]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
powerpc/powernv/npu: Rework TCE Kill handling
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
52 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
56 #define POWERNV_IOMMU_MAX_LEVELS        5
57
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61                             const char *fmt, ...)
62 {
63         struct va_format vaf;
64         va_list args;
65         char pfix[32];
66
67         va_start(args, fmt);
68
69         vaf.fmt = fmt;
70         vaf.va = &args;
71
72         if (pe->flags & PNV_IODA_PE_DEV)
73                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75                 sprintf(pfix, "%04x:%02x     ",
76                         pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78         else if (pe->flags & PNV_IODA_PE_VF)
79                 sprintf(pfix, "%04x:%02x:%2x.%d",
80                         pci_domain_nr(pe->parent_dev->bus),
81                         (pe->rid & 0xff00) >> 8,
82                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85         printk("%spci %s: [PE# %.3d] %pV",
86                level, pfix, pe->pe_number, &vaf);
87
88         va_end(args);
89 }
90
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92
93 static int __init iommu_setup(char *str)
94 {
95         if (!str)
96                 return -EINVAL;
97
98         while (*str) {
99                 if (!strncmp(str, "nobypass", 8)) {
100                         pnv_iommu_bypass_disabled = true;
101                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
102                         break;
103                 }
104                 str += strcspn(str, ",");
105                 if (*str == ',')
106                         str++;
107         }
108
109         return 0;
110 }
111 early_param("iommu", iommu_setup);
112
113 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
114 {
115         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
116                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
117 }
118
119 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
120 {
121         phb->ioda.pe_array[pe_no].phb = phb;
122         phb->ioda.pe_array[pe_no].pe_number = pe_no;
123
124         return &phb->ioda.pe_array[pe_no];
125 }
126
127 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
128 {
129         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
130                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
131                         __func__, pe_no, phb->hose->global_number);
132                 return;
133         }
134
135         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
136                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
137                          __func__, pe_no, phb->hose->global_number);
138
139         pnv_ioda_init_pe(phb, pe_no);
140 }
141
142 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
143 {
144         unsigned long pe;
145
146         do {
147                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
148                                         phb->ioda.total_pe_num, 0);
149                 if (pe >= phb->ioda.total_pe_num)
150                         return NULL;
151         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
152
153         return pnv_ioda_init_pe(phb, pe);
154 }
155
156 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
157 {
158         struct pnv_phb *phb = pe->phb;
159
160         WARN_ON(pe->pdev);
161
162         memset(pe, 0, sizeof(struct pnv_ioda_pe));
163         clear_bit(pe->pe_number, phb->ioda.pe_alloc);
164 }
165
166 /* The default M64 BAR is shared by all PEs */
167 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
168 {
169         const char *desc;
170         struct resource *r;
171         s64 rc;
172
173         /* Configure the default M64 BAR */
174         rc = opal_pci_set_phb_mem_window(phb->opal_id,
175                                          OPAL_M64_WINDOW_TYPE,
176                                          phb->ioda.m64_bar_idx,
177                                          phb->ioda.m64_base,
178                                          0, /* unused */
179                                          phb->ioda.m64_size);
180         if (rc != OPAL_SUCCESS) {
181                 desc = "configuring";
182                 goto fail;
183         }
184
185         /* Enable the default M64 BAR */
186         rc = opal_pci_phb_mmio_enable(phb->opal_id,
187                                       OPAL_M64_WINDOW_TYPE,
188                                       phb->ioda.m64_bar_idx,
189                                       OPAL_ENABLE_M64_SPLIT);
190         if (rc != OPAL_SUCCESS) {
191                 desc = "enabling";
192                 goto fail;
193         }
194
195         /* Mark the M64 BAR assigned */
196         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
197
198         /*
199          * Strip off the segment used by the reserved PE, which is
200          * expected to be 0 or last one of PE capabicity.
201          */
202         r = &phb->hose->mem_resources[1];
203         if (phb->ioda.reserved_pe_idx == 0)
204                 r->start += phb->ioda.m64_segsize;
205         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
206                 r->end -= phb->ioda.m64_segsize;
207         else
208                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
209                         phb->ioda.reserved_pe_idx);
210
211         return 0;
212
213 fail:
214         pr_warn("  Failure %lld %s M64 BAR#%d\n",
215                 rc, desc, phb->ioda.m64_bar_idx);
216         opal_pci_phb_mmio_enable(phb->opal_id,
217                                  OPAL_M64_WINDOW_TYPE,
218                                  phb->ioda.m64_bar_idx,
219                                  OPAL_DISABLE_M64);
220         return -EIO;
221 }
222
223 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
224                                          unsigned long *pe_bitmap)
225 {
226         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
227         struct pnv_phb *phb = hose->private_data;
228         struct resource *r;
229         resource_size_t base, sgsz, start, end;
230         int segno, i;
231
232         base = phb->ioda.m64_base;
233         sgsz = phb->ioda.m64_segsize;
234         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
235                 r = &pdev->resource[i];
236                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
237                         continue;
238
239                 start = _ALIGN_DOWN(r->start - base, sgsz);
240                 end = _ALIGN_UP(r->end - base, sgsz);
241                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
242                         if (pe_bitmap)
243                                 set_bit(segno, pe_bitmap);
244                         else
245                                 pnv_ioda_reserve_pe(phb, segno);
246                 }
247         }
248 }
249
250 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
251 {
252         struct resource *r;
253         int index;
254
255         /*
256          * There are 16 M64 BARs, each of which has 8 segments. So
257          * there are as many M64 segments as the maximum number of
258          * PEs, which is 128.
259          */
260         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
261                 unsigned long base, segsz = phb->ioda.m64_segsize;
262                 int64_t rc;
263
264                 base = phb->ioda.m64_base +
265                        index * PNV_IODA1_M64_SEGS * segsz;
266                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
267                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
268                                 PNV_IODA1_M64_SEGS * segsz);
269                 if (rc != OPAL_SUCCESS) {
270                         pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
271                                 rc, phb->hose->global_number, index);
272                         goto fail;
273                 }
274
275                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
276                                 OPAL_M64_WINDOW_TYPE, index,
277                                 OPAL_ENABLE_M64_SPLIT);
278                 if (rc != OPAL_SUCCESS) {
279                         pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
280                                 rc, phb->hose->global_number, index);
281                         goto fail;
282                 }
283         }
284
285         /*
286          * Exclude the segment used by the reserved PE, which
287          * is expected to be 0 or last supported PE#.
288          */
289         r = &phb->hose->mem_resources[1];
290         if (phb->ioda.reserved_pe_idx == 0)
291                 r->start += phb->ioda.m64_segsize;
292         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
293                 r->end -= phb->ioda.m64_segsize;
294         else
295                 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
296                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
297
298         return 0;
299
300 fail:
301         for ( ; index >= 0; index--)
302                 opal_pci_phb_mmio_enable(phb->opal_id,
303                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
304
305         return -EIO;
306 }
307
308 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
309                                     unsigned long *pe_bitmap,
310                                     bool all)
311 {
312         struct pci_dev *pdev;
313
314         list_for_each_entry(pdev, &bus->devices, bus_list) {
315                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
316
317                 if (all && pdev->subordinate)
318                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
319                                                 pe_bitmap, all);
320         }
321 }
322
323 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
324 {
325         struct pci_controller *hose = pci_bus_to_host(bus);
326         struct pnv_phb *phb = hose->private_data;
327         struct pnv_ioda_pe *master_pe, *pe;
328         unsigned long size, *pe_alloc;
329         int i;
330
331         /* Root bus shouldn't use M64 */
332         if (pci_is_root_bus(bus))
333                 return NULL;
334
335         /* Allocate bitmap */
336         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
337         pe_alloc = kzalloc(size, GFP_KERNEL);
338         if (!pe_alloc) {
339                 pr_warn("%s: Out of memory !\n",
340                         __func__);
341                 return NULL;
342         }
343
344         /* Figure out reserved PE numbers by the PE */
345         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
346
347         /*
348          * the current bus might not own M64 window and that's all
349          * contributed by its child buses. For the case, we needn't
350          * pick M64 dependent PE#.
351          */
352         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
353                 kfree(pe_alloc);
354                 return NULL;
355         }
356
357         /*
358          * Figure out the master PE and put all slave PEs to master
359          * PE's list to form compound PE.
360          */
361         master_pe = NULL;
362         i = -1;
363         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
364                 phb->ioda.total_pe_num) {
365                 pe = &phb->ioda.pe_array[i];
366
367                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
368                 if (!master_pe) {
369                         pe->flags |= PNV_IODA_PE_MASTER;
370                         INIT_LIST_HEAD(&pe->slaves);
371                         master_pe = pe;
372                 } else {
373                         pe->flags |= PNV_IODA_PE_SLAVE;
374                         pe->master = master_pe;
375                         list_add_tail(&pe->list, &master_pe->slaves);
376                 }
377
378                 /*
379                  * P7IOC supports M64DT, which helps mapping M64 segment
380                  * to one particular PE#. However, PHB3 has fixed mapping
381                  * between M64 segment and PE#. In order to have same logic
382                  * for P7IOC and PHB3, we enforce fixed mapping between M64
383                  * segment and PE# on P7IOC.
384                  */
385                 if (phb->type == PNV_PHB_IODA1) {
386                         int64_t rc;
387
388                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
389                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
390                                         pe->pe_number / PNV_IODA1_M64_SEGS,
391                                         pe->pe_number % PNV_IODA1_M64_SEGS);
392                         if (rc != OPAL_SUCCESS)
393                                 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
394                                         __func__, rc, phb->hose->global_number,
395                                         pe->pe_number);
396                 }
397         }
398
399         kfree(pe_alloc);
400         return master_pe;
401 }
402
403 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
404 {
405         struct pci_controller *hose = phb->hose;
406         struct device_node *dn = hose->dn;
407         struct resource *res;
408         const u32 *r;
409         u64 pci_addr;
410
411         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
412                 pr_info("  Not support M64 window\n");
413                 return;
414         }
415
416         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
417                 pr_info("  Firmware too old to support M64 window\n");
418                 return;
419         }
420
421         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
422         if (!r) {
423                 pr_info("  No <ibm,opal-m64-window> on %s\n",
424                         dn->full_name);
425                 return;
426         }
427
428         res = &hose->mem_resources[1];
429         res->name = dn->full_name;
430         res->start = of_translate_address(dn, r + 2);
431         res->end = res->start + of_read_number(r + 4, 2) - 1;
432         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
433         pci_addr = of_read_number(r, 2);
434         hose->mem_offset[1] = res->start - pci_addr;
435
436         phb->ioda.m64_size = resource_size(res);
437         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
438         phb->ioda.m64_base = pci_addr;
439
440         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
441                         res->start, res->end, pci_addr);
442
443         /* Use last M64 BAR to cover M64 window */
444         phb->ioda.m64_bar_idx = 15;
445         if (phb->type == PNV_PHB_IODA1)
446                 phb->init_m64 = pnv_ioda1_init_m64;
447         else
448                 phb->init_m64 = pnv_ioda2_init_m64;
449         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
450         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
451 }
452
453 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
454 {
455         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
456         struct pnv_ioda_pe *slave;
457         s64 rc;
458
459         /* Fetch master PE */
460         if (pe->flags & PNV_IODA_PE_SLAVE) {
461                 pe = pe->master;
462                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
463                         return;
464
465                 pe_no = pe->pe_number;
466         }
467
468         /* Freeze master PE */
469         rc = opal_pci_eeh_freeze_set(phb->opal_id,
470                                      pe_no,
471                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
472         if (rc != OPAL_SUCCESS) {
473                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
474                         __func__, rc, phb->hose->global_number, pe_no);
475                 return;
476         }
477
478         /* Freeze slave PEs */
479         if (!(pe->flags & PNV_IODA_PE_MASTER))
480                 return;
481
482         list_for_each_entry(slave, &pe->slaves, list) {
483                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
484                                              slave->pe_number,
485                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
486                 if (rc != OPAL_SUCCESS)
487                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
488                                 __func__, rc, phb->hose->global_number,
489                                 slave->pe_number);
490         }
491 }
492
493 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
494 {
495         struct pnv_ioda_pe *pe, *slave;
496         s64 rc;
497
498         /* Find master PE */
499         pe = &phb->ioda.pe_array[pe_no];
500         if (pe->flags & PNV_IODA_PE_SLAVE) {
501                 pe = pe->master;
502                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
503                 pe_no = pe->pe_number;
504         }
505
506         /* Clear frozen state for master PE */
507         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
508         if (rc != OPAL_SUCCESS) {
509                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
510                         __func__, rc, opt, phb->hose->global_number, pe_no);
511                 return -EIO;
512         }
513
514         if (!(pe->flags & PNV_IODA_PE_MASTER))
515                 return 0;
516
517         /* Clear frozen state for slave PEs */
518         list_for_each_entry(slave, &pe->slaves, list) {
519                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
520                                              slave->pe_number,
521                                              opt);
522                 if (rc != OPAL_SUCCESS) {
523                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
524                                 __func__, rc, opt, phb->hose->global_number,
525                                 slave->pe_number);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
534 {
535         struct pnv_ioda_pe *slave, *pe;
536         u8 fstate, state;
537         __be16 pcierr;
538         s64 rc;
539
540         /* Sanity check on PE number */
541         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
542                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
543
544         /*
545          * Fetch the master PE and the PE instance might be
546          * not initialized yet.
