
2962
2963         return;
2964
2965 truncate_iov:
2966         /* To save MMIO space, IOV BAR is truncated. */
2967         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2968                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2969                 res->flags = 0;
2970                 res->end = res->start - 1;
2971         }
2972 }
2973 #endif /* CONFIG_PCI_IOV */
2974
2975 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2976                                   struct resource *res)
2977 {
2978         struct pnv_phb *phb = pe->phb;
2979         struct pci_bus_region region;
2980         int index;
2981         int64_t rc;
2982
2983         if (!res || !res->flags || res->start > res->end)
2984                 return;
2985
2986         if (res->flags & IORESOURCE_IO) {
2987                 region.start = res->start - phb->ioda.io_pci_base;
2988                 region.end   = res->end - phb->ioda.io_pci_base;
2989                 index = region.start / phb->ioda.io_segsize;
2990
2991                 while (index < phb->ioda.total_pe_num &&
2992                        region.start <= region.end) {
2993                         phb->ioda.io_segmap[index] = pe->pe_number;
2994                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2995                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2996                         if (rc != OPAL_SUCCESS) {
2997                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2998                                        __func__, rc, index, pe->pe_number);
2999                                 break;
3000                         }
3001
3002                         region.start += phb->ioda.io_segsize;
3003                         index++;
3004                 }
3005         } else if ((res->flags & IORESOURCE_MEM) &&
3006                    !pnv_pci_is_m64(phb, res)) {
3007                 region.start = res->start -
3008                                phb->hose->mem_offset[0] -
3009                                phb->ioda.m32_pci_base;
3010                 region.end   = res->end -
3011                                phb->hose->mem_offset[0] -
3012                                phb->ioda.m32_pci_base;
3013                 index = region.start / phb->ioda.m32_segsize;
3014
3015                 while (index < phb->ioda.total_pe_num &&
3016                        region.start <= region.end) {
3017                         phb->ioda.m32_segmap[index] = pe->pe_number;
3018                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3019                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3020                         if (rc != OPAL_SUCCESS) {
3021                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3022                                        __func__, rc, index, pe->pe_number);
3023                                 break;
3024                         }
3025
3026                         region.start += phb->ioda.m32_segsize;
3027                         index++;
3028                 }
3029         }
3030 }
3031
3032 /*
3033  * This function is supposed to be called on basis of PE from top
3034  * to bottom style. So the the I/O or MMIO segment assigned to
3035  * parent PE could be overridden by its child PEs if necessary.
3036  */
3037 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3038 {
3039         struct pci_dev *pdev;
3040         int i;
3041
3042         /*
3043          * NOTE: We only care PCI bus based PE for now. For PCI
3044          * device based PE, for example SRIOV sensitive VF should
3045          * be figured out later.
3046          */
3047         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3048
3049         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3050                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3051                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3052
3053                 /*
3054                  * If the PE contains all subordinate PCI buses, the
3055                  * windows of the child bridges should be mapped to
3056                  * the PE as well.
