]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
powerpc/powernv/ioda: Clean up IOMMU group registration
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41
42 #include <misc/cxl-base.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46
47 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
48 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
49
50 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
51                             const char *fmt, ...)
52 {
53         struct va_format vaf;
54         va_list args;
55         char pfix[32];
56
57         va_start(args, fmt);
58
59         vaf.fmt = fmt;
60         vaf.va = &args;
61
62         if (pe->flags & PNV_IODA_PE_DEV)
63                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
64         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
65                 sprintf(pfix, "%04x:%02x     ",
66                         pci_domain_nr(pe->pbus), pe->pbus->number);
67 #ifdef CONFIG_PCI_IOV
68         else if (pe->flags & PNV_IODA_PE_VF)
69                 sprintf(pfix, "%04x:%02x:%2x.%d",
70                         pci_domain_nr(pe->parent_dev->bus),
71                         (pe->rid & 0xff00) >> 8,
72                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
73 #endif /* CONFIG_PCI_IOV*/
74
75         printk("%spci %s: [PE# %.3d] %pV",
76                level, pfix, pe->pe_number, &vaf);
77
78         va_end(args);
79 }
80
81 #define pe_err(pe, fmt, ...)                                    \
82         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
83 #define pe_warn(pe, fmt, ...)                                   \
84         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
85 #define pe_info(pe, fmt, ...)                                   \
86         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
87
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89
90 static int __init iommu_setup(char *str)
91 {
92         if (!str)
93                 return -EINVAL;
94
95         while (*str) {
96                 if (!strncmp(str, "nobypass", 8)) {
97                         pnv_iommu_bypass_disabled = true;
98                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
99                         break;
100                 }
101                 str += strcspn(str, ",");
102                 if (*str == ',')
103                         str++;
104         }
105
106         return 0;
107 }
108 early_param("iommu", iommu_setup);
109
110 /*
111  * stdcix is only supposed to be used in hypervisor real mode as per
112  * the architecture spec
113  */
114 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
115 {
116         __asm__ __volatile__("stdcix %0,0,%1"
117                 : : "r" (val), "r" (paddr) : "memory");
118 }
119
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125
126 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
127 {
128         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
129                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
130                         __func__, pe_no, phb->hose->global_number);
131                 return;
132         }
133
134         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
135                 pr_warn("%s: PE %d was assigned on PHB#%x\n",
136                         __func__, pe_no, phb->hose->global_number);
137                 return;
138         }
139
140         phb->ioda.pe_array[pe_no].phb = phb;
141         phb->ioda.pe_array[pe_no].pe_number = pe_no;
142 }
143
144 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
145 {
146         unsigned long pe;
147
148         do {
149                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
150                                         phb->ioda.total_pe, 0);
151                 if (pe >= phb->ioda.total_pe)
152                         return IODA_INVALID_PE;
153         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
154
155         phb->ioda.pe_array[pe].phb = phb;
156         phb->ioda.pe_array[pe].pe_number = pe;
157         return pe;
158 }
159
160 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
161 {
162         WARN_ON(phb->ioda.pe_array[pe].pdev);
163
164         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
165         clear_bit(pe, phb->ioda.pe_alloc);
166 }
167
168 /* The default M64 BAR is shared by all PEs */
169 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
170 {
171         const char *desc;
172         struct resource *r;
173         s64 rc;
174
175         /* Configure the default M64 BAR */
176         rc = opal_pci_set_phb_mem_window(phb->opal_id,
177                                          OPAL_M64_WINDOW_TYPE,
178                                          phb->ioda.m64_bar_idx,
179                                          phb->ioda.m64_base,
180                                          0, /* unused */
181                                          phb->ioda.m64_size);
182         if (rc != OPAL_SUCCESS) {
183                 desc = "configuring";
184                 goto fail;
185         }
186
187         /* Enable the default M64 BAR */
188         rc = opal_pci_phb_mmio_enable(phb->opal_id,
189                                       OPAL_M64_WINDOW_TYPE,
190                                       phb->ioda.m64_bar_idx,
191                                       OPAL_ENABLE_M64_SPLIT);
192         if (rc != OPAL_SUCCESS) {
193                 desc = "enabling";
194                 goto fail;
195         }
196
197         /* Mark the M64 BAR assigned */
198         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
199
200         /*
201          * Strip off the segment used by the reserved PE, which is
202          * expected to be 0 or last one of PE capabicity.
203          */
204         r = &phb->hose->mem_resources[1];
205         if (phb->ioda.reserved_pe == 0)
206                 r->start += phb->ioda.m64_segsize;
207         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
208                 r->end -= phb->ioda.m64_segsize;
209         else
210                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
211                         phb->ioda.reserved_pe);
212
213         return 0;
214
215 fail:
216         pr_warn("  Failure %lld %s M64 BAR#%d\n",
217                 rc, desc, phb->ioda.m64_bar_idx);
218         opal_pci_phb_mmio_enable(phb->opal_id,
219                                  OPAL_M64_WINDOW_TYPE,
220                                  phb->ioda.m64_bar_idx,
221                                  OPAL_DISABLE_M64);
222         return -EIO;
223 }
224
225 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
226 {
227         resource_size_t sgsz = phb->ioda.m64_segsize;
228         struct pci_dev *pdev;
229         struct resource *r;
230         int base, step, i;
231
232         /*
233          * Root bus always has full M64 range and root port has
234          * M64 range used in reality. So we're checking root port
235          * instead of root bus.
236          */
237         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
238                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
239                         r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
240                         if (!r->parent ||
241                             !pnv_pci_is_mem_pref_64(r->flags))
242                                 continue;
243
244                         base = (r->start - phb->ioda.m64_base) / sgsz;
245                         for (step = 0; step < resource_size(r) / sgsz; step++)
246                                 pnv_ioda_reserve_pe(phb, base + step);
247                 }
248         }
249 }
250
251 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
252                                  struct pci_bus *bus, int all)
253 {
254         resource_size_t segsz = phb->ioda.m64_segsize;
255         struct pci_dev *pdev;
256         struct resource *r;
257         struct pnv_ioda_pe *master_pe, *pe;
258         unsigned long size, *pe_alloc;
259         bool found;
260         int start, i, j;
261
262         /* Root bus shouldn't use M64 */
263         if (pci_is_root_bus(bus))
264                 return IODA_INVALID_PE;
265
266         /* We support only one M64 window on each bus */
267         found = false;
268         pci_bus_for_each_resource(bus, r, i) {
269                 if (r && r->parent &&
270                     pnv_pci_is_mem_pref_64(r->flags)) {
271                         found = true;
272                         break;
273                 }
274         }
275
276         /* No M64 window found ? */
277         if (!found)
278                 return IODA_INVALID_PE;
279
280         /* Allocate bitmap */
281         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
282         pe_alloc = kzalloc(size, GFP_KERNEL);
283         if (!pe_alloc) {
284                 pr_warn("%s: Out of memory !\n",
285                         __func__);
286                 return IODA_INVALID_PE;
287         }
288
289         /*
290          * Figure out reserved PE numbers by the PE
291          * the its child PEs.
