2 * Support PCI/PCIe on PowerNV platforms
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
27 #include <asm/sections.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
35 #include <asm/iommu.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
47 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
62 sprintf(pfix, "%04x:%02x ",
63 pci_domain_nr(pe->pbus), pe->pbus->number);
65 printk("%spci %s: [PE# %.3d] %pV",
66 level, pfix, pe->pe_number, &vaf);
71 #define pe_err(pe, fmt, ...) \
72 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73 #define pe_warn(pe, fmt, ...) \
74 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75 #define pe_info(pe, fmt, ...) \
76 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
78 static bool pnv_iommu_bypass_disabled __read_mostly;
80 static int __init iommu_setup(char *str)
86 if (!strncmp(str, "nobypass", 8)) {
87 pnv_iommu_bypass_disabled = true;
88 pr_info("PowerNV: IOMMU bypass window disabled.\n");
91 str += strcspn(str, ",");
98 early_param("iommu", iommu_setup);
101 * stdcix is only supposed to be used in hypervisor real mode as per
102 * the architecture spec
104 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
106 __asm__ __volatile__("stdcix %0,0,%1"
107 : : "r" (val), "r" (paddr) : "memory");
110 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
112 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
113 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
116 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
118 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
119 pr_warn("%s: Invalid PE %d on PHB#%x\n",
120 __func__, pe_no, phb->hose->global_number);
124 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
125 pr_warn("%s: PE %d was assigned on PHB#%x\n",
126 __func__, pe_no, phb->hose->global_number);
130 phb->ioda.pe_array[pe_no].phb = phb;
131 phb->ioda.pe_array[pe_no].pe_number = pe_no;
134 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
139 pe = find_next_zero_bit(phb->ioda.pe_alloc,
140 phb->ioda.total_pe, 0);
141 if (pe >= phb->ioda.total_pe)
142 return IODA_INVALID_PE;
143 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
145 phb->ioda.pe_array[pe].phb = phb;
146 phb->ioda.pe_array[pe].pe_number = pe;
150 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
152 WARN_ON(phb->ioda.pe_array[pe].pdev);
154 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
155 clear_bit(pe, phb->ioda.pe_alloc);
158 /* The default M64 BAR is shared by all PEs */
159 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
165 /* Configure the default M64 BAR */
166 rc = opal_pci_set_phb_mem_window(phb->opal_id,
167 OPAL_M64_WINDOW_TYPE,
168 phb->ioda.m64_bar_idx,
172 if (rc != OPAL_SUCCESS) {
173 desc = "configuring";
177 /* Enable the default M64 BAR */
178 rc = opal_pci_phb_mmio_enable(phb->opal_id,
179 OPAL_M64_WINDOW_TYPE,
180 phb->ioda.m64_bar_idx,
181 OPAL_ENABLE_M64_SPLIT);
182 if (rc != OPAL_SUCCESS) {
187 /* Mark the M64 BAR assigned */
188 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
191 * Strip off the segment used by the reserved PE, which is
192 * expected to be 0 or last one of PE capabicity.
194 r = &phb->hose->mem_resources[1];
195 if (phb->ioda.reserved_pe == 0)
196 r->start += phb->ioda.m64_segsize;
197 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
198 r->end -= phb->ioda.m64_segsize;
200 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
201 phb->ioda.reserved_pe);
206 pr_warn(" Failure %lld %s M64 BAR#%d\n",
207 rc, desc, phb->ioda.m64_bar_idx);
208 opal_pci_phb_mmio_enable(phb->opal_id,
209 OPAL_M64_WINDOW_TYPE,
210 phb->ioda.m64_bar_idx,
215 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
217 resource_size_t sgsz = phb->ioda.m64_segsize;
218 struct pci_dev *pdev;
223 * Root bus always has full M64 range and root port has
224 * M64 range used in reality. So we're checking root port
225 * instead of root bus.
227 list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
228 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
229 r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
231 !pnv_pci_is_mem_pref_64(r->flags))
234 base = (r->start - phb->ioda.m64_base) / sgsz;
235 for (step = 0; step < resource_size(r) / sgsz; step++)
236 pnv_ioda_reserve_pe(phb, base + step);
241 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
242 struct pci_bus *bus, int all)
244 resource_size_t segsz = phb->ioda.m64_segsize;
245 struct pci_dev *pdev;
247 struct pnv_ioda_pe *master_pe, *pe;
248 unsigned long size, *pe_alloc;
252 /* Root bus shouldn't use M64 */
253 if (pci_is_root_bus(bus))
254 return IODA_INVALID_PE;
256 /* We support only one M64 window on each bus */
258 pci_bus_for_each_resource(bus, r, i) {
259 if (r && r->parent &&
260 pnv_pci_is_mem_pref_64(r->flags)) {
266 /* No M64 window found ? */
268 return IODA_INVALID_PE;
270 /* Allocate bitmap */
271 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
272 pe_alloc = kzalloc(size, GFP_KERNEL);
274 pr_warn("%s: Out of memory !\n",
276 return IODA_INVALID_PE;
280 * Figure out reserved PE numbers by the PE
283 start = (r->start - phb->ioda.m64_base) / segsz;
284 for (i = 0; i < resource_size(r) / segsz; i++)
285 set_bit(start + i, pe_alloc);
291 * If the PE doesn't cover all subordinate buses,
292 * we need subtract from reserved PEs for children.
294 list_for_each_entry(pdev, &bus->devices, bus_list) {
295 if (!pdev->subordinate)
298 pci_bus_for_each_resource(pdev->subordinate, r, i) {
299 if (!r || !r->parent ||
300 !pnv_pci_is_mem_pref_64(r->flags))
303 start = (r->start - phb->ioda.m64_base) / segsz;
304 for (j = 0; j < resource_size(r) / segsz ; j++)
305 clear_bit(start + j, pe_alloc);
310 * the current bus might not own M64 window and that's all
311 * contributed by its child buses. For the case, we needn't
312 * pick M64 dependent PE#.