3057                  */
3058                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3059                         continue;
3060                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3061                         pnv_ioda_setup_pe_res(pe,
3062                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3063         }
3064 }
3065
3066 #ifdef CONFIG_DEBUG_FS
3067 static int pnv_pci_diag_data_set(void *data, u64 val)
3068 {
3069         struct pci_controller *hose;
3070         struct pnv_phb *phb;
3071         s64 ret;
3072
3073         if (val != 1ULL)
3074                 return -EINVAL;
3075
3076         hose = (struct pci_controller *)data;
3077         if (!hose || !hose->private_data)
3078                 return -ENODEV;
3079
3080         phb = hose->private_data;
3081
3082         /* Retrieve the diag data from firmware */
3083         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3084                                           PNV_PCI_DIAG_BUF_SIZE);
3085         if (ret != OPAL_SUCCESS)
3086                 return -EIO;
3087
3088         /* Print the diag data to the kernel log */
3089         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3090         return 0;
3091 }
3092
3093 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3094                         pnv_pci_diag_data_set, "%llu\n");
3095
3096 #endif /* CONFIG_DEBUG_FS */
3097
3098 static void pnv_pci_ioda_create_dbgfs(void)
3099 {
3100 #ifdef CONFIG_DEBUG_FS
3101         struct pci_controller *hose, *tmp;
3102         struct pnv_phb *phb;
3103         char name[16];
3104
3105         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3106                 phb = hose->private_data;
3107
3108                 /* Notify initialization of PHB done */
3109                 phb->initialized = 1;
3110
3111                 sprintf(name, "PCI%04x", hose->global_number);
3112                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3113                 if (!phb->dbgfs) {
3114                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3115                                 __func__, hose->global_number);
3116                         continue;
3117                 }
3118
3119                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3120                                     &pnv_pci_diag_data_fops);
3121         }
3122 #endif /* CONFIG_DEBUG_FS */
3123 }
3124
3125 static void pnv_pci_ioda_fixup(void)
3126 {
3127         pnv_pci_ioda_setup_PEs();
3128         pnv_pci_ioda_setup_iommu_api();
3129         pnv_pci_ioda_create_dbgfs();
3130
3131 #ifdef CONFIG_EEH
3132         eeh_init();
3133         eeh_addr_cache_build();
3134 #endif
3135 }
3136
3137 /*
3138  * Returns the alignment for I/O or memory windows for P2P
3139  * bridges. That actually depends on how PEs are segmented.
3140  * For now, we return I/O or M32 segment size for PE sensitive
3141  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3142  * 1MiB for memory) will be returned.
3143  *
3144  * The current PCI bus might be put into one PE, which was
3145  * create against the parent PCI bridge. For that case, we
3146  * needn't enlarge the alignment so that we can save some
3147  * resources.
3148  */
3149 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3150                                                 unsigned long type)
3151 {
3152         struct pci_dev *bridge;
3153         struct pci_controller *hose = pci_bus_to_host(bus);
3154         struct pnv_phb *phb = hose->private_data;
3155         int num_pci_bridges = 0;
3156
3157         bridge = bus->self;
3158         while (bridge) {
3159                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3160                         num_pci_bridges++;
3161                         if (num_pci_bridges >= 2)
3162                                 return 1;
3163                 }
3164
3165                 bridge = bridge->bus->self;
3166         }
3167
3168         /*
3169          * We fall back to M32 if M64 isn't supported. We enforce the M64
3170          * alignment for any 64-bit resource, PCIe doesn't care and
3171          * bridges only do 64-bit prefetchable anyway.
3172          */
3173         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3174                 return phb->ioda.m64_segsize;
3175         if (type & IORESOURCE_MEM)
3176                 return phb->ioda.m32_segsize;
3177
3178         return phb->ioda.io_segsize;
3179 }
3180
3181 /*
3182  * We are updating root port or the upstream port of the
3183  * bridge behind the root port with PHB's windows in order
3184  * to accommodate the changes on required resources during
3185  * PCI (slot) hotplug, which is connected to either root
3186  * port or the downstream ports of PCIe switch behind the
3187  * root port.
3188  */
3189 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3190                                            unsigned long type)
3191 {
3192         struct pci_controller *hose = pci_bus_to_host(bus);
3193         struct pnv_phb *phb = hose->private_data;
3194         struct pci_dev *bridge = bus->self;
3195         struct resource *r, *w;
3196         bool msi_region = false;
3197         int i;
3198
3199         /* Check if we need apply fixup to the bridge's windows */
3200         if (!pci_is_root_bus(bridge->bus) &&
3201             !pci_is_root_bus(bridge->bus->self->bus))
3202                 return;
3203
3204         /* Fixup the resources */
3205         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3206                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3207                 if (!r->flags || !r->parent)
3208                         continue;
3209
3210                 w = NULL;
3211                 if (r->flags & type & IORESOURCE_IO)
3212                         w = &hose->io_resource;
3213                 else if (pnv_pci_is_m64(phb, r) &&
3214                          (type & IORESOURCE_PREFETCH) &&
3215                          phb->ioda.m64_segsize)
3216                         w = &hose->mem_resources[1];
3217                 else if (r->flags & type & IORESOURCE_MEM) {
3218                         w = &hose->mem_resources[0];
3219                         msi_region = true;
3220                 }
3221
3222                 r->start = w->start;
3223                 r->end = w->end;
3224
3225                 /* The 64KB 32-bits MSI region shouldn't be included in
3226                  * the 32-bits bridge window. Otherwise, we can see strange
3227                  * issues. One of them is EEH error observed on Garrison.