292          */
293         start = (r->start - phb->ioda.m64_base) / segsz;
294         for (i = 0; i < resource_size(r) / segsz; i++)
295                 set_bit(start + i, pe_alloc);
296
297         if (all)
298                 goto done;
299
300         /*
301          * If the PE doesn't cover all subordinate buses,
302          * we need subtract from reserved PEs for children.
303          */
304         list_for_each_entry(pdev, &bus->devices, bus_list) {
305                 if (!pdev->subordinate)
306                         continue;
307
308                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
309                         if (!r || !r->parent ||
310                             !pnv_pci_is_mem_pref_64(r->flags))
311                                 continue;
312
313                         start = (r->start - phb->ioda.m64_base) / segsz;
314                         for (j = 0; j < resource_size(r) / segsz ; j++)
315                                 clear_bit(start + j, pe_alloc);
316                 }
317         }
318
319         /*
320          * the current bus might not own M64 window and that's all
321          * contributed by its child buses. For the case, we needn't
322          * pick M64 dependent PE#.
323          */
324         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
325                 kfree(pe_alloc);
326                 return IODA_INVALID_PE;
327         }
328
329         /*
330          * Figure out the master PE and put all slave PEs to master
331          * PE's list to form compound PE.
332          */
333 done:
334         master_pe = NULL;
335         i = -1;
336         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
337                 phb->ioda.total_pe) {
338                 pe = &phb->ioda.pe_array[i];
339
340                 if (!master_pe) {
341                         pe->flags |= PNV_IODA_PE_MASTER;
342                         INIT_LIST_HEAD(&pe->slaves);
343                         master_pe = pe;
344                 } else {
345                         pe->flags |= PNV_IODA_PE_SLAVE;
346                         pe->master = master_pe;
347                         list_add_tail(&pe->list, &master_pe->slaves);
348                 }
349         }
350
351         kfree(pe_alloc);
352         return master_pe->pe_number;
353 }
354
355 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
356 {
357         struct pci_controller *hose = phb->hose;
358         struct device_node *dn = hose->dn;
359         struct resource *res;
360         const u32 *r;
361         u64 pci_addr;
362
363         /* FIXME: Support M64 for P7IOC */
364         if (phb->type != PNV_PHB_IODA2) {
365                 pr_info("  Not support M64 window\n");
366                 return;
367         }
368
369         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
370                 pr_info("  Firmware too old to support M64 window\n");
371                 return;
372         }
373
374         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
375         if (!r) {
376                 pr_info("  No <ibm,opal-m64-window> on %s\n",
377                         dn->full_name);
378                 return;
379         }
380
381         res = &hose->mem_resources[1];
382         res->start = of_translate_address(dn, r + 2);
383         res->end = res->start + of_read_number(r + 4, 2) - 1;
384         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
385         pci_addr = of_read_number(r, 2);
386         hose->mem_offset[1] = res->start - pci_addr;
387
388         phb->ioda.m64_size = resource_size(res);
389         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
390         phb->ioda.m64_base = pci_addr;
391
392         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
393                         res->start, res->end, pci_addr);
394
395         /* Use last M64 BAR to cover M64 window */
396         phb->ioda.m64_bar_idx = 15;
397         phb->init_m64 = pnv_ioda2_init_m64;
398         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
399         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
400 }
401
402 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
403 {
404         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
405         struct pnv_ioda_pe *slave;
406         s64 rc;
407
408         /* Fetch master PE */
409         if (pe->flags & PNV_IODA_PE_SLAVE) {
410                 pe = pe->master;
411                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
412                         return;
413
414                 pe_no = pe->pe_number;
415         }
416
417         /* Freeze master PE */
418         rc = opal_pci_eeh_freeze_set(phb->opal_id,
419                                      pe_no,
420                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
421         if (rc != OPAL_SUCCESS) {
422                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
423                         __func__, rc, phb->hose->global_number, pe_no);
424                 return;
425         }
426
427         /* Freeze slave PEs */
428         if (!(pe->flags & PNV_IODA_PE_MASTER))
429                 return;
430
431         list_for_each_entry(slave, &pe->slaves, list) {
432                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
433                                              slave->pe_number,
434                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
435                 if (rc != OPAL_SUCCESS)
436                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
437                                 __func__, rc, phb->hose->global_number,
438                                 slave->pe_number);
439         }
440 }
441
442 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
443 {
444         struct pnv_ioda_pe *pe, *slave;
445         s64 rc;
446
447         /* Find master PE */
448         pe = &phb->ioda.pe_array[pe_no];
449         if (pe->flags & PNV_IODA_PE_SLAVE) {
450                 pe = pe->master;
451                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
452                 pe_no = pe->pe_number;
453         }
454
455         /* Clear frozen state for master PE */
456         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
457         if (rc != OPAL_SUCCESS) {
458                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
459                         __func__, rc, opt, phb->hose->global_number, pe_no);
460                 return -EIO;
461         }
462
463         if (!(pe->flags & PNV_IODA_PE_MASTER))
464                 return 0;
465
466         /* Clear frozen state for slave PEs */
467         list_for_each_entry(slave, &pe->slaves, list) {
468                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
469                                              slave->pe_number,
470                                              opt);
471                 if (rc != OPAL_SUCCESS) {
472                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
473                                 __func__, rc, opt, phb->hose->global_number,
474                                 slave->pe_number);
475                         return -EIO;
476                 }
477         }
478
479         return 0;
480 }
481
482 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
483 {
484         struct pnv_ioda_pe *slave, *pe;
485         u8 fstate, state;
486         __be16 pcierr;
487         s64 rc;
488
489         /* Sanity check on PE number */
490         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
491                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
492
493         /*
494          * Fetch the master PE and the PE instance might be
495          * not initialized yet.