547          */
548         pe = &phb->ioda.pe_array[pe_no];
549         if (pe->flags & PNV_IODA_PE_SLAVE) {
550                 pe = pe->master;
551                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
552                 pe_no = pe->pe_number;
553         }
554
555         /* Check the master PE */
556         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
557                                         &state, &pcierr, NULL);
558         if (rc != OPAL_SUCCESS) {
559                 pr_warn("%s: Failure %lld getting "
560                         "PHB#%x-PE#%x state\n",
561                         __func__, rc,
562                         phb->hose->global_number, pe_no);
563                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
564         }
565
566         /* Check the slave PE */
567         if (!(pe->flags & PNV_IODA_PE_MASTER))
568                 return state;
569
570         list_for_each_entry(slave, &pe->slaves, list) {
571                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
572                                                 slave->pe_number,
573                                                 &fstate,
574                                                 &pcierr,
575                                                 NULL);
576                 if (rc != OPAL_SUCCESS) {
577                         pr_warn("%s: Failure %lld getting "
578                                 "PHB#%x-PE#%x state\n",
579                                 __func__, rc,
580                                 phb->hose->global_number, slave->pe_number);
581                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
582                 }
583
584                 /*
585                  * Override the result based on the ascending
586                  * priority.
587                  */
588                 if (fstate > state)
589                         state = fstate;
590         }
591
592         return state;
593 }
594
595 /* Currently those 2 are only used when MSIs are enabled, this will change
596  * but in the meantime, we need to protect them to avoid warnings
597  */
598 #ifdef CONFIG_PCI_MSI
599 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
600 {
601         struct pci_controller *hose = pci_bus_to_host(dev->bus);
602         struct pnv_phb *phb = hose->private_data;
603         struct pci_dn *pdn = pci_get_pdn(dev);
604
605         if (!pdn)
606                 return NULL;
607         if (pdn->pe_number == IODA_INVALID_PE)
608                 return NULL;
609         return &phb->ioda.pe_array[pdn->pe_number];
610 }
611 #endif /* CONFIG_PCI_MSI */
612
613 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
614                                   struct pnv_ioda_pe *parent,
615                                   struct pnv_ioda_pe *child,
616                                   bool is_add)
617 {
618         const char *desc = is_add ? "adding" : "removing";
619         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
620                               OPAL_REMOVE_PE_FROM_DOMAIN;
621         struct pnv_ioda_pe *slave;
622         long rc;
623
624         /* Parent PE affects child PE */
625         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
626                                 child->pe_number, op);
627         if (rc != OPAL_SUCCESS) {
628                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
629                         rc, desc);
630                 return -ENXIO;
631         }
632
633         if (!(child->flags & PNV_IODA_PE_MASTER))
634                 return 0;
635
636         /* Compound case: parent PE affects slave PEs */
637         list_for_each_entry(slave, &child->slaves, list) {
638                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
639                                         slave->pe_number, op);
640                 if (rc != OPAL_SUCCESS) {
641                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
642                                 rc, desc);
643                         return -ENXIO;
644                 }
645         }
646
647         return 0;
648 }
649
650 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
651                               struct pnv_ioda_pe *pe,
652                               bool is_add)
653 {
654         struct pnv_ioda_pe *slave;
655         struct pci_dev *pdev = NULL;
656         int ret;
657
658         /*
659          * Clear PE frozen state. If it's master PE, we need
660          * clear slave PE frozen state as well.
661          */
662         if (is_add) {
663                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
664                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
665                 if (pe->flags & PNV_IODA_PE_MASTER) {
666                         list_for_each_entry(slave, &pe->slaves, list)
667                                 opal_pci_eeh_freeze_clear(phb->opal_id,
668                                                           slave->pe_number,
669                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
670                 }
671         }
672
673         /*
674          * Associate PE in PELT. We need add the PE into the
675          * corresponding PELT-V as well. Otherwise, the error
676          * originated from the PE might contribute to other
677          * PEs.
678          */
679         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
680         if (ret)
681                 return ret;
682
683         /* For compound PEs, any one affects all of them */
684         if (pe->flags & PNV_IODA_PE_MASTER) {
685                 list_for_each_entry(slave, &pe->slaves, list) {
686                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
687                         if (ret)
688                                 return ret;
689                 }
690         }
691
692         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
693                 pdev = pe->pbus->self;
694         else if (pe->flags & PNV_IODA_PE_DEV)
695                 pdev = pe->pdev->bus->self;
696 #ifdef CONFIG_PCI_IOV
697         else if (pe->flags & PNV_IODA_PE_VF)
698                 pdev = pe->parent_dev;
699 #endif /* CONFIG_PCI_IOV */
700         while (pdev) {
701                 struct pci_dn *pdn = pci_get_pdn(pdev);
702                 struct pnv_ioda_pe *parent;
703
704                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
705                         parent = &phb->ioda.pe_array[pdn->pe_number];
706                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
707                         if (ret)
708                                 return ret;
709                 }
710
711                 pdev = pdev->bus->self;
712         }
713
714         return 0;
715 }
716
717 #ifdef CONFIG_PCI_IOV
718 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
719 {
720         struct pci_dev *parent;
721         uint8_t bcomp, dcomp, fcomp;
722         int64_t rc;
723         long rid_end, rid;
724
725         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
726         if (pe->pbus) {
727                 int count;
728
729                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
730                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
731                 parent = pe->pbus->self;
732                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
733                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
734                 else
735                         count = 1;
736
737                 switch(count) {
738                 case  1: bcomp = OpalPciBusAll;         break;
739                 case  2: bcomp = OpalPciBus7Bits;       break;
740                 case  4: bcomp = OpalPciBus6Bits;       break;
741                 case  8: bcomp = OpalPciBus5Bits;       break;
742                 case 16: bcomp = OpalPciBus4Bits;       break;
743                 case 32: bcomp = OpalPciBus3Bits;       break;
744                 default:
745                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
746                                 count);
747                         /* Do an exact match only */
748                         bcomp = OpalPciBusAll;
749                 }
750                 rid_end = pe->rid + (count << 8);
751         } else {
752                 if (pe->flags & PNV_IODA_PE_VF)
753                         parent = pe->parent_dev;
754                 else
755                         parent = pe->pdev->bus->self;
756                 bcomp = OpalPciBusAll;
757                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759                 rid_end = pe->rid + 1;
760         }
761
762         /* Clear the reverse map */
763         for (rid = pe->rid; rid < rid_end; rid++)
764                 phb->ioda.pe_rmap[rid] = 0;
765
766         /* Release from all parents PELT-V */
767         while (parent) {
768                 struct pci_dn *pdn = pci_get_pdn(parent);
769                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772                         /* XXX What to do in case of error ? */
773                 }
774                 parent = parent->bus->self;
775         }
776
777         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779
780         /* Disassociate PE in PELT */
781         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783         if (rc)
784                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787         if (rc)
788                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789
790         pe->pbus = NULL;
791         pe->pdev = NULL;
792         pe->parent_dev = NULL;
793
794         return 0;
795 }
796 #endif /* CONFIG_PCI_IOV */
797
798 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
799 {
800         struct pci_dev *parent;
801         uint8_t bcomp, dcomp, fcomp;
802         long rc, rid_end, rid;
803
804         /* Bus validation ? */
805         if (pe->pbus) {
806                 int count;
807
808                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
809                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
810                 parent = pe->pbus->self;
811                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
812                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
813                 else
814                         count = 1;
815
816                 switch(count) {
817                 case  1: bcomp = OpalPciBusAll;         break;
818                 case  2: bcomp = OpalPciBus7Bits;       break;
819                 case  4: bcomp = OpalPciBus6Bits;       break;
820                 case  8: bcomp = OpalPciBus5Bits;       break;
821                 case 16: bcomp = OpalPciBus4Bits;       break;
822                 case 32: bcomp = OpalPciBus3Bits;       break;
823                 default:
824                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
825                                 count);
826                         /* Do an exact match only */
827                         bcomp = OpalPciBusAll;
828                 }
829                 rid_end = pe->rid + (count << 8);
830         } else {
831 #ifdef CONFIG_PCI_IOV
832                 if (pe->flags & PNV_IODA_PE_VF)
833                         parent = pe->parent_dev;
834                 else
835 #endif /* CONFIG_PCI_IOV */
836                         parent = pe->pdev->bus->self;
837                 bcomp = OpalPciBusAll;
838                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
839                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
840                 rid_end = pe->rid + 1;
841         }
842
843         /*
844          * Associate PE in PELT. We need add the PE into the
845          * corresponding PELT-V as well. Otherwise, the error
846          * originated from the PE might contribute to other
847          * PEs.
848          */
849         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
851         if (rc) {
852                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
853                 return -ENXIO;
854         }
855
856         /*
857          * Configure PELTV. NPUs don't have a PELTV table so skip
858          * configuration on them.
859          */
860         if (phb->type != PNV_PHB_NPU)
861                 pnv_ioda_set_peltv(phb, pe, true);
862
863         /* Setup reverse map */
864         for (rid = pe->rid; rid < rid_end; rid++)
865                 phb->ioda.pe_rmap[rid] = pe->pe_number;
866
867         /* Setup one MVTs on IODA1 */
868         if (phb->type != PNV_PHB_IODA1) {
869                 pe->mve_number = 0;
870                 goto out;
871         }
872
873         pe->mve_number = pe->pe_number;
874         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
875         if (rc != OPAL_SUCCESS) {
876                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
877                        rc, pe->mve_number);
878                 pe->mve_number = -1;
879         } else {
880                 rc = opal_pci_set_mve_enable(phb->opal_id,
881                                              pe->mve_number, OPAL_ENABLE_MVE);
882                 if (rc) {
883                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
884                                rc, pe->mve_number);
885                         pe->mve_number = -1;
886                 }
887         }
888
889 out:
890         return 0;
891 }
892
893 #ifdef CONFIG_PCI_IOV
894 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
895 {
896         struct pci_dn *pdn = pci_get_pdn(dev);
897         int i;
898         struct resource *res, res2;
899         resource_size_t size;
900         u16 num_vfs;
901
902         if (!dev->is_physfn)
903                 return -EINVAL;
904
905         /*
906          * "offset" is in VFs.  The M64 windows are sized so that when they
907          * are segmented, each segment is the same size as the IOV BAR.
908          * Each segment is in a separate PE, and the high order bits of the
909          * address are the PE number.  Therefore, each VF's BAR is in a
910          * separate PE, and changing the IOV BAR start address changes the
911          * range of PEs the VFs are in.
912          */
913         num_vfs = pdn->num_vfs;
914         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
915                 res = &dev->resource[i + PCI_IOV_RESOURCES];
916                 if (!res->flags || !res->parent)
917                         continue;
918
919                 /*
920                  * The actual IOV BAR range is determined by the start address
921                  * and the actual size for num_vfs VFs BAR.  This check is to
922                  * make sure that after shifting, the range will not overlap
923                  * with another device.
924                  */
925                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
926                 res2.flags = res->flags;
927                 res2.start = res->start + (size * offset);
928                 res2.end = res2.start + (size * num_vfs) - 1;
929
930                 if (res2.end > res->end) {
931                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
932                                 i, &res2, res, num_vfs, offset);
933                         return -EBUSY;
934                 }
935         }
936
937         /*
938          * After doing so, there would be a "hole" in the /proc/iomem when
939          * offset is a positive value. It looks like the device return some
940          * mmio back to the system, which actually no one could use it.