3228                  *
3229                  * Exclude top 1MB region which is the minimal alignment of
3230                  * 32-bits bridge window.
3231                  */
3232                 if (msi_region) {
3233                         r->end += 0x10000;
3234                         r->end -= 0x100000;
3235                 }
3236         }
3237 }
3238
3239 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3240 {
3241         struct pci_controller *hose = pci_bus_to_host(bus);
3242         struct pnv_phb *phb = hose->private_data;
3243         struct pci_dev *bridge = bus->self;
3244         struct pnv_ioda_pe *pe;
3245         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3246
3247         /* Extend bridge's windows if necessary */
3248         pnv_pci_fixup_bridge_resources(bus, type);
3249
3250         /* The PE for root bus should be realized before any one else */
3251         if (!phb->ioda.root_pe_populated) {
3252                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3253                 if (pe) {
3254                         phb->ioda.root_pe_idx = pe->pe_number;
3255                         phb->ioda.root_pe_populated = true;
3256                 }
3257         }
3258
3259         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3260         if (list_empty(&bus->devices))
3261                 return;
3262
3263         /* Reserve PEs according to used M64 resources */
3264         if (phb->reserve_m64_pe)
3265                 phb->reserve_m64_pe(bus, NULL, all);
3266
3267         /*
3268          * Assign PE. We might run here because of partial hotplug.
3269          * For the case, we just pick up the existing PE and should
3270          * not allocate resources again.
3271          */
3272         pe = pnv_ioda_setup_bus_PE(bus, all);
3273         if (!pe)
3274                 return;
3275
3276         pnv_ioda_setup_pe_seg(pe);
3277         switch (phb->type) {
3278         case PNV_PHB_IODA1:
3279                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3280                 break;
3281         case PNV_PHB_IODA2:
3282                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3283                 break;
3284         default:
3285                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3286                         __func__, phb->hose->global_number, phb->type);
3287         }
3288 }
3289
3290 #ifdef CONFIG_PCI_IOV
3291 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3292                                                       int resno)
3293 {
3294         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3295         struct pnv_phb *phb = hose->private_data;
3296         struct pci_dn *pdn = pci_get_pdn(pdev);
3297         resource_size_t align;
3298
3299         /*
3300          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3301          * SR-IOV. While from hardware perspective, the range mapped by M64
3302          * BAR should be size aligned.
3303          *
3304          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3305          * powernv-specific hardware restriction is gone. But if just use the
3306          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3307          * in one segment of M64 #15, which introduces the PE conflict between
3308          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3309          * m64_segsize.
3310          *
3311          * This function returns the total IOV BAR size if M64 BAR is in
3312          * Shared PE mode or just VF BAR size if not.
3313          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3314          * M64 segment size if IOV BAR size is less.
3315          */
3316         align = pci_iov_resource_size(pdev, resno);
3317         if (!pdn->vfs_expanded)
3318                 return align;
3319         if (pdn->m64_single_mode)
3320                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3321
3322         return pdn->vfs_expanded * align;
3323 }
3324 #endif /* CONFIG_PCI_IOV */
3325
3326 /* Prevent enabling devices for which we couldn't properly
3327  * assign a PE
3328  */
3329 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3330 {
3331         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3332         struct pnv_phb *phb = hose->private_data;
3333         struct pci_dn *pdn;
3334
3335         /* The function is probably called while the PEs have
3336          * not be created yet. For example, resource reassignment
3337          * during PCI probe period. We just skip the check if
3338          * PEs isn't ready.