314 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
316 return IODA_INVALID_PE;
320 * Figure out the master PE and put all slave PEs to master
321 * PE's list to form compound PE.
326 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
327 phb->ioda.total_pe) {
328 pe = &phb->ioda.pe_array[i];
331 pe->flags |= PNV_IODA_PE_MASTER;
332 INIT_LIST_HEAD(&pe->slaves);
335 pe->flags |= PNV_IODA_PE_SLAVE;
336 pe->master = master_pe;
337 list_add_tail(&pe->list, &master_pe->slaves);
342 return master_pe->pe_number;
345 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
347 struct pci_controller *hose = phb->hose;
348 struct device_node *dn = hose->dn;
349 struct resource *res;
353 /* FIXME: Support M64 for P7IOC */
354 if (phb->type != PNV_PHB_IODA2) {
355 pr_info(" Not support M64 window\n");
359 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
360 pr_info(" Firmware too old to support M64 window\n");
364 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
366 pr_info(" No <ibm,opal-m64-window> on %s\n",
371 res = &hose->mem_resources[1];
372 res->start = of_translate_address(dn, r + 2);
373 res->end = res->start + of_read_number(r + 4, 2) - 1;
374 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
375 pci_addr = of_read_number(r, 2);
376 hose->mem_offset[1] = res->start - pci_addr;
378 phb->ioda.m64_size = resource_size(res);
379 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
380 phb->ioda.m64_base = pci_addr;
382 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
383 res->start, res->end, pci_addr);
385 /* Use last M64 BAR to cover M64 window */
386 phb->ioda.m64_bar_idx = 15;
387 phb->init_m64 = pnv_ioda2_init_m64;
388 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
389 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
392 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
394 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
395 struct pnv_ioda_pe *slave;
398 /* Fetch master PE */
399 if (pe->flags & PNV_IODA_PE_SLAVE) {
401 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
404 pe_no = pe->pe_number;
407 /* Freeze master PE */
408 rc = opal_pci_eeh_freeze_set(phb->opal_id,
410 OPAL_EEH_ACTION_SET_FREEZE_ALL);
411 if (rc != OPAL_SUCCESS) {
412 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
413 __func__, rc, phb->hose->global_number, pe_no);
417 /* Freeze slave PEs */
418 if (!(pe->flags & PNV_IODA_PE_MASTER))
421 list_for_each_entry(slave, &pe->slaves, list) {
422 rc = opal_pci_eeh_freeze_set(phb->opal_id,
424 OPAL_EEH_ACTION_SET_FREEZE_ALL);
425 if (rc != OPAL_SUCCESS)
426 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
427 __func__, rc, phb->hose->global_number,
432 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
434 struct pnv_ioda_pe *pe, *slave;
438 pe = &phb->ioda.pe_array[pe_no];
439 if (pe->flags & PNV_IODA_PE_SLAVE) {
441 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
442 pe_no = pe->pe_number;
445 /* Clear frozen state for master PE */
446 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
447 if (rc != OPAL_SUCCESS) {
448 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
449 __func__, rc, opt, phb->hose->global_number, pe_no);
453 if (!(pe->flags & PNV_IODA_PE_MASTER))
456 /* Clear frozen state for slave PEs */
457 list_for_each_entry(slave, &pe->slaves, list) {
458 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
461 if (rc != OPAL_SUCCESS) {
462 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
463 __func__, rc, opt, phb->hose->global_number,
472 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
474 struct pnv_ioda_pe *slave, *pe;
479 /* Sanity check on PE number */
480 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
481 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
484 * Fetch the master PE and the PE instance might be
485 * not initialized yet.
487 pe = &phb->ioda.pe_array[pe_no];
488 if (pe->flags & PNV_IODA_PE_SLAVE) {
490 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
491 pe_no = pe->pe_number;
494 /* Check the master PE */
495 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
496 &state, &pcierr, NULL);
497 if (rc != OPAL_SUCCESS) {
498 pr_warn("%s: Failure %lld getting "
499 "PHB#%x-PE#%x state\n",
501 phb->hose->global_number, pe_no);
502 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
505 /* Check the slave PE */
506 if (!(pe->flags & PNV_IODA_PE_MASTER))
509 list_for_each_entry(slave, &pe->slaves, list) {
510 rc = opal_pci_eeh_freeze_status(phb->opal_id,
515 if (rc != OPAL_SUCCESS) {
516 pr_warn("%s: Failure %lld getting "
517 "PHB#%x-PE#%x state\n",
519 phb->hose->global_number, slave->pe_number);
520 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
524 * Override the result based on the ascending
534 /* Currently those 2 are only used when MSIs are enabled, this will change
535 * but in the meantime, we need to protect them to avoid warnings
537 #ifdef CONFIG_PCI_MSI
538 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
540 struct pci_controller *hose = pci_bus_to_host(dev->bus);
541 struct pnv_phb *phb = hose->private_data;
542 struct pci_dn *pdn = pci_get_pdn(dev);
546 if (pdn->pe_number == IODA_INVALID_PE)
548 return &phb->ioda.pe_array[pdn->pe_number];
550 #endif /* CONFIG_PCI_MSI */
552 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
553 struct pnv_ioda_pe *parent,
554 struct pnv_ioda_pe *child,
557 const char *desc = is_add ? "adding" : "removing";
558 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
559 OPAL_REMOVE_PE_FROM_DOMAIN;
560 struct pnv_ioda_pe *slave;
563 /* Parent PE affects child PE */
564 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
565 child->pe_number, op);
566 if (rc != OPAL_SUCCESS) {
567 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
572 if (!(child->flags & PNV_IODA_PE_MASTER))
575 /* Compound case: parent PE affects slave PEs */
576 list_for_each_entry(slave, &child->slaves, list) {
577 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
578 slave->pe_number, op);
579 if (rc != OPAL_SUCCESS) {
580 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
589 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
590 struct pnv_ioda_pe *pe,
593 struct pnv_ioda_pe *slave;
594 struct pci_dev *pdev;
598 * Clear PE frozen state. If it's master PE, we need
599 * clear slave PE frozen state as well.