496          */
497         pe = &phb->ioda.pe_array[pe_no];
498         if (pe->flags & PNV_IODA_PE_SLAVE) {
499                 pe = pe->master;
500                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
501                 pe_no = pe->pe_number;
502         }
503
504         /* Check the master PE */
505         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
506                                         &state, &pcierr, NULL);
507         if (rc != OPAL_SUCCESS) {
508                 pr_warn("%s: Failure %lld getting "
509                         "PHB#%x-PE#%x state\n",
510                         __func__, rc,
511                         phb->hose->global_number, pe_no);
512                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
513         }
514
515         /* Check the slave PE */
516         if (!(pe->flags & PNV_IODA_PE_MASTER))
517                 return state;
518
519         list_for_each_entry(slave, &pe->slaves, list) {
520                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
521                                                 slave->pe_number,
522                                                 &fstate,
523                                                 &pcierr,
524                                                 NULL);
525                 if (rc != OPAL_SUCCESS) {
526                         pr_warn("%s: Failure %lld getting "
527                                 "PHB#%x-PE#%x state\n",
528                                 __func__, rc,
529                                 phb->hose->global_number, slave->pe_number);
530                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
531                 }
532
533                 /*
534                  * Override the result based on the ascending
535                  * priority.
536                  */
537                 if (fstate > state)
538                         state = fstate;
539         }
540
541         return state;
542 }
543
544 /* Currently those 2 are only used when MSIs are enabled, this will change
545  * but in the meantime, we need to protect them to avoid warnings
546  */
547 #ifdef CONFIG_PCI_MSI
548 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
549 {
550         struct pci_controller *hose = pci_bus_to_host(dev->bus);
551         struct pnv_phb *phb = hose->private_data;
552         struct pci_dn *pdn = pci_get_pdn(dev);
553
554         if (!pdn)
555                 return NULL;
556         if (pdn->pe_number == IODA_INVALID_PE)
557                 return NULL;
558         return &phb->ioda.pe_array[pdn->pe_number];
559 }
560 #endif /* CONFIG_PCI_MSI */
561
562 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
563                                   struct pnv_ioda_pe *parent,
564                                   struct pnv_ioda_pe *child,
565                                   bool is_add)
566 {
567         const char *desc = is_add ? "adding" : "removing";
568         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
569                               OPAL_REMOVE_PE_FROM_DOMAIN;
570         struct pnv_ioda_pe *slave;
571         long rc;
572
573         /* Parent PE affects child PE */
574         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
575                                 child->pe_number, op);
576         if (rc != OPAL_SUCCESS) {
577                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
578                         rc, desc);
579                 return -ENXIO;
580         }
581
582         if (!(child->flags & PNV_IODA_PE_MASTER))
583                 return 0;
584
585         /* Compound case: parent PE affects slave PEs */
586         list_for_each_entry(slave, &child->slaves, list) {
587                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
588                                         slave->pe_number, op);
589                 if (rc != OPAL_SUCCESS) {
590                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
591                                 rc, desc);
592                         return -ENXIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
600                               struct pnv_ioda_pe *pe,
601                               bool is_add)
602 {
603         struct pnv_ioda_pe *slave;
604         struct pci_dev *pdev = NULL;
605         int ret;
606
607         /*
608          * Clear PE frozen state. If it's master PE, we need
609          * clear slave PE frozen state as well.
610          */
611         if (is_add) {
612                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
613                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
614                 if (pe->flags & PNV_IODA_PE_MASTER) {
615                         list_for_each_entry(slave, &pe->slaves, list)
616                                 opal_pci_eeh_freeze_clear(phb->opal_id,
617                                                           slave->pe_number,
618                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
619                 }
620         }
621
622         /*
623          * Associate PE in PELT. We need add the PE into the
624          * corresponding PELT-V as well. Otherwise, the error
625          * originated from the PE might contribute to other
626          * PEs.
627          */
628         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
629         if (ret)
630                 return ret;
631
632         /* For compound PEs, any one affects all of them */
633         if (pe->flags & PNV_IODA_PE_MASTER) {
634                 list_for_each_entry(slave, &pe->slaves, list) {
635                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
636                         if (ret)
637                                 return ret;
638                 }
639         }
640
641         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
642                 pdev = pe->pbus->self;
643         else if (pe->flags & PNV_IODA_PE_DEV)
644                 pdev = pe->pdev->bus->self;
645 #ifdef CONFIG_PCI_IOV
646         else if (pe->flags & PNV_IODA_PE_VF)
647                 pdev = pe->parent_dev->bus->self;
648 #endif /* CONFIG_PCI_IOV */
649         while (pdev) {
650                 struct pci_dn *pdn = pci_get_pdn(pdev);
651                 struct pnv_ioda_pe *parent;
652
653                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
654                         parent = &phb->ioda.pe_array[pdn->pe_number];
655                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
656                         if (ret)
657                                 return ret;
658                 }
659
660                 pdev = pdev->bus->self;
661         }
662
663         return 0;
664 }
665
666 #ifdef CONFIG_PCI_IOV
667 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
668 {
669         struct pci_dev *parent;
670         uint8_t bcomp, dcomp, fcomp;
671         int64_t rc;
672         long rid_end, rid;
673
674         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
675         if (pe->pbus) {
676                 int count;
677
678                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
679                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
680                 parent = pe->pbus->self;
681                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
682                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
683                 else
684                         count = 1;
685
686                 switch(count) {
687                 case  1: bcomp = OpalPciBusAll;         break;
688                 case  2: bcomp = OpalPciBus7Bits;       break;
689                 case  4: bcomp = OpalPciBus6Bits;       break;
690                 case  8: bcomp = OpalPciBus5Bits;       break;
691                 case 16: bcomp = OpalPciBus4Bits;       break;
692                 case 32: bcomp = OpalPciBus3Bits;       break;
693                 default:
694                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
695                                 count);
696                         /* Do an exact match only */
697                         bcomp = OpalPciBusAll;
698                 }
699                 rid_end = pe->rid + (count << 8);
700         } else {
701                 if (pe->flags & PNV_IODA_PE_VF)
702                         parent = pe->parent_dev;
703                 else
704                         parent = pe->pdev->bus->self;
705                 bcomp = OpalPciBusAll;
706                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
707                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
708                 rid_end = pe->rid + 1;
709         }
710
711         /* Clear the reverse map */
712         for (rid = pe->rid; rid < rid_end; rid++)
713                 phb->ioda.pe_rmap[rid] = 0;
714
715         /* Release from all parents PELT-V */
716         while (parent) {
717                 struct pci_dn *pdn = pci_get_pdn(parent);
718                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
721                         /* XXX What to do in case of error ? */
722                 }
723                 parent = parent->bus->self;
724         }
725
726         opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
727                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728
729         /* Disassociate PE in PELT */
730         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
731                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
732         if (rc)
733                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
734         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
735                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
736         if (rc)
737                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
738
739         pe->pbus = NULL;
740         pe->pdev = NULL;
741         pe->parent_dev = NULL;
742
743         return 0;
744 }
745 #endif /* CONFIG_PCI_IOV */
746
747 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
748 {
749         struct pci_dev *parent;
750         uint8_t bcomp, dcomp, fcomp;
751         long rc, rid_end, rid;
752
753         /* Bus validation ? */
754         if (pe->pbus) {
755                 int count;
756
757                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
758                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
759                 parent = pe->pbus->self;
760                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
761                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
762                 else
763                         count = 1;
764
765                 switch(count) {
766                 case  1: bcomp = OpalPciBusAll;         break;
767                 case  2: bcomp = OpalPciBus7Bits;       break;
768                 case  4: bcomp = OpalPciBus6Bits;       break;
769                 case  8: bcomp = OpalPciBus5Bits;       break;
770                 case 16: bcomp = OpalPciBus4Bits;       break;
771                 case 32: bcomp = OpalPciBus3Bits;       break;
772                 default:
773                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
774                                 count);
775                         /* Do an exact match only */
776                         bcomp = OpalPciBusAll;
777                 }
778                 rid_end = pe->rid + (count << 8);
779         } else {
780 #ifdef CONFIG_PCI_IOV
781                 if (pe->flags & PNV_IODA_PE_VF)
782                         parent = pe->parent_dev;
783                 else
784 #endif /* CONFIG_PCI_IOV */
785                         parent = pe->pdev->bus->self;
786                 bcomp = OpalPciBusAll;
787                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
788                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
789                 rid_end = pe->rid + 1;
790         }
791
792         /*
793          * Associate PE in PELT. We need add the PE into the
794          * corresponding PELT-V as well. Otherwise, the error
795          * originated from the PE might contribute to other
796          * PEs.