941          */
942         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
943                 res = &dev->resource[i + PCI_IOV_RESOURCES];
944                 if (!res->flags || !res->parent)
945                         continue;
946
947                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
948                 res2 = *res;
949                 res->start += size * offset;
950
951                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
952                          i, &res2, res, (offset > 0) ? "En" : "Dis",
953                          num_vfs, offset);
954                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
955         }
956         return 0;
957 }
958 #endif /* CONFIG_PCI_IOV */
959
960 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
961 {
962         struct pci_controller *hose = pci_bus_to_host(dev->bus);
963         struct pnv_phb *phb = hose->private_data;
964         struct pci_dn *pdn = pci_get_pdn(dev);
965         struct pnv_ioda_pe *pe;
966
967         if (!pdn) {
968                 pr_err("%s: Device tree node not associated properly\n",
969                            pci_name(dev));
970                 return NULL;
971         }
972         if (pdn->pe_number != IODA_INVALID_PE)
973                 return NULL;
974
975         pe = pnv_ioda_alloc_pe(phb);
976         if (!pe) {
977                 pr_warning("%s: Not enough PE# available, disabling device\n",
978                            pci_name(dev));
979                 return NULL;
980         }
981
982         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
983          * pointer in the PE data structure, both should be destroyed at the
984          * same time. However, this needs to be looked at more closely again
985          * once we actually start removing things (Hotplug, SR-IOV, ...)
986          *
987          * At some point we want to remove the PDN completely anyways
988          */
989         pci_dev_get(dev);
990         pdn->pcidev = dev;
991         pdn->pe_number = pe->pe_number;
992         pe->flags = PNV_IODA_PE_DEV;
993         pe->pdev = dev;
994         pe->pbus = NULL;
995         pe->mve_number = -1;
996         pe->rid = dev->bus->number << 8 | pdn->devfn;
997
998         pe_info(pe, "Associated device to PE\n");
999
1000         if (pnv_ioda_configure_pe(phb, pe)) {
1001                 /* XXX What do we do here ? */
1002                 pnv_ioda_free_pe(pe);
1003                 pdn->pe_number = IODA_INVALID_PE;
1004                 pe->pdev = NULL;
1005                 pci_dev_put(dev);
1006                 return NULL;
1007         }
1008
1009         return pe;
1010 }
1011
1012 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1013 {
1014         struct pci_dev *dev;
1015
1016         list_for_each_entry(dev, &bus->devices, bus_list) {
1017                 struct pci_dn *pdn = pci_get_pdn(dev);
1018
1019                 if (pdn == NULL) {
1020                         pr_warn("%s: No device node associated with device !\n",
1021                                 pci_name(dev));
1022                         continue;
1023                 }
1024                 pdn->pcidev = dev;
1025                 pdn->pe_number = pe->pe_number;
1026                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1027                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1028         }
1029 }
1030
1031 /*
1032  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1033  * single PCI bus. Another one that contains the primary PCI bus and its
1034  * subordinate PCI devices and buses. The second type of PE is normally
1035  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1036  */
1037 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1038 {
1039         struct pci_controller *hose = pci_bus_to_host(bus);
1040         struct pnv_phb *phb = hose->private_data;
1041         struct pnv_ioda_pe *pe = NULL;
1042
1043         /* Check if PE is determined by M64 */
1044         if (phb->pick_m64_pe)
1045                 pe = phb->pick_m64_pe(bus, all);
1046
1047         /* The PE number isn't pinned by M64 */
1048         if (!pe)
1049                 pe = pnv_ioda_alloc_pe(phb);
1050
1051         if (!pe) {
1052                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1053                         __func__, pci_domain_nr(bus), bus->number);
1054                 return NULL;
1055         }
1056
1057         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1058         pe->pbus = bus;
1059         pe->pdev = NULL;
1060         pe->mve_number = -1;
1061         pe->rid = bus->busn_res.start << 8;
1062
1063         if (all)
1064                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1065                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1066         else
1067                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1068                         bus->busn_res.start, pe->pe_number);
1069
1070         if (pnv_ioda_configure_pe(phb, pe)) {
1071                 /* XXX What do we do here ? */
1072                 pnv_ioda_free_pe(pe);
1073                 pe->pbus = NULL;
1074                 return NULL;
1075         }
1076
1077         /* Associate it with all child devices */
1078         pnv_ioda_setup_same_PE(bus, pe);
1079
1080         /* Put PE to the list */
1081         list_add_tail(&pe->list, &phb->ioda.pe_list);
1082
1083         return pe;
1084 }
1085
1086 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1087 {
1088         int pe_num, found_pe = false, rc;
1089         long rid;
1090         struct pnv_ioda_pe *pe;
1091         struct pci_dev *gpu_pdev;
1092         struct pci_dn *npu_pdn;
1093         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1094         struct pnv_phb *phb = hose->private_data;
1095
1096         /*
1097          * Due to a hardware errata PE#0 on the NPU is reserved for
1098          * error handling. This means we only have three PEs remaining
1099          * which need to be assigned to four links, implying some
1100          * links must share PEs.
1101          *
1102          * To achieve this we assign PEs such that NPUs linking the
1103          * same GPU get assigned the same PE.
1104          */
1105         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1106         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1107                 pe = &phb->ioda.pe_array[pe_num];
1108                 if (!pe->pdev)
1109                         continue;
1110
1111                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1112                         /*
1113                          * This device has the same peer GPU so should
1114                          * be assigned the same PE as the existing
1115                          * peer NPU.
1116                          */
1117                         dev_info(&npu_pdev->dev,
1118                                 "Associating to existing PE %d\n", pe_num);
1119                         pci_dev_get(npu_pdev);
1120                         npu_pdn = pci_get_pdn(npu_pdev);
1121                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1122                         npu_pdn->pcidev = npu_pdev;
1123                         npu_pdn->pe_number = pe_num;
1124                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1125
1126                         /* Map the PE to this link */
1127                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1128                                         OpalPciBusAll,
1129                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1130                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1131                                         OPAL_MAP_PE);
1132                         WARN_ON(rc != OPAL_SUCCESS);
1133                         found_pe = true;
1134                         break;
1135                 }
1136         }
1137
1138         if (!found_pe)
1139                 /*
1140                  * Could not find an existing PE so allocate a new
1141                  * one.
1142                  */
1143                 return pnv_ioda_setup_dev_PE(npu_pdev);
1144         else
1145                 return pe;
1146 }
1147
1148 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1149 {
1150         struct pci_dev *pdev;
1151
1152         list_for_each_entry(pdev, &bus->devices, bus_list)
1153                 pnv_ioda_setup_npu_PE(pdev);
1154 }
1155
1156 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1157 {
1158         struct pci_dev *dev;
1159
1160         pnv_ioda_setup_bus_PE(bus, false);
1161
1162         list_for_each_entry(dev, &bus->devices, bus_list) {
1163                 if (dev->subordinate) {
1164                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1165                                 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1166                         else
1167                                 pnv_ioda_setup_PEs(dev->subordinate);
1168                 }
1169         }
1170 }
1171
1172 /*
1173  * Configure PEs so that the downstream PCI buses and devices
1174  * could have their associated PE#. Unfortunately, we didn't
1175  * figure out the way to identify the PLX bridge yet. So we
1176  * simply put the PCI bus and the subordinate behind the root
1177  * port to PE# here. The game rule here is expected to be changed
1178  * as soon as we can detected PLX bridge correctly.
1179  */
1180 static void pnv_pci_ioda_setup_PEs(void)
1181 {
1182         struct pci_controller *hose, *tmp;
1183         struct pnv_phb *phb;
1184
1185         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1186                 phb = hose->private_data;
1187
1188                 /* M64 layout might affect PE allocation */
1189                 if (phb->reserve_m64_pe)
1190                         phb->reserve_m64_pe(hose->bus, NULL, true);
1191
1192                 /*
1193                  * On NPU PHB, we expect separate PEs for individual PCI
1194                  * functions. PCI bus dependent PEs are required for the
1195                  * remaining types of PHBs.
1196                  */
1197                 if (phb->type == PNV_PHB_NPU) {
1198                         /* PE#0 is needed for error reporting */
1199                         pnv_ioda_reserve_pe(phb, 0);
1200                         pnv_ioda_setup_npu_PEs(hose->bus);
1201                 } else
1202                         pnv_ioda_setup_PEs(hose->bus);
1203         }
1204 }
1205
1206 #ifdef CONFIG_PCI_IOV
1207 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1208 {
1209         struct pci_bus        *bus;
1210         struct pci_controller *hose;
1211         struct pnv_phb        *phb;
1212         struct pci_dn         *pdn;
1213         int                    i, j;
1214         int                    m64_bars;
1215
1216         bus = pdev->bus;
1217         hose = pci_bus_to_host(bus);
1218         phb = hose->private_data;
1219         pdn = pci_get_pdn(pdev);
1220
1221         if (pdn->m64_single_mode)
1222                 m64_bars = num_vfs;
1223         else
1224                 m64_bars = 1;
1225
1226         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1227                 for (j = 0; j < m64_bars; j++) {
1228                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1229                                 continue;
1230                         opal_pci_phb_mmio_enable(phb->opal_id,
1231                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1232                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1233                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1234                 }
1235
1236         kfree(pdn->m64_map);
1237         return 0;
1238 }
1239
1240 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1241 {
1242         struct pci_bus        *bus;
1243         struct pci_controller *hose;
1244         struct pnv_phb        *phb;
1245         struct pci_dn         *pdn;
1246         unsigned int           win;
1247         struct resource       *res;
1248         int                    i, j;
1249         int64_t                rc;
1250         int                    total_vfs;
1251         resource_size_t        size, start;
1252         int                    pe_num;
1253         int                    m64_bars;
1254
1255         bus = pdev->bus;
1256         hose = pci_bus_to_host(bus);
1257         phb = hose->private_data;
1258         pdn = pci_get_pdn(pdev);
1259         total_vfs = pci_sriov_get_totalvfs(pdev);
1260
1261         if (pdn->m64_single_mode)
1262                 m64_bars = num_vfs;
1263         else
1264                 m64_bars = 1;
1265
1266         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1267         if (!pdn->m64_map)
1268                 return -ENOMEM;
1269         /* Initialize the m64_map to IODA_INVALID_M64 */
1270         for (i = 0; i < m64_bars ; i++)
1271                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1272                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1273
1274
1275         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1276                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1277                 if (!res->flags || !res->parent)
1278                         continue;
1279
1280                 for (j = 0; j < m64_bars; j++) {
1281                         do {
1282                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1283                                                 phb->ioda.m64_bar_idx + 1, 0);
1284
1285                                 if (win >= phb->ioda.m64_bar_idx + 1)
1286                                         goto m64_failed;
1287                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1288
1289                         pdn->m64_map[j][i] = win;
1290
1291                         if (pdn->m64_single_mode) {
1292                                 size = pci_iov_resource_size(pdev,
1293                                                         PCI_IOV_RESOURCES + i);
1294                                 start = res->start + size * j;
1295                         } else {
1296                                 size = resource_size(res);
1297                                 start = res->start;
1298                         }
1299
1300                         /* Map the M64 here */
1301                         if (pdn->m64_single_mode) {
1302                                 pe_num = pdn->pe_num_map[j];
1303                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1304                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1305                                                 pdn->m64_map[j][i], 0);
1306                         }
1307
1308                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1309                                                  OPAL_M64_WINDOW_TYPE,
1310                                                  pdn->m64_map[j][i],
1311                                                  start,
1312                                                  0, /* unused */
1313                                                  size);
1314
1315
1316                         if (rc != OPAL_SUCCESS) {
1317                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1318                                         win, rc);
1319                                 goto m64_failed;
1320                         }
1321
1322                         if (pdn->m64_single_mode)
1323                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1324                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1325                         else
1326                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1327                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1328