602 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
603 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
604 if (pe->flags & PNV_IODA_PE_MASTER) {
605 list_for_each_entry(slave, &pe->slaves, list)
606 opal_pci_eeh_freeze_clear(phb->opal_id,
608 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
613 * Associate PE in PELT. We need add the PE into the
614 * corresponding PELT-V as well. Otherwise, the error
615 * originated from the PE might contribute to other
618 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
622 /* For compound PEs, any one affects all of them */
623 if (pe->flags & PNV_IODA_PE_MASTER) {
624 list_for_each_entry(slave, &pe->slaves, list) {
625 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
631 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
632 pdev = pe->pbus->self;
634 pdev = pe->pdev->bus->self;
636 struct pci_dn *pdn = pci_get_pdn(pdev);
637 struct pnv_ioda_pe *parent;
639 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
640 parent = &phb->ioda.pe_array[pdn->pe_number];
641 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
646 pdev = pdev->bus->self;
652 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
654 struct pci_dev *parent;
655 uint8_t bcomp, dcomp, fcomp;
656 long rc, rid_end, rid;
658 /* Bus validation ? */
662 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
663 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
664 parent = pe->pbus->self;
665 if (pe->flags & PNV_IODA_PE_BUS_ALL)
666 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
671 case 1: bcomp = OpalPciBusAll; break;
672 case 2: bcomp = OpalPciBus7Bits; break;
673 case 4: bcomp = OpalPciBus6Bits; break;
674 case 8: bcomp = OpalPciBus5Bits; break;
675 case 16: bcomp = OpalPciBus4Bits; break;
676 case 32: bcomp = OpalPciBus3Bits; break;
678 pr_err("%s: Number of subordinate busses %d"
680 pci_name(pe->pbus->self), count);
681 /* Do an exact match only */
682 bcomp = OpalPciBusAll;
684 rid_end = pe->rid + (count << 8);
686 parent = pe->pdev->bus->self;
687 bcomp = OpalPciBusAll;
688 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
689 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
690 rid_end = pe->rid + 1;
694 * Associate PE in PELT. We need add the PE into the
695 * corresponding PELT-V as well. Otherwise, the error
696 * originated from the PE might contribute to other
699 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
700 bcomp, dcomp, fcomp, OPAL_MAP_PE);
702 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
706 /* Configure PELTV */
707 pnv_ioda_set_peltv(phb, pe, true);
709 /* Setup reverse map */
710 for (rid = pe->rid; rid < rid_end; rid++)
711 phb->ioda.pe_rmap[rid] = pe->pe_number;
713 /* Setup one MVTs on IODA1 */
714 if (phb->type != PNV_PHB_IODA1) {
719 pe->mve_number = pe->pe_number;
720 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
721 if (rc != OPAL_SUCCESS) {
722 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
726 rc = opal_pci_set_mve_enable(phb->opal_id,
727 pe->mve_number, OPAL_ENABLE_MVE);
729 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
739 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
740 struct pnv_ioda_pe *pe)
742 struct pnv_ioda_pe *lpe;
744 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
745 if (lpe->dma_weight < pe->dma_weight) {
746 list_add_tail(&pe->dma_link, &lpe->dma_link);
750 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
753 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
755 /* This is quite simplistic. The "base" weight of a device
756 * is 10. 0 means no DMA is to be accounted for it.
759 /* If it's a bridge, no DMA */
760 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
763 /* Reduce the weight of slow USB controllers */
764 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
765 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
766 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
769 /* Increase the weight of RAID (includes Obsidian) */
770 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
778 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
780 struct pci_controller *hose = pci_bus_to_host(dev->bus);
781 struct pnv_phb *phb = hose->private_data;
782 struct pci_dn *pdn = pci_get_pdn(dev);
783 struct pnv_ioda_pe *pe;
787 pr_err("%s: Device tree node not associated properly\n",
791 if (pdn->pe_number != IODA_INVALID_PE)
794 /* PE#0 has been pre-set */
795 if (dev->bus->number == 0)
798 pe_num = pnv_ioda_alloc_pe(phb);
799 if (pe_num == IODA_INVALID_PE) {
800 pr_warning("%s: Not enough PE# available, disabling device\n",
805 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
806 * pointer in the PE data structure, both should be destroyed at the
807 * same time. However, this needs to be looked at more closely again
808 * once we actually start removing things (Hotplug, SR-IOV, ...)