797          */
798         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
799                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
800         if (rc) {
801                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
802                 return -ENXIO;
803         }
804
805         /* Configure PELTV */
806         pnv_ioda_set_peltv(phb, pe, true);
807
808         /* Setup reverse map */
809         for (rid = pe->rid; rid < rid_end; rid++)
810                 phb->ioda.pe_rmap[rid] = pe->pe_number;
811
812         /* Setup one MVTs on IODA1 */
813         if (phb->type != PNV_PHB_IODA1) {
814                 pe->mve_number = 0;
815                 goto out;
816         }
817
818         pe->mve_number = pe->pe_number;
819         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
820         if (rc != OPAL_SUCCESS) {
821                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
822                        rc, pe->mve_number);
823                 pe->mve_number = -1;
824         } else {
825                 rc = opal_pci_set_mve_enable(phb->opal_id,
826                                              pe->mve_number, OPAL_ENABLE_MVE);
827                 if (rc) {
828                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
829                                rc, pe->mve_number);
830                         pe->mve_number = -1;
831                 }
832         }
833
834 out:
835         return 0;
836 }
837
838 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
839                                        struct pnv_ioda_pe *pe)
840 {
841         struct pnv_ioda_pe *lpe;
842
843         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
844                 if (lpe->dma_weight < pe->dma_weight) {
845                         list_add_tail(&pe->dma_link, &lpe->dma_link);
846                         return;
847                 }
848         }
849         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
850 }
851
852 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
853 {
854         /* This is quite simplistic. The "base" weight of a device
855          * is 10. 0 means no DMA is to be accounted for it.
856          */
857
858         /* If it's a bridge, no DMA */
859         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
860                 return 0;
861
862         /* Reduce the weight of slow USB controllers */
863         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
864             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
865             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
866                 return 3;
867
868         /* Increase the weight of RAID (includes Obsidian) */
869         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
870                 return 15;
871
872         /* Default */
873         return 10;
874 }
875
876 #ifdef CONFIG_PCI_IOV
877 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
878 {
879         struct pci_dn *pdn = pci_get_pdn(dev);
880         int i;
881         struct resource *res, res2;
882         resource_size_t size;
883         u16 num_vfs;
884
885         if (!dev->is_physfn)
886                 return -EINVAL;
887
888         /*
889          * "offset" is in VFs.  The M64 windows are sized so that when they
890          * are segmented, each segment is the same size as the IOV BAR.
891          * Each segment is in a separate PE, and the high order bits of the
892          * address are the PE number.  Therefore, each VF's BAR is in a
893          * separate PE, and changing the IOV BAR start address changes the
894          * range of PEs the VFs are in.
895          */
896         num_vfs = pdn->num_vfs;
897         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
898                 res = &dev->resource[i + PCI_IOV_RESOURCES];
899                 if (!res->flags || !res->parent)
900                         continue;
901
902                 if (!pnv_pci_is_mem_pref_64(res->flags))
903                         continue;
904
905                 /*
906                  * The actual IOV BAR range is determined by the start address
907                  * and the actual size for num_vfs VFs BAR.  This check is to
908                  * make sure that after shifting, the range will not overlap
909                  * with another device.
910                  */
911                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
912                 res2.flags = res->flags;
913                 res2.start = res->start + (size * offset);
914                 res2.end = res2.start + (size * num_vfs) - 1;
915
916                 if (res2.end > res->end) {
917                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
918                                 i, &res2, res, num_vfs, offset);
919                         return -EBUSY;
920                 }
921         }
922
923         /*
924          * After doing so, there would be a "hole" in the /proc/iomem when
925          * offset is a positive value. It looks like the device return some
926          * mmio back to the system, which actually no one could use it.
927          */
928         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
929                 res = &dev->resource[i + PCI_IOV_RESOURCES];
930                 if (!res->flags || !res->parent)
931                         continue;
932
933                 if (!pnv_pci_is_mem_pref_64(res->flags))
934                         continue;
935
936                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
937                 res2 = *res;
938                 res->start += size * offset;
939
940                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
941                          i, &res2, res, num_vfs, offset);
942                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
943         }
944         return 0;
945 }
946 #endif /* CONFIG_PCI_IOV */
947
948 #if 0
949 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
950 {
951         struct pci_controller *hose = pci_bus_to_host(dev->bus);
952         struct pnv_phb *phb = hose->private_data;
953         struct pci_dn *pdn = pci_get_pdn(dev);
954         struct pnv_ioda_pe *pe;
955         int pe_num;
956
957         if (!pdn) {
958                 pr_err("%s: Device tree node not associated properly\n",
959                            pci_name(dev));
960                 return NULL;
961         }
962         if (pdn->pe_number != IODA_INVALID_PE)
963                 return NULL;
964
965         /* PE#0 has been pre-set */
966         if (dev->bus->number == 0)
967                 pe_num = 0;
968         else
969                 pe_num = pnv_ioda_alloc_pe(phb);
970         if (pe_num == IODA_INVALID_PE) {
971                 pr_warning("%s: Not enough PE# available, disabling device\n",
972                            pci_name(dev));
973                 return NULL;
974         }
975
976         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
977          * pointer in the PE data structure, both should be destroyed at the
978          * same time. However, this needs to be looked at more closely again
979          * once we actually start removing things (Hotplug, SR-IOV, ...)