1329                         if (rc != OPAL_SUCCESS) {
1330                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1331                                         win, rc);
1332                                 goto m64_failed;
1333                         }
1334                 }
1335         }
1336         return 0;
1337
1338 m64_failed:
1339         pnv_pci_vf_release_m64(pdev, num_vfs);
1340         return -EBUSY;
1341 }
1342
1343 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1344                 int num);
1345 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1346
1347 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1348 {
1349         struct iommu_table    *tbl;
1350         int64_t               rc;
1351
1352         tbl = pe->table_group.tables[0];
1353         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1354         if (rc)
1355                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1356
1357         pnv_pci_ioda2_set_bypass(pe, false);
1358         if (pe->table_group.group) {
1359                 iommu_group_put(pe->table_group.group);
1360                 BUG_ON(pe->table_group.group);
1361         }
1362         pnv_pci_ioda2_table_free_pages(tbl);
1363         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1364 }
1365
1366 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1367 {
1368         struct pci_bus        *bus;
1369         struct pci_controller *hose;
1370         struct pnv_phb        *phb;
1371         struct pnv_ioda_pe    *pe, *pe_n;
1372         struct pci_dn         *pdn;
1373
1374         bus = pdev->bus;
1375         hose = pci_bus_to_host(bus);
1376         phb = hose->private_data;
1377         pdn = pci_get_pdn(pdev);
1378
1379         if (!pdev->is_physfn)
1380                 return;
1381
1382         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1383                 if (pe->parent_dev != pdev)
1384                         continue;
1385
1386                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1387
1388                 /* Remove from list */
1389                 mutex_lock(&phb->ioda.pe_list_mutex);
1390                 list_del(&pe->list);
1391                 mutex_unlock(&phb->ioda.pe_list_mutex);
1392
1393                 pnv_ioda_deconfigure_pe(phb, pe);
1394
1395                 pnv_ioda_free_pe(pe);
1396         }
1397 }
1398
1399 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1400 {
1401         struct pci_bus        *bus;
1402         struct pci_controller *hose;
1403         struct pnv_phb        *phb;
1404         struct pnv_ioda_pe    *pe;
1405         struct pci_dn         *pdn;
1406         struct pci_sriov      *iov;
1407         u16                    num_vfs, i;
1408
1409         bus = pdev->bus;
1410         hose = pci_bus_to_host(bus);
1411         phb = hose->private_data;
1412         pdn = pci_get_pdn(pdev);
1413         iov = pdev->sriov;
1414         num_vfs = pdn->num_vfs;
1415
1416         /* Release VF PEs */
1417         pnv_ioda_release_vf_PE(pdev);
1418
1419         if (phb->type == PNV_PHB_IODA2) {
1420                 if (!pdn->m64_single_mode)
1421                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1422
1423                 /* Release M64 windows */
1424                 pnv_pci_vf_release_m64(pdev, num_vfs);
1425
1426                 /* Release PE numbers */
1427                 if (pdn->m64_single_mode) {
1428                         for (i = 0; i < num_vfs; i++) {
1429                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1430                                         continue;
1431
1432                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1433                                 pnv_ioda_free_pe(pe);
1434                         }
1435                 } else
1436                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1437                 /* Releasing pe_num_map */
1438                 kfree(pdn->pe_num_map);
1439         }
1440 }
1441
1442 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1443                                        struct pnv_ioda_pe *pe);
1444 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1445 {
1446         struct pci_bus        *bus;
1447         struct pci_controller *hose;
1448         struct pnv_phb        *phb;
1449         struct pnv_ioda_pe    *pe;
1450         int                    pe_num;
1451         u16                    vf_index;
1452         struct pci_dn         *pdn;
1453
1454         bus = pdev->bus;
1455         hose = pci_bus_to_host(bus);
1456         phb = hose->private_data;
1457         pdn = pci_get_pdn(pdev);
1458
1459         if (!pdev->is_physfn)
1460                 return;
1461
1462         /* Reserve PE for each VF */
1463         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1464                 if (pdn->m64_single_mode)
1465                         pe_num = pdn->pe_num_map[vf_index];
1466                 else
1467                         pe_num = *pdn->pe_num_map + vf_index;
1468
1469                 pe = &phb->ioda.pe_array[pe_num];
1470                 pe->pe_number = pe_num;
1471                 pe->phb = phb;
1472                 pe->flags = PNV_IODA_PE_VF;
1473                 pe->pbus = NULL;
1474                 pe->parent_dev = pdev;
1475                 pe->mve_number = -1;
1476                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1477                            pci_iov_virtfn_devfn(pdev, vf_index);
1478
1479                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1480                         hose->global_number, pdev->bus->number,
1481                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1482                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1483
1484                 if (pnv_ioda_configure_pe(phb, pe)) {
1485                         /* XXX What do we do here ? */
1486                         pnv_ioda_free_pe(pe);
1487                         pe->pdev = NULL;
1488                         continue;
1489                 }
1490
1491                 /* Put PE to the list */
1492                 mutex_lock(&phb->ioda.pe_list_mutex);
1493                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1494                 mutex_unlock(&phb->ioda.pe_list_mutex);
1495
1496                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1497         }
1498 }
1499
1500 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1501 {
1502         struct pci_bus        *bus;
1503         struct pci_controller *hose;
1504         struct pnv_phb        *phb;
1505         struct pnv_ioda_pe    *pe;
1506         struct pci_dn         *pdn;
1507         int                    ret;
1508         u16                    i;
1509
1510         bus = pdev->bus;
1511         hose = pci_bus_to_host(bus);
1512         phb = hose->private_data;
1513         pdn = pci_get_pdn(pdev);
1514
1515         if (phb->type == PNV_PHB_IODA2) {
1516                 if (!pdn->vfs_expanded) {
1517                         dev_info(&pdev->dev, "don't support this SRIOV device"
1518                                 " with non 64bit-prefetchable IOV BAR\n");
1519                         return -ENOSPC;
1520                 }
1521
1522                 /*
1523                  * When M64 BARs functions in Single PE mode, the number of VFs
1524                  * could be enabled must be less than the number of M64 BARs.
1525                  */
1526                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1527                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1528                         return -EBUSY;
1529                 }
1530
1531                 /* Allocating pe_num_map */
1532                 if (pdn->m64_single_mode)
1533                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1534                                         GFP_KERNEL);
1535                 else
1536                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1537
1538                 if (!pdn->pe_num_map)
1539                         return -ENOMEM;
1540
1541                 if (pdn->m64_single_mode)
1542                         for (i = 0; i < num_vfs; i++)
1543                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1544
1545                 /* Calculate available PE for required VFs */
1546                 if (pdn->m64_single_mode) {
1547                         for (i = 0; i < num_vfs; i++) {
1548                                 pe = pnv_ioda_alloc_pe(phb);
1549                                 if (!pe) {
1550                                         ret = -EBUSY;
1551                                         goto m64_failed;
1552                                 }
1553
1554                                 pdn->pe_num_map[i] = pe->pe_number;
1555                         }
1556                 } else {
1557                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1558                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1559                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1560                                 0, num_vfs, 0);
1561                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1562                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1563                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1564                                 kfree(pdn->pe_num_map);
1565                                 return -EBUSY;
1566                         }
1567                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1568                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1569                 }
1570                 pdn->num_vfs = num_vfs;
1571
1572                 /* Assign M64 window accordingly */
1573                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1574                 if (ret) {
1575                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1576                         goto m64_failed;
1577                 }
1578
1579                 /*
1580                  * When using one M64 BAR to map one IOV BAR, we need to shift
1581                  * the IOV BAR according to the PE# allocated to the VFs.
1582                  * Otherwise, the PE# for the VF will conflict with others.
1583                  */
1584                 if (!pdn->m64_single_mode) {
1585                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1586                         if (ret)
1587                                 goto m64_failed;
1588                 }
1589         }
1590
1591         /* Setup VF PEs */
1592         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1593
1594         return 0;
1595
1596 m64_failed:
1597         if (pdn->m64_single_mode) {
1598                 for (i = 0; i < num_vfs; i++) {
1599                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1600                                 continue;
1601
1602                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1603                         pnv_ioda_free_pe(pe);
1604                 }
1605         } else
1606                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1607
1608         /* Releasing pe_num_map */
1609         kfree(pdn->pe_num_map);
1610
1611         return ret;
1612 }
1613
1614 int pcibios_sriov_disable(struct pci_dev *pdev)
1615 {
1616         pnv_pci_sriov_disable(pdev);
1617
1618         /* Release PCI data */
1619         remove_dev_pci_data(pdev);
1620         return 0;
1621 }
1622
1623 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1624 {
1625         /* Allocate PCI data */
1626         add_dev_pci_data(pdev);
1627
1628         return pnv_pci_sriov_enable(pdev, num_vfs);
1629 }
1630 #endif /* CONFIG_PCI_IOV */
1631
1632 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1633 {
1634         struct pci_dn *pdn = pci_get_pdn(pdev);
1635         struct pnv_ioda_pe *pe;
1636
1637         /*
1638          * The function can be called while the PE#
1639          * hasn't been assigned. Do nothing for the
1640          * case.
1641          */
1642         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1643                 return;
1644
1645         pe = &phb->ioda.pe_array[pdn->pe_number];
1646         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1647         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1648         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1649         /*
1650          * Note: iommu_add_device() will fail here as
1651          * for physical PE: the device is already added by now;
1652          * for virtual PE: sysfs entries are not ready yet and
1653          * tce_iommu_bus_notifier will add the device to a group later.
1654          */
1655 }
1656
1657 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1658 {
1659         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1660         struct pnv_phb *phb = hose->private_data;
1661         struct pci_dn *pdn = pci_get_pdn(pdev);
1662         struct pnv_ioda_pe *pe;
1663         uint64_t top;
1664         bool bypass = false;
1665
1666         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1667                 return -ENODEV;;
1668
1669         pe = &phb->ioda.pe_array[pdn->pe_number];
1670         if (pe->tce_bypass_enabled) {
1671                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1672                 bypass = (dma_mask >= top);
1673         }
1674
1675         if (bypass) {
1676                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1677                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1678         } else {
1679                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1680                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1681         }
1682         *pdev->dev.dma_mask = dma_mask;
1683
1684         /* Update peer npu devices */
1685         pnv_npu_try_dma_set_bypass(pdev, bypass);
1686
1687         return 0;
1688 }
1689
1690 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1691 {
1692         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1693         struct pnv_phb *phb = hose->private_data;
1694         struct pci_dn *pdn = pci_get_pdn(pdev);
1695         struct pnv_ioda_pe *pe;
1696         u64 end, mask;
1697
1698         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1699                 return 0;
1700
1701         pe = &phb->ioda.pe_array[pdn->pe_number];
1702         if (!pe->tce_bypass_enabled)
1703                 return __dma_get_required_mask(&pdev->dev);
1704
1705
1706         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1707         mask = 1ULL << (fls64(end) - 1);
1708         mask += mask - 1;
1709
1710         return mask;
1711 }
1712
1713 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1714                                    struct pci_bus *bus)
1715 {
1716         struct pci_dev *dev;
1717
1718         list_for_each_entry(dev, &bus->devices, bus_list) {
1719                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1720                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1721                 iommu_add_device(&dev->dev);
1722
1723                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1724                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1725         }
1726 }
1727
1728 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1729                 unsigned long index, unsigned long npages, bool rm)
1730 {
1731         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1732                         &tbl->it_group_list, struct iommu_table_group_link,
1733                         next);
1734         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1735                         struct pnv_ioda_pe, table_group);
1736         __be64 __iomem *invalidate = rm ?