810 * At some point we want to remove the PDN completely anyways
812 pe = &phb->ioda.pe_array[pe_num];
815 pdn->pe_number = pe_num;
820 pe->rid = dev->bus->number << 8 | pdn->devfn;
822 pe_info(pe, "Associated device to PE\n");
824 if (pnv_ioda_configure_pe(phb, pe)) {
825 /* XXX What do we do here ? */
827 pnv_ioda_free_pe(phb, pe_num);
828 pdn->pe_number = IODA_INVALID_PE;
834 /* Assign a DMA weight to the device */
835 pe->dma_weight = pnv_ioda_dma_weight(dev);
836 if (pe->dma_weight != 0) {
837 phb->ioda.dma_weight += pe->dma_weight;
838 phb->ioda.dma_pe_count++;
842 pnv_ioda_link_pe_by_weight(phb, pe);
846 #endif /* Useful for SRIOV case */
848 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
852 list_for_each_entry(dev, &bus->devices, bus_list) {
853 struct pci_dn *pdn = pci_get_pdn(dev);
856 pr_warn("%s: No device node associated with device !\n",
861 pdn->pe_number = pe->pe_number;
862 pe->dma_weight += pnv_ioda_dma_weight(dev);
863 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
864 pnv_ioda_setup_same_PE(dev->subordinate, pe);
869 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
870 * single PCI bus. Another one that contains the primary PCI bus and its
871 * subordinate PCI devices and buses. The second type of PE is normally
872 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
874 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
876 struct pci_controller *hose = pci_bus_to_host(bus);
877 struct pnv_phb *phb = hose->private_data;
878 struct pnv_ioda_pe *pe;
879 int pe_num = IODA_INVALID_PE;
881 /* Check if PE is determined by M64 */
882 if (phb->pick_m64_pe)
883 pe_num = phb->pick_m64_pe(phb, bus, all);
885 /* The PE number isn't pinned by M64 */
886 if (pe_num == IODA_INVALID_PE)
887 pe_num = pnv_ioda_alloc_pe(phb);
889 if (pe_num == IODA_INVALID_PE) {
890 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
891 __func__, pci_domain_nr(bus), bus->number);
895 pe = &phb->ioda.pe_array[pe_num];
896 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
901 pe->rid = bus->busn_res.start << 8;
905 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
906 bus->busn_res.start, bus->busn_res.end, pe_num);
908 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
909 bus->busn_res.start, pe_num);
911 if (pnv_ioda_configure_pe(phb, pe)) {
912 /* XXX What do we do here ? */
914 pnv_ioda_free_pe(phb, pe_num);
919 pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
920 GFP_KERNEL, hose->node);
921 pe->tce32_table->data = pe;
923 /* Associate it with all child devices */
924 pnv_ioda_setup_same_PE(bus, pe);
926 /* Put PE to the list */
927 list_add_tail(&pe->list, &phb->ioda.pe_list);
929 /* Account for one DMA PE if at least one DMA capable device exist
932 if (pe->dma_weight != 0) {
933 phb->ioda.dma_weight += pe->dma_weight;
934 phb->ioda.dma_pe_count++;
938 pnv_ioda_link_pe_by_weight(phb, pe);
941 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
945 pnv_ioda_setup_bus_PE(bus, 0);
947 list_for_each_entry(dev, &bus->devices, bus_list) {
948 if (dev->subordinate) {
949 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
950 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
952 pnv_ioda_setup_PEs(dev->subordinate);
958 * Configure PEs so that the downstream PCI buses and devices
959 * could have their associated PE#. Unfortunately, we didn't
960 * figure out the way to identify the PLX bridge yet. So we
961 * simply put the PCI bus and the subordinate behind the root
962 * port to PE# here. The game rule here is expected to be changed
963 * as soon as we can detected PLX bridge correctly.
965 static void pnv_pci_ioda_setup_PEs(void)
967 struct pci_controller *hose, *tmp;
970 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
971 phb = hose->private_data;
973 /* M64 layout might affect PE allocation */
974 if (phb->reserve_m64_pe)
975 phb->reserve_m64_pe(phb);
977 pnv_ioda_setup_PEs(hose->bus);
981 #ifdef CONFIG_PCI_IOV
982 int pcibios_sriov_disable(struct pci_dev *pdev)
984 /* Release PCI data */
985 remove_dev_pci_data(pdev);
989 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
991 /* Allocate PCI data */
992 add_dev_pci_data(pdev);
995 #endif /* CONFIG_PCI_IOV */
997 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
999 struct pci_dn *pdn = pci_get_pdn(pdev);
1000 struct pnv_ioda_pe *pe;
1003 * The function can be called while the PE#
1004 * hasn't been assigned. Do nothing for the
1007 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1010 pe = &phb->ioda.pe_array[pdn->pe_number];
1011 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1012 set_iommu_table_base_and_group(&pdev->dev, pe->tce32_table);
1015 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
1016 struct pci_dev *pdev, u64 dma_mask)
1018 struct pci_dn *pdn = pci_get_pdn(pdev);
1019 struct pnv_ioda_pe *pe;
1021 bool bypass = false;
1023 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1026 pe = &phb->ioda.pe_array[pdn->pe_number];
1027 if (pe->tce_bypass_enabled) {
1028 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1029 bypass = (dma_mask >= top);
1033 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1034 set_dma_ops(&pdev->dev, &dma_direct_ops);
1035 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1037 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1038 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1039 set_iommu_table_base(&pdev->dev, pe->tce32_table);
1041 *pdev->dev.dma_mask = dma_mask;
1045 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1046 struct pci_dev *pdev)
1048 struct pci_dn *pdn = pci_get_pdn(pdev);
1049 struct pnv_ioda_pe *pe;
1052 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1055 pe = &phb->ioda.pe_array[pdn->pe_number];
1056 if (!pe->tce_bypass_enabled)
1057 return __dma_get_required_mask(&pdev->dev);
1060 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1061 mask = 1ULL << (fls64(end) - 1);
1067 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1068 struct pci_bus *bus,
1069 bool add_to_iommu_group)
1071 struct pci_dev *dev;
1073 list_for_each_entry(dev, &bus->devices, bus_list) {
1074 if (add_to_iommu_group)
1075 set_iommu_table_base_and_group(&dev->dev,
1078 set_iommu_table_base(&dev->dev, pe->tce32_table);
1080 if (dev->subordinate)
1081 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1082 add_to_iommu_group);
1086 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1087 struct iommu_table *tbl,
1088 __be64 *startp, __be64 *endp, bool rm)
1090 __be64 __iomem *invalidate = rm ?