3339          */
3340         if (!phb->initialized)
3341                 return true;
3342
3343         pdn = pci_get_pdn(dev);
3344         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3345                 return false;
3346
3347         return true;
3348 }
3349
3350 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3351                                        int num)
3352 {
3353         struct pnv_ioda_pe *pe = container_of(table_group,
3354                                               struct pnv_ioda_pe, table_group);
3355         struct pnv_phb *phb = pe->phb;
3356         unsigned int idx;
3357         long rc;
3358
3359         pe_info(pe, "Removing DMA window #%d\n", num);
3360         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3361                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3362                         continue;
3363
3364                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3365                                                 idx, 0, 0ul, 0ul, 0ul);
3366                 if (rc != OPAL_SUCCESS) {
3367                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3368                                 rc, idx);
3369                         return rc;
3370                 }
3371
3372                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3373         }
3374
3375         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3376         return OPAL_SUCCESS;
3377 }
3378
3379 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3380 {
3381         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3382         struct iommu_table *tbl = pe->table_group.tables[0];
3383         int64_t rc;
3384
3385         if (!weight)
3386                 return;
3387
3388         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3389         if (rc != OPAL_SUCCESS)
3390                 return;
3391
3392         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3393         if (pe->table_group.group) {
3394                 iommu_group_put(pe->table_group.group);
3395                 WARN_ON(pe->table_group.group);
3396         }
3397
3398         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3399         iommu_free_table(tbl, "pnv");
3400 }
3401
3402 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3403 {
3404         struct iommu_table *tbl = pe->table_group.tables[0];
3405         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3406 #ifdef CONFIG_IOMMU_API
3407         int64_t rc;
3408 #endif
3409
3410         if (!weight)
3411                 return;
3412
3413 #ifdef CONFIG_IOMMU_API
3414         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3415         if (rc)
3416                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3417 #endif
3418
3419         pnv_pci_ioda2_set_bypass(pe, false);
3420         if (pe->table_group.group) {
3421                 iommu_group_put(pe->table_group.group);
3422                 WARN_ON(pe->table_group.group);
3423         }
3424
3425         pnv_pci_ioda2_table_free_pages(tbl);
3426         iommu_free_table(tbl, "pnv");
3427 }
3428
3429 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3430                                  unsigned short win,
3431                                  unsigned int *map)
3432 {
3433         struct pnv_phb *phb = pe->phb;
3434         int idx;
3435         int64_t rc;
3436
3437         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3438                 if (map[idx] != pe->pe_number)
3439                         continue;
3440
3441                 if (win == OPAL_M64_WINDOW_TYPE)
3442                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3443                                         phb->ioda.reserved_pe_idx, win,
3444                                         idx / PNV_IODA1_M64_SEGS,
3445                                         idx % PNV_IODA1_M64_SEGS);
3446                 else
3447                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3448                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3449
3450                 if (rc != OPAL_SUCCESS)
3451                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3452                                 rc, win, idx);
3453
3454                 map[idx] = IODA_INVALID_PE;
3455         }
3456 }
3457
3458 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3459 {
3460         struct pnv_phb *phb = pe->phb;
3461
3462         if (phb->type == PNV_PHB_IODA1) {
3463                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3464                                      phb->ioda.io_segmap);
3465                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3466                                      phb->ioda.m32_segmap);
3467                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3468                                      phb->ioda.m64_segmap);
3469         } else if (phb->type == PNV_PHB_IODA2) {
3470                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3471                                      phb->ioda.m32_segmap);
3472         }
3473 }
3474
3475 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3476 {
3477         struct pnv_phb *phb = pe->phb;
3478         struct pnv_ioda_pe *slave, *tmp;
3479
3480         list_del(&pe->list);
3481         switch (phb->type) {
3482         case PNV_PHB_IODA1:
3483                 pnv_pci_ioda1_release_pe_dma(pe);
3484                 break;
3485         case PNV_PHB_IODA2:
3486                 pnv_pci_ioda2_release_pe_dma(pe);
3487                 break;
3488         default:
3489                 WARN_ON(1);
3490         }
3491
3492         pnv_ioda_release_pe_seg(pe);
3493         pnv_ioda_deconfigure_pe(pe->phb, pe);
3494
3495         /* Release slave PEs in the compound PE */
3496         if (pe->flags & PNV_IODA_PE_MASTER) {
3497                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3498                         list_del(&slave->list);
3499                         pnv_ioda_free_pe(slave);
3500                 }
3501         }
3502
3503         /*
3504          * The PE for root bus can be removed because of hotplug in EEH
3505          * recovery for fenced PHB error. We need to mark the PE dead so
3506          * that it can be populated again in PCI hot add path. The PE
3507          * shouldn't be destroyed as it's the global reserved resource.