1737                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1738                 pe->phb->ioda.tce_inval_reg;
1739         unsigned long start, end, inc;
1740         const unsigned shift = tbl->it_page_shift;
1741
1742         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1743         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1744                         npages - 1);
1745
1746         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1747         if (tbl->it_busno) {
1748                 start <<= shift;
1749                 end <<= shift;
1750                 inc = 128ull << shift;
1751                 start |= tbl->it_busno;
1752                 end |= tbl->it_busno;
1753         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1754                 /* p7ioc-style invalidation, 2 TCEs per write */
1755                 start |= (1ull << 63);
1756                 end |= (1ull << 63);
1757                 inc = 16;
1758         } else {
1759                 /* Default (older HW) */
1760                 inc = 128;
1761         }
1762
1763         end |= inc - 1; /* round up end to be different than start */
1764
1765         mb(); /* Ensure above stores are visible */
1766         while (start <= end) {
1767                 if (rm)
1768                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1769                 else
1770                         __raw_writeq(cpu_to_be64(start), invalidate);
1771                 start += inc;
1772         }
1773
1774         /*
1775          * The iommu layer will do another mb() for us on build()
1776          * and we don't care on free()
1777          */
1778 }
1779
1780 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1781                 long npages, unsigned long uaddr,
1782                 enum dma_data_direction direction,
1783                 struct dma_attrs *attrs)
1784 {
1785         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1786                         attrs);
1787
1788         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1789                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1790
1791         return ret;
1792 }
1793
1794 #ifdef CONFIG_IOMMU_API
1795 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1796                 unsigned long *hpa, enum dma_data_direction *direction)
1797 {
1798         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1799
1800         if (!ret && (tbl->it_type &
1801                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1802                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1803
1804         return ret;
1805 }
1806 #endif
1807
1808 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1809                 long npages)
1810 {
1811         pnv_tce_free(tbl, index, npages);
1812
1813         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1814                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1815 }
1816
1817 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1818         .set = pnv_ioda1_tce_build,
1819 #ifdef CONFIG_IOMMU_API
1820         .exchange = pnv_ioda1_tce_xchg,
1821 #endif
1822         .clear = pnv_ioda1_tce_free,
1823         .get = pnv_tce_get,
1824 };
1825
1826 #define TCE_KILL_INVAL_ALL  PPC_BIT(0)
1827 #define TCE_KILL_INVAL_PE   PPC_BIT(1)
1828 #define TCE_KILL_INVAL_TCE  PPC_BIT(2)
1829
1830 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1831 {
1832         const unsigned long val = TCE_KILL_INVAL_ALL;
1833
1834         mb(); /* Ensure previous TCE table stores are visible */
1835         if (rm)
1836                 __raw_rm_writeq(cpu_to_be64(val),
1837                                 (__be64 __iomem *)
1838                                 phb->ioda.tce_inval_reg_phys);
1839         else
1840                 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1841 }
1842
1843 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1844 {
1845         /* 01xb - invalidate TCEs that match the specified PE# */
1846         unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1847         struct pnv_phb *phb = pe->phb;
1848
1849         if (!phb->ioda.tce_inval_reg)
1850                 return;
1851
1852         mb(); /* Ensure above stores are visible */
1853         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1854 }
1855
1856 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1857                 __be64 __iomem *invalidate, unsigned shift,
1858                 unsigned long index, unsigned long npages)
1859 {
1860         unsigned long start, end, inc;
1861
1862         /* We'll invalidate DMA address in PE scope */
1863         start = TCE_KILL_INVAL_TCE;
1864         start |= (pe_number & 0xFF);
1865         end = start;
1866
1867         /* Figure out the start, end and step */
1868         start |= (index << shift);
1869         end |= ((index + npages - 1) << shift);
1870         inc = (0x1ull << shift);
1871         mb();
1872
1873         while (start <= end) {
1874                 if (rm)
1875                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1876                 else
1877                         __raw_writeq(cpu_to_be64(start), invalidate);
1878                 start += inc;
1879         }
1880 }
1881
1882 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1883                 unsigned long index, unsigned long npages, bool rm)
1884 {
1885         struct iommu_table_group_link *tgl;
1886
1887         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1888                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1889                                 struct pnv_ioda_pe, table_group);
1890                 __be64 __iomem *invalidate = rm ?
1891                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1892                         pe->phb->ioda.tce_inval_reg;
1893
1894                 if (pe->phb->type == PNV_PHB_NPU) {
1895                         /*
1896                          * The NVLink hardware does not support TCE kill
1897                          * per TCE entry so we have to invalidate
1898                          * the entire cache for it.
1899                          */
1900                         pnv_pci_ioda2_tce_invalidate_entire(pe->phb, rm);
1901                         continue;
1902                 }
1903                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1904                         invalidate, tbl->it_page_shift,
1905                         index, npages);
1906         }
1907 }
1908
1909 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1910                 long npages, unsigned long uaddr,
1911                 enum dma_data_direction direction,
1912                 struct dma_attrs *attrs)
1913 {
1914         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1915                         attrs);
1916
1917         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1918                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1919
1920         return ret;
1921 }
1922
1923 #ifdef CONFIG_IOMMU_API
1924 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1925                 unsigned long *hpa, enum dma_data_direction *direction)
1926 {
1927         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1928
1929         if (!ret && (tbl->it_type &
1930                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1931                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1932
1933         return ret;
1934 }
1935 #endif
1936
1937 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1938                 long npages)
1939 {
1940         pnv_tce_free(tbl, index, npages);
1941
1942         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1943                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1944 }
1945
1946 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1947 {
1948         pnv_pci_ioda2_table_free_pages(tbl);
1949         iommu_free_table(tbl, "pnv");
1950 }
1951
1952 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1953         .set = pnv_ioda2_tce_build,
1954 #ifdef CONFIG_IOMMU_API
1955         .exchange = pnv_ioda2_tce_xchg,
1956 #endif
1957         .clear = pnv_ioda2_tce_free,
1958         .get = pnv_tce_get,
1959         .free = pnv_ioda2_table_free,
1960 };
1961
1962 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1963 {
1964         unsigned int *weight = (unsigned int *)data;
1965
1966         /* This is quite simplistic. The "base" weight of a device
1967          * is 10. 0 means no DMA is to be accounted for it.
1968          */
1969         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1970                 return 0;
1971
1972         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1973             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1974             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1975                 *weight += 3;
1976         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1977                 *weight += 15;
1978         else
1979                 *weight += 10;
1980
1981         return 0;
1982 }
1983
1984 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1985 {
1986         unsigned int weight = 0;
1987
1988         /* SRIOV VF has same DMA32 weight as its PF */
1989 #ifdef CONFIG_PCI_IOV
1990         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1991                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1992                 return weight;
1993         }
1994 #endif
1995
1996         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1997                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1998         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1999                 struct pci_dev *pdev;
2000
2001                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2002                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2003         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2004                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2005         }
2006
2007         return weight;
2008 }
2009
2010 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2011                                        struct pnv_ioda_pe *pe)
2012 {
2013
2014         struct page *tce_mem = NULL;
2015         struct iommu_table *tbl;
2016         unsigned int weight, total_weight = 0;
2017         unsigned int tce32_segsz, base, segs, avail, i;
2018         int64_t rc;
2019         void *addr;
2020
2021         /* XXX FIXME: Handle 64-bit only DMA devices */
2022         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2023         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2024         weight = pnv_pci_ioda_pe_dma_weight(pe);
2025         if (!weight)
2026                 return;
2027
2028         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2029                      &total_weight);
2030         segs = (weight * phb->ioda.dma32_count) / total_weight;
2031         if (!segs)
2032                 segs = 1;
2033
2034         /*
2035          * Allocate contiguous DMA32 segments. We begin with the expected
2036          * number of segments. With one more attempt, the number of DMA32
2037          * segments to be allocated is decreased by one until one segment
2038          * is allocated successfully.
2039          */
2040         do {
2041                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2042                         for (avail = 0, i = base; i < base + segs; i++) {
2043                                 if (phb->ioda.dma32_segmap[i] ==
2044                                     IODA_INVALID_PE)
2045                                         avail++;
2046                         }
2047
2048                         if (avail == segs)
2049                                 goto found;
2050                 }
2051         } while (--segs);
2052
2053         if (!segs) {
2054                 pe_warn(pe, "No available DMA32 segments\n");
2055                 return;
2056         }
2057
2058 found:
2059         tbl = pnv_pci_table_alloc(phb->hose->node);
2060         iommu_register_group(&pe->table_group, phb->hose->global_number,
2061                         pe->pe_number);
2062         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2063
2064         /* Grab a 32-bit TCE table */
2065         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2066                 weight, total_weight, base, segs);
2067         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2068                 base * PNV_IODA1_DMA32_SEGSIZE,
2069                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2070
2071         /* XXX Currently, we allocate one big contiguous table for the
2072          * TCEs. We only really need one chunk per 256M of TCE space
2073          * (ie per segment) but that's an optimization for later, it
2074          * requires some added smarts with our get/put_tce implementation
2075          *
2076          * Each TCE page is 4KB in size and each TCE entry occupies 8
2077          * bytes
2078          */
2079         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2080         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2081                                    get_order(tce32_segsz * segs));
2082         if (!tce_mem) {
2083                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2084                 goto fail;
2085         }
2086         addr = page_address(tce_mem);
2087         memset(addr, 0, tce32_segsz * segs);
2088
2089         /* Configure HW */
2090         for (i = 0; i < segs; i++) {
2091                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2092                                               pe->pe_number,
2093                                               base + i, 1,
2094                                               __pa(addr) + tce32_segsz * i,
2095                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2096                 if (rc) {
2097                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2098                                " err %ld\n", rc);
2099                         goto fail;
2100                 }
2101         }
2102
2103         /* Setup DMA32 segment mapping */
2104         for (i = base; i < base + segs; i++)
2105                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2106
2107         /* Setup linux iommu table */
2108         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2109                                   base * PNV_IODA1_DMA32_SEGSIZE,
2110                                   IOMMU_PAGE_SHIFT_4K);
2111
2112         /* OPAL variant of P7IOC SW invalidated TCEs */
2113         if (phb->ioda.tce_inval_reg)
2114                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2115                                  TCE_PCI_SWINV_FREE   |
2116                                  TCE_PCI_SWINV_PAIR);
2117
2118         tbl->it_ops = &pnv_ioda1_iommu_ops;
2119         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2120         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2121         iommu_init_table(tbl, phb->hose->node);
2122
2123         if (pe->flags & PNV_IODA_PE_DEV) {
2124                 /*
2125                  * Setting table base here only for carrying iommu_group
2126                  * further down to let iommu_add_device() do the job.
2127                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2128                  */
2129                 set_iommu_table_base(&pe->pdev->dev, tbl);
2130                 iommu_add_device(&pe->pdev->dev);
2131         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2132                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2133
2134         return;
2135  fail:
2136         /* XXX Failure: Try to fallback to 64-bit only ? */
2137         if (tce_mem)
2138                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2139         if (tbl) {
2140                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2141                 iommu_free_table(tbl, "pnv");
2142         }
2143 }
2144
2145 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2146                 int num, struct iommu_table *tbl)
2147 {
2148         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2149                         table_group);
2150         struct pnv_phb *phb = pe->phb;
2151         int64_t rc;
2152         const unsigned long size = tbl->it_indirect_levels ?
2153                         tbl->it_level_size : tbl->it_size;
2154         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2155         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2156
2157         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2158                         start_addr, start_addr + win_size - 1,
2159                         IOMMU_PAGE_SIZE(tbl));
2160
2161         /*
2162          * Map TCE table through TVT. The TVE index is the PE number
2163          * shifted by 1 bit for 32-bits DMA space.
2164          */
2165         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2166                         pe->pe_number,
2167                         (pe->pe_number << 1) + num,
2168                         tbl->it_indirect_levels + 1,
2169                         __pa(tbl->it_base),
2170                         size << 3,
2171                         IOMMU_PAGE_SIZE(tbl));
2172         if (rc) {
2173                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2174                 return rc;
2175         }
2176
2177         pnv_pci_link_table_and_group(phb->hose->node, num,
2178                         tbl, &pe->table_group);
2179         pnv_pci_ioda2_tce_invalidate_pe(pe);
2180
2181         return 0;
2182 }
2183
2184 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2185 {
2186         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2187         int64_t rc;
2188
2189         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2190         if (enable) {
2191                 phys_addr_t top = memblock_end_of_DRAM();
2192
2193                 top = roundup_pow_of_two(top);
2194                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2195                                                      pe->pe_number,
2196                                                      window_id,
2197                                                      pe->tce_bypass_base,
2198                                                      top);
2199         } else {
2200                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2201                                                      pe->pe_number,
2202                                                      window_id,
2203                                                      pe->tce_bypass_base,
2204                                                      0);
2205         }
2206         if (rc)
2207                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2208         else
2209                 pe->tce_bypass_enabled = enable;
2210 }
2211
2212 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2213                 __u32 page_shift, __u64 window_size, __u32 levels,
2214                 struct iommu_table *tbl);
2215
2216 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2217                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2218                 struct iommu_table **ptbl)
2219 {
2220         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2221                         table_group);
2222         int nid = pe->phb->hose->node;
2223         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2224         long ret;
2225         struct iommu_table *tbl;
2226
2227         tbl = pnv_pci_table_alloc(nid);
2228         if (!tbl)
2229                 return -ENOMEM;
2230
2231         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2232                         bus_offset, page_shift, window_size,
2233                         levels, tbl);
2234         if (ret) {
2235                 iommu_free_table(tbl, "pnv");
2236                 return ret;
2237         }
2238
2239         tbl->it_ops = &pnv_ioda2_iommu_ops;
2240         if (pe->phb->ioda.tce_inval_reg)
2241                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2242
2243         *ptbl = tbl;
2244
2245         return 0;
2246 }
2247
2248 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2249 {
2250         struct iommu_table *tbl = NULL;
2251         long rc;
2252
2253         /*
2254          * crashkernel= specifies the kdump kernel's maximum memory at
2255          * some offset and there is no guaranteed the result is a power
2256          * of 2, which will cause errors later.