1091 (__be64 __iomem *)pe->tce_inval_reg_phys :
1092 (__be64 __iomem *)tbl->it_index;
1093 unsigned long start, end, inc;
1094 const unsigned shift = tbl->it_page_shift;
1096 start = __pa(startp);
1099 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1100 if (tbl->it_busno) {
1103 inc = 128ull << shift;
1104 start |= tbl->it_busno;
1105 end |= tbl->it_busno;
1106 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1107 /* p7ioc-style invalidation, 2 TCEs per write */
1108 start |= (1ull << 63);
1109 end |= (1ull << 63);
1112 /* Default (older HW) */
1116 end |= inc - 1; /* round up end to be different than start */
1118 mb(); /* Ensure above stores are visible */
1119 while (start <= end) {
1121 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1123 __raw_writeq(cpu_to_be64(start), invalidate);
1128 * The iommu layer will do another mb() for us on build()
1129 * and we don't care on free()
1133 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1134 struct iommu_table *tbl,
1135 __be64 *startp, __be64 *endp, bool rm)
1137 unsigned long start, end, inc;
1138 __be64 __iomem *invalidate = rm ?
1139 (__be64 __iomem *)pe->tce_inval_reg_phys :
1140 (__be64 __iomem *)tbl->it_index;
1141 const unsigned shift = tbl->it_page_shift;
1143 /* We'll invalidate DMA address in PE scope */
1144 start = 0x2ull << 60;
1145 start |= (pe->pe_number & 0xFF);
1148 /* Figure out the start, end and step */
1149 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1150 start |= (inc << shift);
1151 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1152 end |= (inc << shift);
1153 inc = (0x1ull << shift);
1156 while (start <= end) {
1158 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1160 __raw_writeq(cpu_to_be64(start), invalidate);
1165 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1166 __be64 *startp, __be64 *endp, bool rm)
1168 struct pnv_ioda_pe *pe = tbl->data;
1169 struct pnv_phb *phb = pe->phb;
1171 if (phb->type == PNV_PHB_IODA1)
1172 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1174 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1177 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1178 struct pnv_ioda_pe *pe, unsigned int base,
1182 struct page *tce_mem = NULL;
1183 const __be64 *swinvp;
1184 struct iommu_table *tbl;
1189 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1190 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
1192 /* XXX FIXME: Handle 64-bit only DMA devices */
1193 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1194 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1196 /* We shouldn't already have a 32-bit DMA associated */
1197 if (WARN_ON(pe->tce32_seg >= 0))
1200 /* Grab a 32-bit TCE table */
1201 pe->tce32_seg = base;
1202 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1203 (base << 28), ((base + segs) << 28) - 1);
1205 /* XXX Currently, we allocate one big contiguous table for the
1206 * TCEs. We only really need one chunk per 256M of TCE space
1207 * (ie per segment) but that's an optimization for later, it
1208 * requires some added smarts with our get/put_tce implementation
1210 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1211 get_order(TCE32_TABLE_SIZE * segs));
1213 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1216 addr = page_address(tce_mem);
1217 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1220 for (i = 0; i < segs; i++) {
1221 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1224 __pa(addr) + TCE32_TABLE_SIZE * i,
1225 TCE32_TABLE_SIZE, 0x1000);
1227 pe_err(pe, " Failed to configure 32-bit TCE table,"
1233 /* Setup linux iommu table */
1234 tbl = pe->tce32_table;
1235 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1236 base << 28, IOMMU_PAGE_SHIFT_4K);
1238 /* OPAL variant of P7IOC SW invalidated TCEs */
1239 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1241 /* We need a couple more fields -- an address and a data
1242 * to or. Since the bus is only printed out on table free
1243 * errors, and on the first pass the data will be a relative
1244 * bus number, print that out instead.
1246 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1247 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1249 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1250 TCE_PCI_SWINV_FREE |
1251 TCE_PCI_SWINV_PAIR);
1253 iommu_init_table(tbl, phb->hose->node);
1254 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1257 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1259 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1263 /* XXX Failure: Try to fallback to 64-bit only ? */
1264 if (pe->tce32_seg >= 0)
1267 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1270 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1272 struct pnv_ioda_pe *pe = tbl->data;
1273 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1276 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1278 phys_addr_t top = memblock_end_of_DRAM();
1280 top = roundup_pow_of_two(top);
1281 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1284 pe->tce_bypass_base,
1287 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1290 pe->tce_bypass_base,
1294 * EEH needs the mapping between IOMMU table and group
1295 * of those VFIO/KVM pass-through devices. We can postpone
1296 * resetting DMA ops until the DMA mask is configured in
1300 set_iommu_table_base(&pe->pdev->dev, tbl);
1302 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1305 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1307 pe->tce_bypass_enabled = enable;
1310 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1311 struct pnv_ioda_pe *pe)
1313 /* TVE #1 is selected by PCI address bit 59 */
1314 pe->tce_bypass_base = 1ull << 59;
1316 /* Install set_bypass callback for VFIO */
1317 pe->tce32_table->set_bypass = pnv_pci_ioda2_set_bypass;
1319 /* Enable bypass by default */
1320 pnv_pci_ioda2_set_bypass(pe->tce32_table, true);
1323 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1324 struct pnv_ioda_pe *pe)
1326 struct page *tce_mem = NULL;
1328 const __be64 *swinvp;
1329 struct iommu_table *tbl;
1330 unsigned int tce_table_size, end;
1333 /* We shouldn't already have a 32-bit DMA associated */
1334 if (WARN_ON(pe->tce32_seg >= 0))
1337 /* The PE will reserve all possible 32-bits space */
1339 end = (1 << ilog2(phb->ioda.m32_pci_base));
1340 tce_table_size = (end / 0x1000) * 8;
1341 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1344 /* Allocate TCE table */
1345 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1346 get_order(tce_table_size));
1348 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1351 addr = page_address(tce_mem);
1352 memset(addr, 0, tce_table_size);
1355 * Map TCE table through TVT. The TVE index is the PE number
1356 * shifted by 1 bit for 32-bits DMA space.