3508          */
3509         if (phb->ioda.root_pe_populated &&
3510             phb->ioda.root_pe_idx == pe->pe_number)
3511                 phb->ioda.root_pe_populated = false;
3512         else
3513                 pnv_ioda_free_pe(pe);
3514 }
3515
3516 static void pnv_pci_release_device(struct pci_dev *pdev)
3517 {
3518         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3519         struct pnv_phb *phb = hose->private_data;
3520         struct pci_dn *pdn = pci_get_pdn(pdev);
3521         struct pnv_ioda_pe *pe;
3522
3523         if (pdev->is_virtfn)
3524                 return;
3525
3526         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3527                 return;
3528
3529         /*
3530          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3531          * isn't removed and added afterwards in this scenario. We should
3532          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3533          * device count is decreased on removing devices while failing to
3534          * be increased on adding devices. It leads to unbalanced PE's device
3535          * count and eventually make normal PCI hotplug path broken.
3536          */
3537         pe = &phb->ioda.pe_array[pdn->pe_number];
3538         pdn->pe_number = IODA_INVALID_PE;
3539
3540         WARN_ON(--pe->device_count < 0);
3541         if (pe->device_count == 0)
3542                 pnv_ioda_release_pe(pe);
3543 }
3544
3545 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3546 {
3547         struct pnv_phb *phb = hose->private_data;
3548
3549         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3550                        OPAL_ASSERT_RESET);
3551 }
3552
3553 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3554         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3555         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3556 #ifdef CONFIG_PCI_MSI
3557         .setup_msi_irqs         = pnv_setup_msi_irqs,
3558         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3559 #endif
3560         .enable_device_hook     = pnv_pci_enable_device_hook,
3561         .release_device         = pnv_pci_release_device,
3562         .window_alignment       = pnv_pci_window_alignment,
3563         .setup_bridge           = pnv_pci_setup_bridge,
3564         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3565         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3566         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3567         .shutdown               = pnv_pci_ioda_shutdown,
3568 };
3569
3570 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3571 {
3572         dev_err_once(&npdev->dev,
3573                         "%s operation unsupported for NVLink devices\n",
3574                         __func__);
3575         return -EPERM;
3576 }
3577
3578 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3579         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3580 #ifdef CONFIG_PCI_MSI
3581         .setup_msi_irqs         = pnv_setup_msi_irqs,
3582         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3583 #endif
3584         .enable_device_hook     = pnv_pci_enable_device_hook,
3585         .window_alignment       = pnv_pci_window_alignment,
3586         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3587         .dma_set_mask           = pnv_npu_dma_set_mask,
3588         .shutdown               = pnv_pci_ioda_shutdown,
3589 };
3590
3591 #ifdef CONFIG_CXL_BASE
3592 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3593         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3594         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3595 #ifdef CONFIG_PCI_MSI
3596         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3597         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3598 #endif
3599         .enable_device_hook     = pnv_cxl_enable_device_hook,
3600         .disable_device         = pnv_cxl_disable_device,
3601         .release_device         = pnv_pci_release_device,
3602         .window_alignment       = pnv_pci_window_alignment,
3603         .setup_bridge           = pnv_pci_setup_bridge,
3604         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3605         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3606         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3607         .shutdown               = pnv_pci_ioda_shutdown,
3608 };
3609 #endif
3610
3611 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3612                                          u64 hub_id, int ioda_type)
3613 {
3614         struct pci_controller *hose;
3615         struct pnv_phb *phb;
3616         unsigned long size, m64map_off, m32map_off, pemap_off;
3617         unsigned long iomap_off = 0, dma32map_off = 0;
3618         struct resource r;
3619         const __be64 *prop64;
3620         const __be32 *prop32;
3621         int len;
3622         unsigned int segno;
3623         u64 phb_id;
3624         void *aux;
3625         long rc;
3626
3627         if (!of_device_is_available(np))
3628                 return;
3629
3630         pr_info("Initializing %s PHB (%s)\n",
3631                 pnv_phb_names[ioda_type], of_node_full_name(np));
3632
3633         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3634         if (!prop64) {
3635                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3636                 return;
3637         }
3638         phb_id = be64_to_cpup(prop64);
3639         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3640
3641         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3642