980          *
981          * At some point we want to remove the PDN completely anyways
982          */
983         pe = &phb->ioda.pe_array[pe_num];
984         pci_dev_get(dev);
985         pdn->pcidev = dev;
986         pdn->pe_number = pe_num;
987         pe->pdev = dev;
988         pe->pbus = NULL;
989         pe->tce32_seg = -1;
990         pe->mve_number = -1;
991         pe->rid = dev->bus->number << 8 | pdn->devfn;
992
993         pe_info(pe, "Associated device to PE\n");
994
995         if (pnv_ioda_configure_pe(phb, pe)) {
996                 /* XXX What do we do here ? */
997                 if (pe_num)
998                         pnv_ioda_free_pe(phb, pe_num);
999                 pdn->pe_number = IODA_INVALID_PE;
1000                 pe->pdev = NULL;
1001                 pci_dev_put(dev);
1002                 return NULL;
1003         }
1004
1005         /* Assign a DMA weight to the device */
1006         pe->dma_weight = pnv_ioda_dma_weight(dev);
1007         if (pe->dma_weight != 0) {
1008                 phb->ioda.dma_weight += pe->dma_weight;
1009                 phb->ioda.dma_pe_count++;
1010         }
1011
1012         /* Link the PE */
1013         pnv_ioda_link_pe_by_weight(phb, pe);
1014
1015         return pe;
1016 }
1017 #endif /* Useful for SRIOV case */
1018
1019 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020 {
1021         struct pci_dev *dev;
1022
1023         list_for_each_entry(dev, &bus->devices, bus_list) {
1024                 struct pci_dn *pdn = pci_get_pdn(dev);
1025
1026                 if (pdn == NULL) {
1027                         pr_warn("%s: No device node associated with device !\n",
1028                                 pci_name(dev));
1029                         continue;
1030                 }
1031                 pdn->pe_number = pe->pe_number;
1032                 pe->dma_weight += pnv_ioda_dma_weight(dev);
1033                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1034                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035         }
1036 }
1037
1038 /*
1039  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040  * single PCI bus. Another one that contains the primary PCI bus and its
1041  * subordinate PCI devices and buses. The second type of PE is normally
1042  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043  */
1044 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
1045 {
1046         struct pci_controller *hose = pci_bus_to_host(bus);
1047         struct pnv_phb *phb = hose->private_data;
1048         struct pnv_ioda_pe *pe;
1049         int pe_num = IODA_INVALID_PE;
1050
1051         /* Check if PE is determined by M64 */
1052         if (phb->pick_m64_pe)
1053                 pe_num = phb->pick_m64_pe(phb, bus, all);
1054
1055         /* The PE number isn't pinned by M64 */
1056         if (pe_num == IODA_INVALID_PE)
1057                 pe_num = pnv_ioda_alloc_pe(phb);
1058
1059         if (pe_num == IODA_INVALID_PE) {
1060                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1061                         __func__, pci_domain_nr(bus), bus->number);
1062                 return;
1063         }
1064
1065         pe = &phb->ioda.pe_array[pe_num];
1066         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1067         pe->pbus = bus;
1068         pe->pdev = NULL;
1069         pe->tce32_seg = -1;
1070         pe->mve_number = -1;
1071         pe->rid = bus->busn_res.start << 8;
1072         pe->dma_weight = 0;
1073
1074         if (all)
1075                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1076                         bus->busn_res.start, bus->busn_res.end, pe_num);
1077         else
1078                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1079                         bus->busn_res.start, pe_num);
1080
1081         if (pnv_ioda_configure_pe(phb, pe)) {
1082                 /* XXX What do we do here ? */
1083                 if (pe_num)
1084                         pnv_ioda_free_pe(phb, pe_num);
1085                 pe->pbus = NULL;
1086                 return;
1087         }
1088
1089         pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1090                         GFP_KERNEL, hose->node);
1091         pe->tce32_table->data = pe;
1092
1093         /* Associate it with all child devices */
1094         pnv_ioda_setup_same_PE(bus, pe);
1095
1096         /* Put PE to the list */
1097         list_add_tail(&pe->list, &phb->ioda.pe_list);
1098
1099         /* Account for one DMA PE if at least one DMA capable device exist
1100          * below the bridge
1101          */
1102         if (pe->dma_weight != 0) {
1103                 phb->ioda.dma_weight += pe->dma_weight;
1104                 phb->ioda.dma_pe_count++;
1105         }
1106
1107         /* Link the PE */
1108         pnv_ioda_link_pe_by_weight(phb, pe);
1109 }
1110
1111 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1112 {
1113         struct pci_dev *dev;
1114
1115         pnv_ioda_setup_bus_PE(bus, 0);
1116
1117         list_for_each_entry(dev, &bus->devices, bus_list) {
1118                 if (dev->subordinate) {
1119                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1120                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1121                         else
1122                                 pnv_ioda_setup_PEs(dev->subordinate);
1123                 }
1124         }
1125 }
1126
1127 /*
1128  * Configure PEs so that the downstream PCI buses and devices
1129  * could have their associated PE#. Unfortunately, we didn't
1130  * figure out the way to identify the PLX bridge yet. So we
1131  * simply put the PCI bus and the subordinate behind the root
1132  * port to PE# here. The game rule here is expected to be changed
1133  * as soon as we can detected PLX bridge correctly.