1358 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1359 pe->pe_number << 1, 1, __pa(addr),
1360 tce_table_size, 0x1000);
1362 pe_err(pe, "Failed to configure 32-bit TCE table,"
1367 /* Setup linux iommu table */
1368 tbl = pe->tce32_table;
1369 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1370 IOMMU_PAGE_SHIFT_4K);
1372 /* OPAL variant of PHB3 invalidated TCEs */
1373 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1375 /* We need a couple more fields -- an address and a data
1376 * to or. Since the bus is only printed out on table free
1377 * errors, and on the first pass the data will be a relative
1378 * bus number, print that out instead.
1380 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1381 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1383 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1385 iommu_init_table(tbl, phb->hose->node);
1386 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1389 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1391 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1393 /* Also create a bypass window */
1394 if (!pnv_iommu_bypass_disabled)
1395 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1399 if (pe->tce32_seg >= 0)
1402 __free_pages(tce_mem, get_order(tce_table_size));
1405 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1407 struct pci_controller *hose = phb->hose;
1408 unsigned int residual, remaining, segs, tw, base;
1409 struct pnv_ioda_pe *pe;
1411 /* If we have more PE# than segments available, hand out one
1412 * per PE until we run out and let the rest fail. If not,
1413 * then we assign at least one segment per PE, plus more based
1414 * on the amount of devices under that PE
1416 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1419 residual = phb->ioda.tce32_count -
1420 phb->ioda.dma_pe_count;
1422 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1423 hose->global_number, phb->ioda.tce32_count);
1424 pr_info("PCI: %d PE# for a total weight of %d\n",
1425 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1427 /* Walk our PE list and configure their DMA segments, hand them
1428 * out one base segment plus any residual segments based on
1431 remaining = phb->ioda.tce32_count;
1432 tw = phb->ioda.dma_weight;
1434 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1435 if (!pe->dma_weight)
1438 pe_warn(pe, "No DMA32 resources available\n");
1443 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
1444 if (segs > remaining)
1449 * For IODA2 compliant PHB3, we needn't care about the weight.
1450 * The all available 32-bits DMA space will be assigned to
1453 if (phb->type == PNV_PHB_IODA1) {
1454 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1455 pe->dma_weight, segs);
1456 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1458 pe_info(pe, "Assign DMA32 space\n");
1460 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1468 #ifdef CONFIG_PCI_MSI
1469 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1471 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1472 struct irq_chip *chip = irq_data_get_irq_chip(d);
1473 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1477 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1484 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1486 struct irq_data *idata;
1487 struct irq_chip *ichip;
1489 if (phb->type != PNV_PHB_IODA2)
1492 if (!phb->ioda.irq_chip_init) {
1494 * First time we setup an MSI IRQ, we need to setup the
1495 * corresponding IRQ chip to route correctly.
1497 idata = irq_get_irq_data(virq);
1498 ichip = irq_data_get_irq_chip(idata);
1499 phb->ioda.irq_chip_init = 1;
1500 phb->ioda.irq_chip = *ichip;
1501 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1503 irq_set_chip(virq, &phb->ioda.irq_chip);
1506 #ifdef CONFIG_CXL_BASE
1508 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
1510 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1512 return of_node_get(hose->dn);
1514 EXPORT_SYMBOL(pnv_pci_get_phb_node);
1516 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
1518 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1519 struct pnv_phb *phb = hose->private_data;
1520 struct pnv_ioda_pe *pe;
1523 pe = pnv_ioda_get_pe(dev);
1527 pe_info(pe, "Switching PHB to CXL\n");
1529 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
1531 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1535 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
1537 /* Find PHB for cxl dev and allocate MSI hwirqs?
1538 * Returns the absolute hardware IRQ number
1540 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1542 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1543 struct pnv_phb *phb = hose->private_data;
1544 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1547 dev_warn(&dev->dev, "Failed to find a free MSI\n");
1551 return phb->msi_base + hwirq;
1553 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1555 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1557 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1558 struct pnv_phb *phb = hose->private_data;
1560 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1562 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1564 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1565 struct pci_dev *dev)
1567 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1568 struct pnv_phb *phb = hose->private_data;
1571 for (i = 1; i < CXL_IRQ_RANGES; i++) {
1572 if (!irqs->range[i])
1574 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
1577 hwirq = irqs->offset[i] - phb->msi_base;
1578 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1582 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1584 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1585 struct pci_dev *dev, int num)
1587 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1588 struct pnv_phb *phb = hose->private_data;
1591 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1593 /* 0 is reserved for the multiplexed PSL DSI interrupt */
1594 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1597 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1605 irqs->offset[i] = phb->msi_base + hwirq;
1606 irqs->range[i] = try;
1607 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
1608 i, irqs->offset[i], irqs->range[i]);
1616 pnv_cxl_release_hwirq_ranges(irqs, dev);
1619 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1621 int pnv_cxl_get_irq_count(struct pci_dev *dev)
1623 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1624 struct pnv_phb *phb = hose->private_data;
1626 return phb->msi_bmp.irq_count;
1628 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1630 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1633 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1634 struct pnv_phb *phb = hose->private_data;
1635 unsigned int xive_num = hwirq - phb->msi_base;
1636 struct pnv_ioda_pe *pe;
1639 if (!(pe = pnv_ioda_get_pe(dev)))
1642 /* Assign XIVE to PE */
1643 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1645 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1646 "hwirq 0x%x XIVE 0x%x PE\n",
1647 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1650 set_msi_irq_chip(phb, virq);
1654 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1657 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1658 unsigned int hwirq, unsigned int virq,
1659 unsigned int is_64, struct msi_msg *msg)
1661 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1662 unsigned int xive_num = hwirq - phb->msi_base;
1666 /* No PE assigned ? bail out ... no MSI for you ! */
1670 /* Check if we have an MVE */
1671 if (pe->mve_number < 0)
1674 /* Force 32-bit MSI on some broken devices */
1675 if (dev->no_64bit_msi)
1678 /* Assign XIVE to PE */
1679 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1681 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1682 pci_name(dev), rc, xive_num);
1689 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1692 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1696 msg->address_hi = be64_to_cpu(addr64) >> 32;
1697 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1701 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1704 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1708 msg->address_hi = 0;
1709 msg->address_lo = be32_to_cpu(addr32);
1711 msg->data = be32_to_cpu(data);
1713 set_msi_irq_chip(phb, virq);
1715 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1716 " address=%x_%08x data=%x PE# %d\n",
1717 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1718 msg->address_hi, msg->address_lo, data, pe->pe_number);
1723 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1726 const __be32 *prop = of_get_property(phb->hose->dn,
1727 "ibm,opal-msi-ranges", NULL);
1730 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1735 phb->msi_base = be32_to_cpup(prop);
1736 count = be32_to_cpup(prop + 1);
1737 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1738 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1739 phb->hose->global_number);
1743 phb->msi_setup = pnv_pci_ioda_msi_setup;
1744 phb->msi32_support = 1;
1745 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1746 count, phb->msi_base);
1749 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1750 #endif /* CONFIG_PCI_MSI */
1753 * This function is supposed to be called on basis of PE from top
1754 * to bottom style. So the the I/O or MMIO segment assigned to
1755 * parent PE could be overrided by its child PEs if necessary.