2257          */
2258         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2259
2260         /*
2261          * In memory constrained environments, e.g. kdump kernel, the
2262          * DMA window can be larger than available memory, which will
2263          * cause errors later.
2264          */
2265         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2266
2267         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2268                         IOMMU_PAGE_SHIFT_4K,
2269                         window_size,
2270                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2271         if (rc) {
2272                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2273                                 rc);
2274                 return rc;
2275         }
2276
2277         iommu_init_table(tbl, pe->phb->hose->node);
2278
2279         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2280         if (rc) {
2281                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2282                                 rc);
2283                 pnv_ioda2_table_free(tbl);
2284                 return rc;
2285         }
2286
2287         if (!pnv_iommu_bypass_disabled)
2288                 pnv_pci_ioda2_set_bypass(pe, true);
2289
2290         /* OPAL variant of PHB3 invalidated TCEs */
2291         if (pe->phb->ioda.tce_inval_reg)
2292                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2293
2294         /*
2295          * Setting table base here only for carrying iommu_group
2296          * further down to let iommu_add_device() do the job.
2297          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2298          */
2299         if (pe->flags & PNV_IODA_PE_DEV)
2300                 set_iommu_table_base(&pe->pdev->dev, tbl);
2301
2302         return 0;
2303 }
2304
2305 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2306 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2307                 int num)
2308 {
2309         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2310                         table_group);
2311         struct pnv_phb *phb = pe->phb;
2312         long ret;
2313
2314         pe_info(pe, "Removing DMA window #%d\n", num);
2315
2316         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2317                         (pe->pe_number << 1) + num,
2318                         0/* levels */, 0/* table address */,
2319                         0/* table size */, 0/* page size */);
2320         if (ret)
2321                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2322         else
2323                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2324
2325         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2326
2327         return ret;
2328 }
2329 #endif
2330
2331 #ifdef CONFIG_IOMMU_API
2332 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2333                 __u64 window_size, __u32 levels)
2334 {
2335         unsigned long bytes = 0;
2336         const unsigned window_shift = ilog2(window_size);
2337         unsigned entries_shift = window_shift - page_shift;
2338         unsigned table_shift = entries_shift + 3;
2339         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2340         unsigned long direct_table_size;
2341
2342         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2343                         (window_size > memory_hotplug_max()) ||
2344                         !is_power_of_2(window_size))
2345                 return 0;
2346
2347         /* Calculate a direct table size from window_size and levels */
2348         entries_shift = (entries_shift + levels - 1) / levels;
2349         table_shift = entries_shift + 3;
2350         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2351         direct_table_size =  1UL << table_shift;
2352
2353         for ( ; levels; --levels) {
2354                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2355
2356                 tce_table_size /= direct_table_size;
2357                 tce_table_size <<= 3;
2358                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2359         }
2360
2361         return bytes;
2362 }
2363
2364 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2365 {
2366         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2367                                                 table_group);
2368         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2369         struct iommu_table *tbl = pe->table_group.tables[0];
2370
2371         pnv_pci_ioda2_set_bypass(pe, false);
2372         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2373         pnv_ioda2_table_free(tbl);
2374 }
2375
2376 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2377 {
2378         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2379                                                 table_group);
2380
2381         pnv_pci_ioda2_setup_default_config(pe);
2382 }
2383
2384 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2385         .get_table_size = pnv_pci_ioda2_get_table_size,
2386         .create_table = pnv_pci_ioda2_create_table,
2387         .set_window = pnv_pci_ioda2_set_window,
2388         .unset_window = pnv_pci_ioda2_unset_window,
2389         .take_ownership = pnv_ioda2_take_ownership,
2390         .release_ownership = pnv_ioda2_release_ownership,
2391 };
2392 #endif
2393
2394 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2395 {
2396         const __be64 *swinvp;
2397
2398         /* OPAL variant of PHB3 invalidated TCEs */
2399         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2400         if (!swinvp)
2401                 return;
2402
2403         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2404         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2405 }
2406
2407 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2408                 unsigned levels, unsigned long limit,
2409                 unsigned long *current_offset, unsigned long *total_allocated)
2410 {
2411         struct page *tce_mem = NULL;
2412         __be64 *addr, *tmp;
2413         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2414         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2415         unsigned entries = 1UL << (shift - 3);
2416         long i;
2417
2418         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2419         if (!tce_mem) {
2420                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2421                 return NULL;
2422         }
2423         addr = page_address(tce_mem);
2424         memset(addr, 0, allocated);
2425         *total_allocated += allocated;
2426
2427         --levels;
2428         if (!levels) {
2429                 *current_offset += allocated;
2430                 return addr;
2431         }
2432
2433         for (i = 0; i < entries; ++i) {
2434                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2435                                 levels, limit, current_offset, total_allocated);
2436                 if (!tmp)
2437                         break;
2438
2439                 addr[i] = cpu_to_be64(__pa(tmp) |
2440                                 TCE_PCI_READ | TCE_PCI_WRITE);
2441
2442                 if (*current_offset >= limit)
2443                         break;
2444         }
2445
2446         return addr;
2447 }
2448
2449 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2450                 unsigned long size, unsigned level);
2451
2452 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2453                 __u32 page_shift, __u64 window_size, __u32 levels,
2454                 struct iommu_table *tbl)
2455 {
2456         void *addr;
2457         unsigned long offset = 0, level_shift, total_allocated = 0;
2458         const unsigned window_shift = ilog2(window_size);
2459         unsigned entries_shift = window_shift - page_shift;
2460         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2461         const unsigned long tce_table_size = 1UL << table_shift;
2462
2463         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2464                 return -EINVAL;
2465
2466         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2467                 return -EINVAL;
2468
2469         /* Adjust direct table size from window_size and levels */
2470         entries_shift = (entries_shift + levels - 1) / levels;
2471         level_shift = entries_shift + 3;
2472         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2473
2474         /* Allocate TCE table */
2475         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2476                         levels, tce_table_size, &offset, &total_allocated);
2477
2478         /* addr==NULL means that the first level allocation failed */
2479         if (!addr)
2480                 return -ENOMEM;
2481
2482         /*
2483          * First level was allocated but some lower level failed as
2484          * we did not allocate as much as we wanted,
2485          * release partially allocated table.
2486          */
2487         if (offset < tce_table_size) {
2488                 pnv_pci_ioda2_table_do_free_pages(addr,
2489                                 1ULL << (level_shift - 3), levels - 1);
2490                 return -ENOMEM;
2491         }
2492
2493         /* Setup linux iommu table */
2494         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2495                         page_shift);
2496         tbl->it_level_size = 1ULL << (level_shift - 3);
2497         tbl->it_indirect_levels = levels - 1;
2498         tbl->it_allocated_size = total_allocated;
2499
2500         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2501                         window_size, tce_table_size, bus_offset);
2502
2503         return 0;
2504 }
2505
2506 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2507                 unsigned long size, unsigned level)
2508 {
2509         const unsigned long addr_ul = (unsigned long) addr &
2510                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2511
2512         if (level) {
2513                 long i;
2514                 u64 *tmp = (u64 *) addr_ul;
2515
2516                 for (i = 0; i < size; ++i) {
2517                         unsigned long hpa = be64_to_cpu(tmp[i]);
2518
2519                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2520                                 continue;
2521
2522                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2523                                         level - 1);
2524                 }
2525         }
2526
2527         free_pages(addr_ul, get_order(size << 3));
2528 }
2529
2530 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2531 {
2532         const unsigned long size = tbl->it_indirect_levels ?
2533                         tbl->it_level_size : tbl->it_size;
2534
2535         if (!tbl->it_size)
2536                 return;
2537
2538         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2539                         tbl->it_indirect_levels);
2540 }
2541
2542 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2543                                        struct pnv_ioda_pe *pe)
2544 {
2545         int64_t rc;
2546
2547         /* TVE #1 is selected by PCI address bit 59 */
2548         pe->tce_bypass_base = 1ull << 59;
2549
2550         iommu_register_group(&pe->table_group, phb->hose->global_number,
2551                         pe->pe_number);
2552
2553         /* The PE will reserve all possible 32-bits space */
2554         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2555                 phb->ioda.m32_pci_base);
2556
2557         /* Setup linux iommu table */
2558         pe->table_group.tce32_start = 0;
2559         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2560         pe->table_group.max_dynamic_windows_supported =
2561                         IOMMU_TABLE_GROUP_MAX_TABLES;
2562         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2563         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2564 #ifdef CONFIG_IOMMU_API
2565         pe->table_group.ops = &pnv_pci_ioda2_ops;
2566 #endif
2567
2568         rc = pnv_pci_ioda2_setup_default_config(pe);
2569         if (rc)
2570                 return;
2571
2572         if (pe->flags & PNV_IODA_PE_DEV)
2573                 iommu_add_device(&pe->pdev->dev);
2574         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2575                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2576 }
2577
2578 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2579 {
2580         struct pci_controller *hose = phb->hose;
2581         struct pnv_ioda_pe *pe;
2582         unsigned int weight;
2583
2584         /* If we have more PE# than segments available, hand out one
2585          * per PE until we run out and let the rest fail. If not,
2586          * then we assign at least one segment per PE, plus more based
2587          * on the amount of devices under that PE
2588          */
2589         pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2590                 hose->global_number, phb->ioda.dma32_count);
2591
2592         pnv_pci_ioda_setup_opal_tce_kill(phb);
2593
2594         /* Walk our PE list and configure their DMA segments */
2595         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2596                 weight = pnv_pci_ioda_pe_dma_weight(pe);
2597                 if (!weight)
2598                         continue;
2599
2600                 /*
2601                  * For IODA2 compliant PHB3, we needn't care about the weight.
2602                  * The all available 32-bits DMA space will be assigned to
2603                  * the specific PE.
2604                  */
2605                 if (phb->type == PNV_PHB_IODA1) {
2606                         pnv_pci_ioda1_setup_dma_pe(phb, pe);
2607                 } else if (phb->type == PNV_PHB_IODA2) {
2608                         pe_info(pe, "Assign DMA32 space\n");
2609                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2610                 } else if (phb->type == PNV_PHB_NPU) {
2611                         /*
2612                          * We initialise the DMA space for an NPU PHB
2613                          * after setup of the PHB is complete as we
2614                          * point the NPU TVT to the the same location
2615                          * as the PHB3 TVT.
2616                          */
2617                 }
2618         }
2619 }
2620
2621 #ifdef CONFIG_PCI_MSI
2622 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2623 {
2624         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2625         struct irq_chip *chip = irq_data_get_irq_chip(d);
2626         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2627                                            ioda.irq_chip);
2628         int64_t rc;
2629
2630         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2631         WARN_ON_ONCE(rc);
2632
2633         icp_native_eoi(d);
2634 }
2635
2636
2637 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2638 {
2639         struct irq_data *idata;
2640         struct irq_chip *ichip;
2641
2642         if (phb->type != PNV_PHB_IODA2)
2643                 return;
2644
2645         if (!phb->ioda.irq_chip_init) {
2646                 /*
2647                  * First time we setup an MSI IRQ, we need to setup the
2648                  * corresponding IRQ chip to route correctly.