3643         /* Allocate PCI controller */
3644         phb->hose = hose = pcibios_alloc_controller(np);
3645         if (!phb->hose) {
3646                 pr_err("  Can't allocate PCI controller for %s\n",
3647                        np->full_name);
3648                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3649                 return;
3650         }
3651
3652         spin_lock_init(&phb->lock);
3653         prop32 = of_get_property(np, "bus-range", &len);
3654         if (prop32 && len == 8) {
3655                 hose->first_busno = be32_to_cpu(prop32[0]);
3656                 hose->last_busno = be32_to_cpu(prop32[1]);
3657         } else {
3658                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3659                 hose->first_busno = 0;
3660                 hose->last_busno = 0xff;
3661         }
3662         hose->private_data = phb;
3663         phb->hub_id = hub_id;
3664         phb->opal_id = phb_id;
3665         phb->type = ioda_type;
3666         mutex_init(&phb->ioda.pe_alloc_mutex);
3667
3668         /* Detect specific models for error handling */
3669         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3670                 phb->model = PNV_PHB_MODEL_P7IOC;
3671         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3672                 phb->model = PNV_PHB_MODEL_PHB3;
3673         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3674                 phb->model = PNV_PHB_MODEL_NPU;
3675         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3676                 phb->model = PNV_PHB_MODEL_NPU2;
3677         else
3678                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3679
3680         /* Parse 32-bit and IO ranges (if any) */
3681         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3682
3683         /* Get registers */
3684         if (!of_address_to_resource(np, 0, &r)) {
3685                 phb->regs_phys = r.start;
3686                 phb->regs = ioremap(r.start, resource_size(&r));
3687                 if (phb->regs == NULL)
3688                         pr_err("  Failed to map registers !\n");
3689         }
3690
3691         /* Initialize more IODA stuff */
3692         phb->ioda.total_pe_num = 1;
3693         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3694         if (prop32)
3695                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3696         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3697         if (prop32)
3698                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3699
3700         /* Invalidate RID to PE# mapping */
3701         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3702                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3703
3704         /* Parse 64-bit MMIO range */
3705         pnv_ioda_parse_m64_window(phb);
3706
3707         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3708         /* FW Has already off top 64k of M32 space (MSI space) */
3709         phb->ioda.m32_size += 0x10000;
3710
3711         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3712         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3713         phb->ioda.io_size = hose->pci_io_size;
3714         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3715         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3716
3717         /* Calculate how many 32-bit TCE segments we have */
3718         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3719                                 PNV_IODA1_DMA32_SEGSIZE;
3720
3721         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3722         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3723                         sizeof(unsigned long));
3724         m64map_off = size;
3725         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3726         m32map_off = size;
3727         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3728         if (phb->type == PNV_PHB_IODA1) {
3729                 iomap_off = size;
3730                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3731                 dma32map_off = size;
3732                 size += phb->ioda.dma32_count *
3733                         sizeof(phb->ioda.dma32_segmap[0]);
3734         }
3735         pemap_off = size;
3736         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3737         aux = memblock_virt_alloc(size, 0);
3738         phb->ioda.pe_alloc = aux;
3739         phb->ioda.m64_segmap = aux + m64map_off;
3740         phb->ioda.m32_segmap = aux + m32map_off;
3741         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3742                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3743                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3744         }
3745         if (phb->type == PNV_PHB_IODA1) {
3746                 phb->ioda.io_segmap = aux + iomap_off;
3747                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3748                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3749
3750                 phb->ioda.dma32_segmap = aux + dma32map_off;
3751                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3752                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3753         }
3754         phb->ioda.pe_array = aux + pemap_off;
3755
3756         /*
3757          * Choose PE number for root bus, which shouldn't have
3758          * M64 resources consumed by its child devices. To pick
3759          * the PE number adjacent to the reserved one if possible.