1757 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1758 struct pnv_ioda_pe *pe)
1760 struct pnv_phb *phb = hose->private_data;
1761 struct pci_bus_region region;
1762 struct resource *res;
1767 * NOTE: We only care PCI bus based PE for now. For PCI
1768 * device based PE, for example SRIOV sensitive VF should
1769 * be figured out later.
1771 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1773 pci_bus_for_each_resource(pe->pbus, res, i) {
1774 if (!res || !res->flags ||
1775 res->start > res->end)
1778 if (res->flags & IORESOURCE_IO) {
1779 region.start = res->start - phb->ioda.io_pci_base;
1780 region.end = res->end - phb->ioda.io_pci_base;
1781 index = region.start / phb->ioda.io_segsize;
1783 while (index < phb->ioda.total_pe &&
1784 region.start <= region.end) {
1785 phb->ioda.io_segmap[index] = pe->pe_number;
1786 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1787 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1788 if (rc != OPAL_SUCCESS) {
1789 pr_err("%s: OPAL error %d when mapping IO "
1790 "segment #%d to PE#%d\n",
1791 __func__, rc, index, pe->pe_number);
1795 region.start += phb->ioda.io_segsize;
1798 } else if (res->flags & IORESOURCE_MEM) {
1799 region.start = res->start -
1800 hose->mem_offset[0] -
1801 phb->ioda.m32_pci_base;
1802 region.end = res->end -
1803 hose->mem_offset[0] -
1804 phb->ioda.m32_pci_base;
1805 index = region.start / phb->ioda.m32_segsize;
1807 while (index < phb->ioda.total_pe &&
1808 region.start <= region.end) {
1809 phb->ioda.m32_segmap[index] = pe->pe_number;
1810 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1811 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1812 if (rc != OPAL_SUCCESS) {
1813 pr_err("%s: OPAL error %d when mapping M32 "
1814 "segment#%d to PE#%d",
1815 __func__, rc, index, pe->pe_number);
1819 region.start += phb->ioda.m32_segsize;
1826 static void pnv_pci_ioda_setup_seg(void)
1828 struct pci_controller *tmp, *hose;
1829 struct pnv_phb *phb;
1830 struct pnv_ioda_pe *pe;
1832 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1833 phb = hose->private_data;
1834 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1835 pnv_ioda_setup_pe_seg(hose, pe);
1840 static void pnv_pci_ioda_setup_DMA(void)
1842 struct pci_controller *hose, *tmp;
1843 struct pnv_phb *phb;
1845 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1846 pnv_ioda_setup_dma(hose->private_data);
1848 /* Mark the PHB initialization done */
1849 phb = hose->private_data;
1850 phb->initialized = 1;
1854 static void pnv_pci_ioda_create_dbgfs(void)
1856 #ifdef CONFIG_DEBUG_FS
1857 struct pci_controller *hose, *tmp;
1858 struct pnv_phb *phb;
1861 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1862 phb = hose->private_data;
1864 sprintf(name, "PCI%04x", hose->global_number);
1865 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1867 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1868 __func__, hose->global_number);
1870 #endif /* CONFIG_DEBUG_FS */
1873 static void pnv_pci_ioda_fixup(void)
1875 pnv_pci_ioda_setup_PEs();
1876 pnv_pci_ioda_setup_seg();
1877 pnv_pci_ioda_setup_DMA();
1879 pnv_pci_ioda_create_dbgfs();
1883 eeh_addr_cache_build();
1888 * Returns the alignment for I/O or memory windows for P2P
1889 * bridges. That actually depends on how PEs are segmented.
1890 * For now, we return I/O or M32 segment size for PE sensitive
1891 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1892 * 1MiB for memory) will be returned.