2649                  */
2650                 idata = irq_get_irq_data(virq);
2651                 ichip = irq_data_get_irq_chip(idata);
2652                 phb->ioda.irq_chip_init = 1;
2653                 phb->ioda.irq_chip = *ichip;
2654                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2655         }
2656         irq_set_chip(virq, &phb->ioda.irq_chip);
2657 }
2658
2659 #ifdef CONFIG_CXL_BASE
2660
2661 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2662 {
2663         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2664
2665         return of_node_get(hose->dn);
2666 }
2667 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2668
2669 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2670 {
2671         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2672         struct pnv_phb *phb = hose->private_data;
2673         struct pnv_ioda_pe *pe;
2674         int rc;
2675
2676         pe = pnv_ioda_get_pe(dev);
2677         if (!pe)
2678                 return -ENODEV;
2679
2680         pe_info(pe, "Switching PHB to CXL\n");
2681
2682         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2683         if (rc)
2684                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2685
2686         return rc;
2687 }
2688 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2689
2690 /* Find PHB for cxl dev and allocate MSI hwirqs?
2691  * Returns the absolute hardware IRQ number
2692  */
2693 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2694 {
2695         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2696         struct pnv_phb *phb = hose->private_data;
2697         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2698
2699         if (hwirq < 0) {
2700                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2701                 return -ENOSPC;
2702         }
2703
2704         return phb->msi_base + hwirq;
2705 }
2706 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2707
2708 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2709 {
2710         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2711         struct pnv_phb *phb = hose->private_data;
2712
2713         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2714 }
2715 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2716
2717 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2718                                   struct pci_dev *dev)
2719 {
2720         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2721         struct pnv_phb *phb = hose->private_data;
2722         int i, hwirq;
2723
2724         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2725                 if (!irqs->range[i])
2726                         continue;
2727                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2728                          i, irqs->offset[i],
2729                          irqs->range[i]);
2730                 hwirq = irqs->offset[i] - phb->msi_base;
2731                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2732                                        irqs->range[i]);
2733         }
2734 }
2735 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2736
2737 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2738                                struct pci_dev *dev, int num)
2739 {
2740         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2741         struct pnv_phb *phb = hose->private_data;
2742         int i, hwirq, try;
2743
2744         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2745
2746         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2747         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2748                 try = num;
2749                 while (try) {
2750                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2751                         if (hwirq >= 0)
2752                                 break;
2753                         try /= 2;
2754                 }
2755                 if (!try)
2756                         goto fail;
2757
2758                 irqs->offset[i] = phb->msi_base + hwirq;
2759                 irqs->range[i] = try;
2760                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2761                          i, irqs->offset[i], irqs->range[i]);
2762                 num -= try;
2763         }
2764         if (num)
2765                 goto fail;
2766
2767         return 0;
2768 fail:
2769         pnv_cxl_release_hwirq_ranges(irqs, dev);
2770         return -ENOSPC;
2771 }
2772 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2773
2774 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2775 {
2776         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2777         struct pnv_phb *phb = hose->private_data;
2778
2779         return phb->msi_bmp.irq_count;
2780 }
2781 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2782
2783 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2784                            unsigned int virq)
2785 {
2786         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2787         struct pnv_phb *phb = hose->private_data;
2788         unsigned int xive_num = hwirq - phb->msi_base;
2789         struct pnv_ioda_pe *pe;
2790         int rc;
2791
2792         if (!(pe = pnv_ioda_get_pe(dev)))
2793                 return -ENODEV;
2794
2795         /* Assign XIVE to PE */
2796         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2797         if (rc) {
2798                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2799                         "hwirq 0x%x XIVE 0x%x PE\n",
2800                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2801                 return -EIO;
2802         }
2803         set_msi_irq_chip(phb, virq);
2804
2805         return 0;
2806 }
2807 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2808 #endif
2809
2810 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2811                                   unsigned int hwirq, unsigned int virq,
2812                                   unsigned int is_64, struct msi_msg *msg)
2813 {
2814         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2815         unsigned int xive_num = hwirq - phb->msi_base;
2816         __be32 data;
2817         int rc;
2818
2819         /* No PE assigned ? bail out ... no MSI for you ! */
2820         if (pe == NULL)
2821                 return -ENXIO;
2822
2823         /* Check if we have an MVE */
2824         if (pe->mve_number < 0)
2825                 return -ENXIO;
2826
2827         /* Force 32-bit MSI on some broken devices */
2828         if (dev->no_64bit_msi)
2829                 is_64 = 0;
2830
2831         /* Assign XIVE to PE */
2832         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2833         if (rc) {
2834                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2835                         pci_name(dev), rc, xive_num);
2836                 return -EIO;
2837         }
2838
2839         if (is_64) {
2840                 __be64 addr64;
2841
2842                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2843                                      &addr64, &data);
2844                 if (rc) {
2845                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2846                                 pci_name(dev), rc);
2847                         return -EIO;
2848                 }
2849                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2850                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2851         } else {
2852                 __be32 addr32;
2853
2854                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2855                                      &addr32, &data);
2856                 if (rc) {
2857                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2858                                 pci_name(dev), rc);
2859                         return -EIO;
2860                 }
2861                 msg->address_hi = 0;
2862                 msg->address_lo = be32_to_cpu(addr32);
2863         }
2864         msg->data = be32_to_cpu(data);
2865
2866         set_msi_irq_chip(phb, virq);
2867
2868         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2869                  " address=%x_%08x data=%x PE# %d\n",
2870                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2871                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2872
2873         return 0;
2874 }
2875
2876 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2877 {
2878         unsigned int count;
2879         const __be32 *prop = of_get_property(phb->hose->dn,
2880                                              "ibm,opal-msi-ranges", NULL);
2881         if (!prop) {
2882                 /* BML Fallback */
2883                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2884         }
2885         if (!prop)
2886                 return;
2887
2888         phb->msi_base = be32_to_cpup(prop);
2889         count = be32_to_cpup(prop + 1);
2890         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2891                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2892                        phb->hose->global_number);
2893                 return;
2894         }
2895
2896         phb->msi_setup = pnv_pci_ioda_msi_setup;
2897         phb->msi32_support = 1;
2898         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2899                 count, phb->msi_base);
2900 }
2901 #else
2902 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2903 #endif /* CONFIG_PCI_MSI */
2904
2905 #ifdef CONFIG_PCI_IOV
2906 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2907 {
2908         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2909         struct pnv_phb *phb = hose->private_data;
2910         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2911         struct resource *res;
2912         int i;
2913         resource_size_t size, total_vf_bar_sz;
2914         struct pci_dn *pdn;
2915         int mul, total_vfs;
2916
2917         if (!pdev->is_physfn || pdev->is_added)
2918                 return;
2919
2920         pdn = pci_get_pdn(pdev);
2921         pdn->vfs_expanded = 0;
2922         pdn->m64_single_mode = false;
2923
2924         total_vfs = pci_sriov_get_totalvfs(pdev);
2925         mul = phb->ioda.total_pe_num;
2926         total_vf_bar_sz = 0;
2927
2928         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2929                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2930                 if (!res->flags || res->parent)
2931                         continue;
2932                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2933                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2934                                         " non M64 VF BAR%d: %pR. \n",
2935                                  i, res);
2936                         goto truncate_iov;
2937                 }
2938
2939                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2940                                 i + PCI_IOV_RESOURCES);
2941
2942                 /*
2943                  * If bigger than quarter of M64 segment size, just round up
2944                  * power of two.
2945                  *
2946                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2947                  * with other devices, IOV BAR size is expanded to be
2948                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2949                  * segment size , the expanded size would equal to half of the
2950                  * whole M64 space size, which will exhaust the M64 Space and
2951                  * limit the system flexibility.  This is a design decision to
2952                  * set the boundary to quarter of the M64 segment size.
2953                  */
2954                 if (total_vf_bar_sz > gate) {
2955                         mul = roundup_pow_of_two(total_vfs);
2956                         dev_info(&pdev->dev,
2957                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2958                                 total_vf_bar_sz, gate, mul);
2959                         pdn->m64_single_mode = true;
2960                         break;
2961                 }
2962         }
2963
2964         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2965                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2966                 if (!res->flags || res->parent)
2967                         continue;
2968
2969                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2970                 /*
2971                  * On PHB3, the minimum size alignment of M64 BAR in single
2972                  * mode is 32MB.
2973                  */
2974                 if (pdn->m64_single_mode && (size < SZ_32M))
2975                         goto truncate_iov;
2976                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2977                 res->end = res->start + size * mul - 1;
2978                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2979                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2980                          i, res, mul);
2981         }
2982         pdn->vfs_expanded = mul;
2983
2984         return;
2985
2986 truncate_iov:
2987         /* To save MMIO space, IOV BAR is truncated. */
2988         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2989                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2990                 res->flags = 0;
2991                 res->end = res->start - 1;
2992         }
2993 }
2994 #endif /* CONFIG_PCI_IOV */
2995
2996 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2997                                   struct resource *res)
2998 {
2999         struct pnv_phb *phb = pe->phb;
3000         struct pci_bus_region region;
3001         int index;
3002         int64_t rc;
3003
3004         if (!res || !res->flags || res->start > res->end)
3005                 return;
3006
3007         if (res->flags & IORESOURCE_IO) {
3008                 region.start = res->start - phb->ioda.io_pci_base;
3009                 region.end   = res->end - phb->ioda.io_pci_base;
3010                 index = region.start / phb->ioda.io_segsize;
3011
3012                 while (index < phb->ioda.total_pe_num &&
3013                        region.start <= region.end) {
3014                         phb->ioda.io_segmap[index] = pe->pe_number;
3015                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3016                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3017                         if (rc != OPAL_SUCCESS) {
3018                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3019                                        __func__, rc, index, pe->pe_number);
3020                                 break;
3021                         }
3022
3023                         region.start += phb->ioda.io_segsize;
3024                         index++;
3025                 }
3026         } else if ((res->flags & IORESOURCE_MEM) &&
3027                    !pnv_pci_is_mem_pref_64(res->flags)) {
3028                 region.start = res->start -
3029                                phb->hose->mem_offset[0] -
3030                                phb->ioda.m32_pci_base;
3031                 region.end   = res->end -
3032                                phb->hose->mem_offset[0] -
3033                                phb->ioda.m32_pci_base;
3034                 index = region.start / phb->ioda.m32_segsize;
3035
3036                 while (index < phb->ioda.total_pe_num &&
3037                        region.start <= region.end) {
3038                         phb->ioda.m32_segmap[index] = pe->pe_number;
3039                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3040                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3041                         if (rc != OPAL_SUCCESS) {
3042                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3043                                        __func__, rc, index, pe->pe_number);
3044                                 break;
3045                         }
3046
3047                         region.start += phb->ioda.m32_segsize;
3048                         index++;
3049                 }
3050         }
3051 }
3052
3053 /*
3054  * This function is supposed to be called on basis of PE from top
3055  * to bottom style. So the the I/O or MMIO segment assigned to
3056  * parent PE could be overrided by its child PEs if necessary.
3057  */
3058 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3059 {
3060         struct pci_dev *pdev;
3061         int i;
3062
3063         /*
3064          * NOTE: We only care PCI bus based PE for now. For PCI
3065          * device based PE, for example SRIOV sensitive VF should
3066          * be figured out later.
3067          */
3068         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3069
3070         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3071                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3072                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3073
3074                 /*
3075                  * If the PE contains all subordinate PCI buses, the
3076                  * windows of the child bridges should be mapped to
3077                  * the PE as well.