1134  */
1135 static void pnv_pci_ioda_setup_PEs(void)
1136 {
1137         struct pci_controller *hose, *tmp;
1138         struct pnv_phb *phb;
1139
1140         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1141                 phb = hose->private_data;
1142
1143                 /* M64 layout might affect PE allocation */
1144                 if (phb->reserve_m64_pe)
1145                         phb->reserve_m64_pe(phb);
1146
1147                 pnv_ioda_setup_PEs(hose->bus);
1148         }
1149 }
1150
1151 #ifdef CONFIG_PCI_IOV
1152 static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1153 {
1154         struct pci_bus        *bus;
1155         struct pci_controller *hose;
1156         struct pnv_phb        *phb;
1157         struct pci_dn         *pdn;
1158         int                    i, j;
1159
1160         bus = pdev->bus;
1161         hose = pci_bus_to_host(bus);
1162         phb = hose->private_data;
1163         pdn = pci_get_pdn(pdev);
1164
1165         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1166                 for (j = 0; j < M64_PER_IOV; j++) {
1167                         if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1168                                 continue;
1169                         opal_pci_phb_mmio_enable(phb->opal_id,
1170                                 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1171                         clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1172                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1173                 }
1174
1175         return 0;
1176 }
1177
1178 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1179 {
1180         struct pci_bus        *bus;
1181         struct pci_controller *hose;
1182         struct pnv_phb        *phb;
1183         struct pci_dn         *pdn;
1184         unsigned int           win;
1185         struct resource       *res;
1186         int                    i, j;
1187         int64_t                rc;
1188         int                    total_vfs;
1189         resource_size_t        size, start;
1190         int                    pe_num;
1191         int                    vf_groups;
1192         int                    vf_per_group;
1193
1194         bus = pdev->bus;
1195         hose = pci_bus_to_host(bus);
1196         phb = hose->private_data;
1197         pdn = pci_get_pdn(pdev);
1198         total_vfs = pci_sriov_get_totalvfs(pdev);
1199
1200         /* Initialize the m64_wins to IODA_INVALID_M64 */
1201         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1202                 for (j = 0; j < M64_PER_IOV; j++)
1203                         pdn->m64_wins[i][j] = IODA_INVALID_M64;
1204
1205         if (pdn->m64_per_iov == M64_PER_IOV) {
1206                 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1207                 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1208                         roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1209         } else {
1210                 vf_groups = 1;
1211                 vf_per_group = 1;
1212         }
1213
1214         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1215                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1216                 if (!res->flags || !res->parent)
1217                         continue;
1218
1219                 if (!pnv_pci_is_mem_pref_64(res->flags))
1220                         continue;
1221
1222                 for (j = 0; j < vf_groups; j++) {
1223                         do {
1224                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1225                                                 phb->ioda.m64_bar_idx + 1, 0);
1226
1227                                 if (win >= phb->ioda.m64_bar_idx + 1)
1228                                         goto m64_failed;
1229                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1230
1231                         pdn->m64_wins[i][j] = win;
1232
1233                         if (pdn->m64_per_iov == M64_PER_IOV) {
1234                                 size = pci_iov_resource_size(pdev,
1235                                                         PCI_IOV_RESOURCES + i);
1236                                 size = size * vf_per_group;
1237                                 start = res->start + size * j;
1238                         } else {
1239                                 size = resource_size(res);
1240                                 start = res->start;
1241                         }
1242
1243                         /* Map the M64 here */
1244                         if (pdn->m64_per_iov == M64_PER_IOV) {
1245                                 pe_num = pdn->offset + j;
1246                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1247                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1248                                                 pdn->m64_wins[i][j], 0);
1249                         }
1250
1251                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1252                                                  OPAL_M64_WINDOW_TYPE,
1253                                                  pdn->m64_wins[i][j],
1254                                                  start,
1255                                                  0, /* unused */
1256                                                  size);
1257
1258
1259                         if (rc != OPAL_SUCCESS) {
1260                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1261                                         win, rc);
1262                                 goto m64_failed;
1263                         }
1264
1265                         if (pdn->m64_per_iov == M64_PER_IOV)
1266                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1267                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1268                         else
1269                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1270                                      OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
1271
1272                         if (rc != OPAL_SUCCESS) {
1273                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1274                                         win, rc);
1275                                 goto m64_failed;
1276                         }
1277                 }
1278         }
1279         return 0;
1280
1281 m64_failed:
1282         pnv_pci_vf_release_m64(pdev);
1283         return -EBUSY;
1284 }
1285
1286 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1287 {
1288         struct pci_bus        *bus;
1289         struct pci_controller *hose;
1290         struct pnv_phb        *phb;
1291         struct iommu_table    *tbl;
1292         unsigned long         addr;
1293         int64_t               rc;
1294
1295         bus = dev->bus;
1296         hose = pci_bus_to_host(bus);
1297         phb = hose->private_data;
1298         tbl = pe->tce32_table;
1299         addr = tbl->it_base;
1300
1301         opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1302                                    pe->pe_number << 1, 1, __pa(addr),
1303                                    0, 0x1000);
1304
1305         rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1306                                         pe->pe_number,
1307                                         (pe->pe_number << 1) + 1,
1308                                         pe->tce_bypass_base,
1309                                         0);
1310         if (rc)
1311                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1312
1313         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1314         free_pages(addr, get_order(TCE32_TABLE_SIZE));
1315         pe->tce32_table = NULL;
1316 }
1317
1318 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1319 {
1320         struct pci_bus        *bus;
1321         struct pci_controller *hose;
1322         struct pnv_phb        *phb;
1323         struct pnv_ioda_pe    *pe, *pe_n;
1324         struct pci_dn         *pdn;
1325         u16                    vf_index;
1326         int64_t                rc;
1327
1328         bus = pdev->bus;
1329         hose = pci_bus_to_host(bus);
1330         phb = hose->private_data;
1331         pdn = pci_get_pdn(pdev);
1332
1333         if (!pdev->is_physfn)
1334                 return;
1335
1336         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1337                 int   vf_group;
1338                 int   vf_per_group;
1339                 int   vf_index1;
1340
1341                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1342
1343                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1344                         for (vf_index = vf_group * vf_per_group;
1345                                 vf_index < (vf_group + 1) * vf_per_group &&
1346                                 vf_index < num_vfs;
1347                                 vf_index++)
1348                                 for (vf_index1 = vf_group * vf_per_group;
1349                                         vf_index1 < (vf_group + 1) * vf_per_group &&
1350                                         vf_index1 < num_vfs;
1351                                         vf_index1++){
1352
1353                                         rc = opal_pci_set_peltv(phb->opal_id,
1354                                                 pdn->offset + vf_index,
1355                                                 pdn->offset + vf_index1,
1356                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
1357
1358                                         if (rc)
1359                                             dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1360                                                 __func__,