3760          */
3761         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3762         if (phb->ioda.reserved_pe_idx == 0) {
3763                 phb->ioda.root_pe_idx = 1;
3764                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3765         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3766                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3767                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3768         } else {
3769                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3770         }
3771
3772         INIT_LIST_HEAD(&phb->ioda.pe_list);
3773         mutex_init(&phb->ioda.pe_list_mutex);
3774
3775         /* Calculate how many 32-bit TCE segments we have */
3776         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3777                                 PNV_IODA1_DMA32_SEGSIZE;
3778
3779 #if 0 /* We should really do that ... */
3780         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3781                                          window_type,
3782                                          window_num,
3783                                          starting_real_address,
3784                                          starting_pci_address,
3785                                          segment_size);
3786 #endif
3787
3788         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3789                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3790                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3791         if (phb->ioda.m64_size)
3792                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3793                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3794         if (phb->ioda.io_size)
3795                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3796                         phb->ioda.io_size, phb->ioda.io_segsize);
3797
3798
3799         phb->hose->ops = &pnv_pci_ops;
3800         phb->get_pe_state = pnv_ioda_get_pe_state;
3801         phb->freeze_pe = pnv_ioda_freeze_pe;
3802         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3803
3804         /* Setup MSI support */
3805         pnv_pci_init_ioda_msis(phb);
3806
3807         /*
3808          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3809          * to let the PCI core do resource assignment. It's supposed
3810          * that the PCI core will do correct I/O and MMIO alignment
3811          * for the P2P bridge bars so that each PCI bus (excluding
3812          * the child P2P bridges) can form individual PE.
3813          */
3814         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3815
3816         if (phb->type == PNV_PHB_NPU) {
3817                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3818         } else {
3819                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3820                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3821         }
3822
3823 #ifdef CONFIG_PCI_IOV
3824         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3825         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3826 #endif
3827
3828         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3829
3830         /* Reset IODA tables to a clean state */
3831         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3832         if (rc)
3833                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3834
3835         /*
3836          * If we're running in kdump kernel, the previous kernel never
3837          * shutdown PCI devices correctly. We already got IODA table
3838          * cleaned out. So we have to issue PHB reset to stop all PCI
3839          * transactions from previous kernel.
3840          */
3841         if (is_kdump_kernel()) {
3842                 pr_info("  Issue PHB reset ...\n");
3843                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3844                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3845         }
3846
3847         /* Remove M64 resource if we can't configure it successfully */
3848         if (!phb->init_m64 || phb->init_m64(phb))
3849                 hose->mem_resources[1].flags = 0;
3850 }
3851
3852 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3853 {
3854         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3855 }
3856
3857 void __init pnv_pci_init_npu_phb(struct device_node *np)
3858 {
3859         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3860 }
3861
3862 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3863 {
3864         struct device_node *phbn;
3865         const __be64 *prop64;
3866         u64 hub_id;
3867
3868         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3869
3870         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3871         if (!prop64) {
3872                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3873                 return;
3874         }
3875         hub_id = be64_to_cpup(prop64);
3876         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3877
3878         /* Count child PHBs */
3879         for_each_child_of_node(np, phbn) {
3880                 /* Look for IODA1 PHBs */
3881                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3882                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3883         }
3884 }