3078                  */
3079                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3080                         continue;
3081                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3082                         pnv_ioda_setup_pe_res(pe,
3083                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3084         }
3085 }
3086
3087 static void pnv_pci_ioda_setup_seg(void)
3088 {
3089         struct pci_controller *tmp, *hose;
3090         struct pnv_phb *phb;
3091         struct pnv_ioda_pe *pe;
3092
3093         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3094                 phb = hose->private_data;
3095
3096                 /* NPU PHB does not support IO or MMIO segmentation */
3097                 if (phb->type == PNV_PHB_NPU)
3098                         continue;
3099
3100                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3101                         pnv_ioda_setup_pe_seg(pe);
3102                 }
3103         }
3104 }
3105
3106 static void pnv_pci_ioda_setup_DMA(void)
3107 {
3108         struct pci_controller *hose, *tmp;
3109         struct pnv_phb *phb;
3110
3111         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3112                 pnv_ioda_setup_dma(hose->private_data);
3113
3114                 /* Mark the PHB initialization done */
3115                 phb = hose->private_data;
3116                 phb->initialized = 1;
3117         }
3118 }
3119
3120 static void pnv_pci_ioda_create_dbgfs(void)
3121 {
3122 #ifdef CONFIG_DEBUG_FS
3123         struct pci_controller *hose, *tmp;
3124         struct pnv_phb *phb;
3125         char name[16];
3126
3127         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3128                 phb = hose->private_data;
3129
3130                 sprintf(name, "PCI%04x", hose->global_number);
3131                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3132                 if (!phb->dbgfs)
3133                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3134                                 __func__, hose->global_number);
3135         }
3136 #endif /* CONFIG_DEBUG_FS */
3137 }
3138
3139 static void pnv_pci_ioda_fixup(void)
3140 {
3141         pnv_pci_ioda_setup_PEs();
3142         pnv_pci_ioda_setup_seg();
3143         pnv_pci_ioda_setup_DMA();
3144
3145         pnv_pci_ioda_create_dbgfs();
3146
3147 #ifdef CONFIG_EEH
3148         eeh_init();
3149         eeh_addr_cache_build();
3150 #endif
3151 }
3152
3153 /*
3154  * Returns the alignment for I/O or memory windows for P2P
3155  * bridges. That actually depends on how PEs are segmented.
3156  * For now, we return I/O or M32 segment size for PE sensitive
3157  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3158  * 1MiB for memory) will be returned.
3159  *
3160  * The current PCI bus might be put into one PE, which was
3161  * create against the parent PCI bridge. For that case, we
3162  * needn't enlarge the alignment so that we can save some
3163  * resources.
3164  */
3165 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3166                                                 unsigned long type)
3167 {
3168         struct pci_dev *bridge;
3169         struct pci_controller *hose = pci_bus_to_host(bus);
3170         struct pnv_phb *phb = hose->private_data;
3171         int num_pci_bridges = 0;
3172
3173         bridge = bus->self;
3174         while (bridge) {
3175                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3176                         num_pci_bridges++;
3177                         if (num_pci_bridges >= 2)
3178                                 return 1;
3179                 }
3180
3181                 bridge = bridge->bus->self;
3182         }
3183
3184         /* We fail back to M32 if M64 isn't supported */
3185         if (phb->ioda.m64_segsize &&
3186             pnv_pci_is_mem_pref_64(type))
3187                 return phb->ioda.m64_segsize;
3188         if (type & IORESOURCE_MEM)
3189                 return phb->ioda.m32_segsize;
3190
3191         return phb->ioda.io_segsize;
3192 }
3193
3194 #ifdef CONFIG_PCI_IOV
3195 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3196                                                       int resno)
3197 {
3198         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3199         struct pnv_phb *phb = hose->private_data;
3200         struct pci_dn *pdn = pci_get_pdn(pdev);
3201         resource_size_t align;
3202
3203         /*
3204          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3205          * SR-IOV. While from hardware perspective, the range mapped by M64
3206          * BAR should be size aligned.
3207          *
3208          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3209          * powernv-specific hardware restriction is gone. But if just use the
3210          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3211          * in one segment of M64 #15, which introduces the PE conflict between
3212          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3213          * m64_segsize.
3214          *
3215          * This function returns the total IOV BAR size if M64 BAR is in
3216          * Shared PE mode or just VF BAR size if not.
3217          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3218          * M64 segment size if IOV BAR size is less.
3219          */
3220         align = pci_iov_resource_size(pdev, resno);
3221         if (!pdn->vfs_expanded)
3222                 return align;
3223         if (pdn->m64_single_mode)
3224                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3225
3226         return pdn->vfs_expanded * align;
3227 }
3228 #endif /* CONFIG_PCI_IOV */
3229
3230 /* Prevent enabling devices for which we couldn't properly
3231  * assign a PE
3232  */
3233 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3234 {
3235         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3236         struct pnv_phb *phb = hose->private_data;
3237         struct pci_dn *pdn;
3238
3239         /* The function is probably called while the PEs have
3240          * not be created yet. For example, resource reassignment
3241          * during PCI probe period. We just skip the check if
3242          * PEs isn't ready.
3243          */
3244         if (!phb->initialized)
3245                 return true;
3246
3247         pdn = pci_get_pdn(dev);
3248         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3249                 return false;
3250
3251         return true;
3252 }
3253
3254 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3255 {
3256         struct pnv_phb *phb = hose->private_data;
3257
3258         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3259                        OPAL_ASSERT_RESET);
3260 }
3261
3262 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3263         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3264         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3265 #ifdef CONFIG_PCI_MSI
3266         .setup_msi_irqs         = pnv_setup_msi_irqs,
3267         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3268 #endif
3269         .enable_device_hook     = pnv_pci_enable_device_hook,
3270         .window_alignment       = pnv_pci_window_alignment,
3271         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3272         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3273         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3274         .shutdown               = pnv_pci_ioda_shutdown,
3275 };
3276
3277 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3278 {
3279         dev_err_once(&npdev->dev,
3280                         "%s operation unsupported for NVLink devices\n",
3281                         __func__);
3282         return -EPERM;
3283 }
3284
3285 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3286         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3287 #ifdef CONFIG_PCI_MSI
3288         .setup_msi_irqs         = pnv_setup_msi_irqs,
3289         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3290 #endif
3291         .enable_device_hook     = pnv_pci_enable_device_hook,
3292         .window_alignment       = pnv_pci_window_alignment,
3293         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3294         .dma_set_mask           = pnv_npu_dma_set_mask,
3295         .shutdown               = pnv_pci_ioda_shutdown,
3296 };
3297
3298 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3299                                          u64 hub_id, int ioda_type)
3300 {
3301         struct pci_controller *hose;
3302         struct pnv_phb *phb;
3303         unsigned long size, m64map_off, m32map_off, pemap_off;
3304         unsigned long iomap_off = 0, dma32map_off = 0;
3305         const __be64 *prop64;
3306         const __be32 *prop32;
3307         int len;
3308         unsigned int segno;
3309         u64 phb_id;
3310         void *aux;
3311         long rc;
3312
3313         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3314
3315         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3316         if (!prop64) {
3317                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3318                 return;
3319         }
3320         phb_id = be64_to_cpup(prop64);
3321         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3322
3323         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3324
3325         /* Allocate PCI controller */
3326         phb->hose = hose = pcibios_alloc_controller(np);
3327         if (!phb->hose) {
3328                 pr_err("  Can't allocate PCI controller for %s\n",
3329                        np->full_name);
3330                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3331                 return;
3332         }
3333
3334         spin_lock_init(&phb->lock);
3335         prop32 = of_get_property(np, "bus-range", &len);
3336         if (prop32 && len == 8) {
3337                 hose->first_busno = be32_to_cpu(prop32[0]);
3338                 hose->last_busno = be32_to_cpu(prop32[1]);
3339         } else {
3340                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3341                 hose->first_busno = 0;
3342                 hose->last_busno = 0xff;
3343         }
3344         hose->private_data = phb;
3345         phb->hub_id = hub_id;
3346         phb->opal_id = phb_id;
3347         phb->type = ioda_type;
3348         mutex_init(&phb->ioda.pe_alloc_mutex);
3349
3350         /* Detect specific models for error handling */
3351         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3352                 phb->model = PNV_PHB_MODEL_P7IOC;
3353         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3354                 phb->model = PNV_PHB_MODEL_PHB3;
3355         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3356                 phb->model = PNV_PHB_MODEL_NPU;
3357         else
3358                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3359
3360         /* Parse 32-bit and IO ranges (if any) */
3361         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3362
3363         /* Get registers */
3364         phb->regs = of_iomap(np, 0);
3365         if (phb->regs == NULL)
3366                 pr_err("  Failed to map registers !\n");
3367
3368         /* Initialize more IODA stuff */
3369         phb->ioda.total_pe_num = 1;
3370         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3371         if (prop32)
3372                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3373         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3374         if (prop32)
3375                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3376
3377         /* Parse 64-bit MMIO range */
3378         pnv_ioda_parse_m64_window(phb);
3379
3380         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3381         /* FW Has already off top 64k of M32 space (MSI space) */
3382         phb->ioda.m32_size += 0x10000;
3383
3384         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3385         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3386         phb->ioda.io_size = hose->pci_io_size;
3387         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3388         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3389
3390         /* Calculate how many 32-bit TCE segments we have */
3391         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3392                                 PNV_IODA1_DMA32_SEGSIZE;
3393
3394         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3395         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3396         m64map_off = size;
3397         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3398         m32map_off = size;
3399         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3400         if (phb->type == PNV_PHB_IODA1) {
3401                 iomap_off = size;
3402                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3403                 dma32map_off = size;
3404                 size += phb->ioda.dma32_count *
3405                         sizeof(phb->ioda.dma32_segmap[0]);
3406         }
3407         pemap_off = size;
3408         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3409         aux = memblock_virt_alloc(size, 0);
3410         phb->ioda.pe_alloc = aux;
3411         phb->ioda.m64_segmap = aux + m64map_off;
3412         phb->ioda.m32_segmap = aux + m32map_off;
3413         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3414                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3415                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3416         }
3417         if (phb->type == PNV_PHB_IODA1) {
3418                 phb->ioda.io_segmap = aux + iomap_off;
3419                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3420                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3421
3422                 phb->ioda.dma32_segmap = aux + dma32map_off;
3423                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3424                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3425         }
3426         phb->ioda.pe_array = aux + pemap_off;
3427         set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3428
3429         INIT_LIST_HEAD(&phb->ioda.pe_list);
3430         mutex_init(&phb->ioda.pe_list_mutex);
3431
3432         /* Calculate how many 32-bit TCE segments we have */
3433         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3434                                 PNV_IODA1_DMA32_SEGSIZE;
3435
3436 #if 0 /* We should really do that ... */
3437         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3438                                          window_type,
3439                                          window_num,
3440                                          starting_real_address,
3441                                          starting_pci_address,
3442                                          segment_size);
3443 #endif
3444
3445         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3446                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3447                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3448         if (phb->ioda.m64_size)
3449                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3450                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3451         if (phb->ioda.io_size)
3452                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3453                         phb->ioda.io_size, phb->ioda.io_segsize);
3454
3455
3456         phb->hose->ops = &pnv_pci_ops;
3457         phb->get_pe_state = pnv_ioda_get_pe_state;
3458         phb->freeze_pe = pnv_ioda_freeze_pe;
3459         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3460
3461         /* Setup MSI support */
3462         pnv_pci_init_ioda_msis(phb);
3463
3464         /*
3465          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3466          * to let the PCI core do resource assignment. It's supposed
3467          * that the PCI core will do correct I/O and MMIO alignment
3468          * for the P2P bridge bars so that each PCI bus (excluding
3469          * the child P2P bridges) can form individual PE.
3470          */
3471         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3472
3473         if (phb->type == PNV_PHB_NPU) {
3474                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3475         } else {
3476                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3477                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3478         }
3479
3480 #ifdef CONFIG_PCI_IOV
3481         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3482         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3483 #endif
3484
3485         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3486
3487         /* Reset IODA tables to a clean state */
3488         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3489         if (rc)
3490                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3491
3492         /* If we're running in kdump kerenl, the previous kerenl never
3493          * shutdown PCI devices correctly. We already got IODA table
3494          * cleaned out. So we have to issue PHB reset to stop all PCI
3495          * transactions from previous kerenl.
3496          */
3497         if (is_kdump_kernel()) {
3498                 pr_info("  Issue PHB reset ...\n");
3499                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3500                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3501         }
3502
3503         /* Remove M64 resource if we can't configure it successfully */
3504         if (!phb->init_m64 || phb->init_m64(phb))
3505                 hose->mem_resources[1].flags = 0;
3506 }
3507
3508 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3509 {
3510         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3511 }
3512
3513 void __init pnv_pci_init_npu_phb(struct device_node *np)
3514 {
3515         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3516 }
3517
3518 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3519 {
3520         struct device_node *phbn;
3521         const __be64 *prop64;
3522         u64 hub_id;
3523
3524         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3525
3526         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3527         if (!prop64) {
3528                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3529                 return;
3530         }
3531         hub_id = be64_to_cpup(prop64);
3532         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3533
3534         /* Count child PHBs */
3535         for_each_child_of_node(np, phbn) {
3536                 /* Look for IODA1 PHBs */
3537                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3538                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3539         }
3540 }