1894 * The current PCI bus might be put into one PE, which was
1895 * create against the parent PCI bridge. For that case, we
1896 * needn't enlarge the alignment so that we can save some
1899 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1902 struct pci_dev *bridge;
1903 struct pci_controller *hose = pci_bus_to_host(bus);
1904 struct pnv_phb *phb = hose->private_data;
1905 int num_pci_bridges = 0;
1909 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1911 if (num_pci_bridges >= 2)
1915 bridge = bridge->bus->self;
1918 /* We fail back to M32 if M64 isn't supported */
1919 if (phb->ioda.m64_segsize &&
1920 pnv_pci_is_mem_pref_64(type))
1921 return phb->ioda.m64_segsize;
1922 if (type & IORESOURCE_MEM)
1923 return phb->ioda.m32_segsize;
1925 return phb->ioda.io_segsize;
1928 /* Prevent enabling devices for which we couldn't properly
1931 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1933 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1934 struct pnv_phb *phb = hose->private_data;
1937 /* The function is probably called while the PEs have
1938 * not be created yet. For example, resource reassignment
1939 * during PCI probe period. We just skip the check if
1942 if (!phb->initialized)
1945 pdn = pci_get_pdn(dev);
1946 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1952 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1955 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1958 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1960 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
1964 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1965 u64 hub_id, int ioda_type)
1967 struct pci_controller *hose;
1968 struct pnv_phb *phb;
1969 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1970 const __be64 *prop64;
1971 const __be32 *prop32;
1977 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1979 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1981 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1984 phb_id = be64_to_cpup(prop64);
1985 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1987 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
1989 /* Allocate PCI controller */
1990 phb->hose = hose = pcibios_alloc_controller(np);
1992 pr_err(" Can't allocate PCI controller for %s\n",
1994 memblock_free(__pa(phb), sizeof(struct pnv_phb));
1998 spin_lock_init(&phb->lock);
1999 prop32 = of_get_property(np, "bus-range", &len);
2000 if (prop32 && len == 8) {
2001 hose->first_busno = be32_to_cpu(prop32[0]);
2002 hose->last_busno = be32_to_cpu(prop32[1]);
2004 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
2005 hose->first_busno = 0;
2006 hose->last_busno = 0xff;
2008 hose->private_data = phb;
2009 phb->hub_id = hub_id;
2010 phb->opal_id = phb_id;
2011 phb->type = ioda_type;
2013 /* Detect specific models for error handling */
2014 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2015 phb->model = PNV_PHB_MODEL_P7IOC;
2016 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2017 phb->model = PNV_PHB_MODEL_PHB3;
2019 phb->model = PNV_PHB_MODEL_UNKNOWN;
2021 /* Parse 32-bit and IO ranges (if any) */
2022 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2025 phb->regs = of_iomap(np, 0);
2026 if (phb->regs == NULL)
2027 pr_err(" Failed to map registers !\n");
2029 /* Initialize more IODA stuff */
2030 phb->ioda.total_pe = 1;
2031 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2033 phb->ioda.total_pe = be32_to_cpup(prop32);
2034 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2036 phb->ioda.reserved_pe = be32_to_cpup(prop32);
2038 /* Parse 64-bit MMIO range */
2039 pnv_ioda_parse_m64_window(phb);
2041 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2042 /* FW Has already off top 64k of M32 space (MSI space) */
2043 phb->ioda.m32_size += 0x10000;
2045 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2046 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2047 phb->ioda.io_size = hose->pci_io_size;
2048 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2049 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2051 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2052 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2054 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2055 if (phb->type == PNV_PHB_IODA1) {
2057 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2060 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2061 aux = memblock_virt_alloc(size, 0);
2062 phb->ioda.pe_alloc = aux;
2063 phb->ioda.m32_segmap = aux + m32map_off;
2064 if (phb->type == PNV_PHB_IODA1)
2065 phb->ioda.io_segmap = aux + iomap_off;
2066 phb->ioda.pe_array = aux + pemap_off;
2067 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2069 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2070 INIT_LIST_HEAD(&phb->ioda.pe_list);
2072 /* Calculate how many 32-bit TCE segments we have */
2073 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2075 #if 0 /* We should really do that ... */
2076 rc = opal_pci_set_phb_mem_window(opal->phb_id,
2079 starting_real_address,
2080 starting_pci_address,
2084 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2085 phb->ioda.total_pe, phb->ioda.reserved_pe,
2086 phb->ioda.m32_size, phb->ioda.m32_segsize);
2087 if (phb->ioda.m64_size)
2088 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
2089 phb->ioda.m64_size, phb->ioda.m64_segsize);
2090 if (phb->ioda.io_size)
2091 pr_info(" IO: 0x%x [segment=0x%x]\n",
2092 phb->ioda.io_size, phb->ioda.io_segsize);
2095 phb->hose->ops = &pnv_pci_ops;
2096 phb->get_pe_state = pnv_ioda_get_pe_state;
2097 phb->freeze_pe = pnv_ioda_freeze_pe;
2098 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2100 /* Setup RID -> PE mapping function */
2101 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2104 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2105 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
2106 phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2108 /* Setup shutdown function for kexec */
2109 phb->shutdown = pnv_pci_ioda_shutdown;
2111 /* Setup MSI support */
2112 pnv_pci_init_ioda_msis(phb);
2115 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2116 * to let the PCI core do resource assignment. It's supposed
2117 * that the PCI core will do correct I/O and MMIO alignment
2118 * for the P2P bridge bars so that each PCI bus (excluding
2119 * the child P2P bridges) can form individual PE.
2121 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2122 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
2123 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
2124 ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
2125 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2127 /* Reset IODA tables to a clean state */
2128 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2130 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
2132 /* If we're running in kdump kerenl, the previous kerenl never
2133 * shutdown PCI devices correctly. We already got IODA table
2134 * cleaned out. So we have to issue PHB reset to stop all PCI
2135 * transactions from previous kerenl.
2137 if (is_kdump_kernel()) {
2138 pr_info(" Issue PHB reset ...\n");
2139 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2140 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2143 /* Remove M64 resource if we can't configure it successfully */
2144 if (!phb->init_m64 || phb->init_m64(phb))
2145 hose->mem_resources[1].flags = 0;
2148 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2150 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2153 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2155 struct device_node *phbn;
2156 const __be64 *prop64;
2159 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2161 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2163 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2166 hub_id = be64_to_cpup(prop64);
2167 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2169 /* Count child PHBs */
2170 for_each_child_of_node(np, phbn) {
2171 /* Look for IODA1 PHBs */
2172 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2173 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);