1361                                                 pdn->offset + vf_index1, rc);
1362                                 }
1363         }
1364
1365         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1366                 if (pe->parent_dev != pdev)
1367                         continue;
1368
1369                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1370
1371                 /* Remove from list */
1372                 mutex_lock(&phb->ioda.pe_list_mutex);
1373                 list_del(&pe->list);
1374                 mutex_unlock(&phb->ioda.pe_list_mutex);
1375
1376                 pnv_ioda_deconfigure_pe(phb, pe);
1377
1378                 pnv_ioda_free_pe(phb, pe->pe_number);
1379         }
1380 }
1381
1382 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1383 {
1384         struct pci_bus        *bus;
1385         struct pci_controller *hose;
1386         struct pnv_phb        *phb;
1387         struct pci_dn         *pdn;
1388         struct pci_sriov      *iov;
1389         u16 num_vfs;
1390
1391         bus = pdev->bus;
1392         hose = pci_bus_to_host(bus);
1393         phb = hose->private_data;
1394         pdn = pci_get_pdn(pdev);
1395         iov = pdev->sriov;
1396         num_vfs = pdn->num_vfs;
1397
1398         /* Release VF PEs */
1399         pnv_ioda_release_vf_PE(pdev, num_vfs);
1400
1401         if (phb->type == PNV_PHB_IODA2) {
1402                 if (pdn->m64_per_iov == 1)
1403                         pnv_pci_vf_resource_shift(pdev, -pdn->offset);
1404
1405                 /* Release M64 windows */
1406                 pnv_pci_vf_release_m64(pdev);
1407
1408                 /* Release PE numbers */
1409                 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1410                 pdn->offset = 0;
1411         }
1412 }
1413
1414 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1415                                        struct pnv_ioda_pe *pe);
1416 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1417 {
1418         struct pci_bus        *bus;
1419         struct pci_controller *hose;
1420         struct pnv_phb        *phb;
1421         struct pnv_ioda_pe    *pe;
1422         int                    pe_num;
1423         u16                    vf_index;
1424         struct pci_dn         *pdn;
1425         int64_t                rc;
1426
1427         bus = pdev->bus;
1428         hose = pci_bus_to_host(bus);
1429         phb = hose->private_data;
1430         pdn = pci_get_pdn(pdev);
1431
1432         if (!pdev->is_physfn)
1433                 return;
1434
1435         /* Reserve PE for each VF */
1436         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1437                 pe_num = pdn->offset + vf_index;
1438
1439                 pe = &phb->ioda.pe_array[pe_num];
1440                 pe->pe_number = pe_num;
1441                 pe->phb = phb;
1442                 pe->flags = PNV_IODA_PE_VF;
1443                 pe->pbus = NULL;
1444                 pe->parent_dev = pdev;
1445                 pe->tce32_seg = -1;
1446                 pe->mve_number = -1;
1447                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1448                            pci_iov_virtfn_devfn(pdev, vf_index);
1449
1450                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1451                         hose->global_number, pdev->bus->number,
1452                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1453                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1454
1455                 if (pnv_ioda_configure_pe(phb, pe)) {
1456                         /* XXX What do we do here ? */
1457                         if (pe_num)
1458                                 pnv_ioda_free_pe(phb, pe_num);
1459                         pe->pdev = NULL;
1460                         continue;
1461                 }
1462
1463                 pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1464                                 GFP_KERNEL, hose->node);
1465                 pe->tce32_table->data = pe;
1466
1467                 /* Put PE to the list */
1468                 mutex_lock(&phb->ioda.pe_list_mutex);
1469                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1470                 mutex_unlock(&phb->ioda.pe_list_mutex);
1471
1472                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1473         }
1474
1475         if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1476                 int   vf_group;
1477                 int   vf_per_group;
1478                 int   vf_index1;
1479
1480                 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1481
1482                 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1483                         for (vf_index = vf_group * vf_per_group;
1484                              vf_index < (vf_group + 1) * vf_per_group &&
1485                              vf_index < num_vfs;
1486                              vf_index++) {
1487                                 for (vf_index1 = vf_group * vf_per_group;
1488                                      vf_index1 < (vf_group + 1) * vf_per_group &&
1489                                      vf_index1 < num_vfs;
1490                                      vf_index1++) {
1491
1492                                         rc = opal_pci_set_peltv(phb->opal_id,
1493                                                 pdn->offset + vf_index,
1494                                                 pdn->offset + vf_index1,
1495                                                 OPAL_ADD_PE_TO_DOMAIN);
1496
1497                                         if (rc)
1498                                             dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1499                                                 __func__,
1500                                                 pdn->offset + vf_index1, rc);
1501                                 }
1502                         }
1503                 }
1504         }
1505 }
1506
1507 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509         struct pci_bus        *bus;
1510         struct pci_controller *hose;
1511         struct pnv_phb        *phb;
1512         struct pci_dn         *pdn;
1513         int                    ret;
1514
1515         bus = pdev->bus;
1516         hose = pci_bus_to_host(bus);
1517         phb = hose->private_data;
1518         pdn = pci_get_pdn(pdev);
1519
1520         if (phb->type == PNV_PHB_IODA2) {
1521                 /* Calculate available PE for required VFs */
1522                 mutex_lock(&phb->ioda.pe_alloc_mutex);
1523                 pdn->offset = bitmap_find_next_zero_area(
1524                         phb->ioda.pe_alloc, phb->ioda.total_pe,
1525                         0, num_vfs, 0);
1526                 if (pdn->offset >= phb->ioda.total_pe) {
1527                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1528                         dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1529                         pdn->offset = 0;
1530                         return -EBUSY;
1531                 }
1532                 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1533                 pdn->num_vfs = num_vfs;
1534                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1535
1536                 /* Assign M64 window accordingly */
1537                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1538                 if (ret) {
1539                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1540                         goto m64_failed;
1541                 }
1542
1543                 /*
1544                  * When using one M64 BAR to map one IOV BAR, we need to shift
1545                  * the IOV BAR according to the PE# allocated to the VFs.
1546                  * Otherwise, the PE# for the VF will conflict with others.
1547                  */
1548                 if (pdn->m64_per_iov == 1) {
1549                         ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1550                         if (ret)
1551                                 goto m64_failed;
1552                 }
1553         }
1554
1555         /* Setup VF PEs */
1556         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1557
1558         return 0;
1559
1560 m64_failed:
1561         bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1562         pdn->offset = 0;
1563
1564         return ret;
1565 }
1566
1567 int pcibios_sriov_disable(struct pci_dev *pdev)
1568 {
1569         pnv_pci_sriov_disable(pdev);
1570
1571         /* Release PCI data */
1572         remove_dev_pci_data(pdev);
1573         return 0;
1574 }
1575
1576 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1577 {
1578         /* Allocate PCI data */
1579         add_dev_pci_data(pdev);
1580
1581         pnv_pci_sriov_enable(pdev, num_vfs);
1582         return 0;
1583 }
1584 #endif /* CONFIG_PCI_IOV */
1585
1586 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1587 {
1588         struct pci_dn *pdn = pci_get_pdn(pdev);
1589         struct pnv_ioda_pe *pe;
1590
1591         /*
1592          * The function can be called while the PE#
1593          * hasn't been assigned. Do nothing for the
1594          * case.
1595          */
1596         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1597                 return;
1598
1599         pe = &phb->ioda.pe_array[pdn->pe_number];
1600         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1601         set_iommu_table_base(&pdev->dev, pe->tce32_table);
1602         /*
1603          * Note: iommu_add_device() will fail here as
1604          * for physical PE: the device is already added by now;
1605          * for virtual PE: sysfs entries are not ready yet and
1606          * tce_iommu_bus_notifier will add the device to a group later.
1607          */
1608 }
1609
1610 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1611 {
1612         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1613         struct pnv_phb *phb = hose->private_data;
1614         struct pci_dn *pdn = pci_get_pdn(pdev);
1615         struct pnv_ioda_pe *pe;
1616         uint64_t top;
1617         bool bypass = false;
1618
1619         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1620                 return -ENODEV;;
1621
1622         pe = &phb->ioda.pe_array[pdn->pe_number];
1623         if (pe->tce_bypass_enabled) {
1624                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1625                 bypass = (dma_mask >= top);
1626         }
1627
1628         if (bypass) {
1629                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1630                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1631                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1632         } else {
1633                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1634                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1635                 set_iommu_table_base(&pdev->dev, pe->tce32_table);
1636         }
1637         *pdev->dev.dma_mask = dma_mask;
1638         return 0;
1639 }
1640
1641 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1642                                               struct pci_dev *pdev)
1643 {
1644         struct pci_dn *pdn = pci_get_pdn(pdev);
1645         struct pnv_ioda_pe *pe;
1646         u64 end, mask;
1647
1648         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1649                 return 0;
1650
1651         pe = &phb->ioda.pe_array[pdn->pe_number];
1652         if (!pe->tce_bypass_enabled)
1653                 return __dma_get_required_mask(&pdev->dev);
1654
1655
1656         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1657         mask = 1ULL << (fls64(end) - 1);
1658         mask += mask - 1;
1659
1660         return mask;
1661 }
1662
1663 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1664                                    struct pci_bus *bus)
1665 {
1666         struct pci_dev *dev;
1667
1668         list_for_each_entry(dev, &bus->devices, bus_list) {
1669                 set_iommu_table_base(&dev->dev, pe->tce32_table);
1670                 iommu_add_device(&dev->dev);
1671
1672                 if (dev->subordinate)
1673                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1674         }
1675 }
1676
1677 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1678                                          struct iommu_table *tbl,
1679                                          __be64 *startp, __be64 *endp, bool rm)
1680 {
1681         __be64 __iomem *invalidate = rm ?
1682                 (__be64 __iomem *)pe->tce_inval_reg_phys :
1683                 (__be64 __iomem *)tbl->it_index;
1684         unsigned long start, end, inc;
1685         const unsigned shift = tbl->it_page_shift;
1686
1687         start = __pa(startp);
1688         end = __pa(endp);
1689
1690         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1691         if (tbl->it_busno) {
1692                 start <<= shift;
1693                 end <<= shift;
1694                 inc = 128ull << shift;
1695                 start |= tbl->it_busno;
1696                 end |= tbl->it_busno;
1697         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1698                 /* p7ioc-style invalidation, 2 TCEs per write */
1699                 start |= (1ull << 63);
1700                 end |= (1ull << 63);
1701                 inc = 16;
1702         } else {
1703                 /* Default (older HW) */
1704                 inc = 128;
1705         }
1706
1707         end |= inc - 1; /* round up end to be different than start */
1708
1709         mb(); /* Ensure above stores are visible */
1710         while (start <= end) {
1711                 if (rm)
1712                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1713                 else
1714                         __raw_writeq(cpu_to_be64(start), invalidate);
1715                 start += inc;
1716         }
1717
1718         /*
1719          * The iommu layer will do another mb() for us on build()
1720          * and we don't care on free()
1721          */
1722 }
1723
1724 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1725                                          struct iommu_table *tbl,
1726                                          __be64 *startp, __be64 *endp, bool rm)
1727 {
1728         unsigned long start, end, inc;
1729         __be64 __iomem *invalidate = rm ?
1730                 (__be64 __iomem *)pe->tce_inval_reg_phys :
1731                 (__be64 __iomem *)tbl->it_index;
1732         const unsigned shift = tbl->it_page_shift;
1733
1734         /* We'll invalidate DMA address in PE scope */
1735         start = 0x2ull << 60;
1736         start |= (pe->pe_number & 0xFF);
1737         end = start;
1738
1739         /* Figure out the start, end and step */
1740         inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1741         start |= (inc << shift);
1742         inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1743         end |= (inc << shift);
1744         inc = (0x1ull << shift);
1745         mb();
1746
1747         while (start <= end) {
1748                 if (rm)
1749                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1750                 else
1751                         __raw_writeq(cpu_to_be64(start), invalidate);
1752                 start += inc;
1753         }
1754 }
1755
1756 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1757                                  __be64 *startp, __be64 *endp, bool rm)
1758 {
1759         struct pnv_ioda_pe *pe = tbl->data;
1760         struct pnv_phb *phb = pe->phb;
1761
1762         if (phb->type == PNV_PHB_IODA1)
1763                 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1764         else
1765                 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1766 }
1767
1768 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1769                                       struct pnv_ioda_pe *pe, unsigned int base,
1770                                       unsigned int segs)
1771 {
1772
1773         struct page *tce_mem = NULL;
1774         const __be64 *swinvp;
1775         struct iommu_table *tbl;
1776         unsigned int i;
1777         int64_t rc;
1778         void *addr;
1779
1780         /* XXX FIXME: Handle 64-bit only DMA devices */
1781         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1782         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1783
1784         /* We shouldn't already have a 32-bit DMA associated */
1785         if (WARN_ON(pe->tce32_seg >= 0))
1786                 return;
1787
1788         tbl = pe->tce32_table;
1789         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1790
1791         /* Grab a 32-bit TCE table */
1792         pe->tce32_seg = base;
1793         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1794                 (base << 28), ((base + segs) << 28) - 1);
1795
1796         /* XXX Currently, we allocate one big contiguous table for the
1797          * TCEs. We only really need one chunk per 256M of TCE space
1798          * (ie per segment) but that's an optimization for later, it
1799          * requires some added smarts with our get/put_tce implementation
1800          */
1801         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1802                                    get_order(TCE32_TABLE_SIZE * segs));
1803         if (!tce_mem) {
1804                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1805                 goto fail;
1806         }
1807         addr = page_address(tce_mem);
1808         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1809
1810         /* Configure HW */
1811         for (i = 0; i < segs; i++) {
1812                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1813                                               pe->pe_number,
1814                                               base + i, 1,
1815                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1816                                               TCE32_TABLE_SIZE, 0x1000);
1817                 if (rc) {
1818                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1819                                " err %ld\n", rc);
1820                         goto fail;
1821                 }
1822         }
1823
1824         /* Setup linux iommu table */
1825         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1826                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1827
1828         /* OPAL variant of P7IOC SW invalidated TCEs */
1829         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1830         if (swinvp) {
1831                 /* We need a couple more fields -- an address and a data
1832                  * to or.  Since the bus is only printed out on table free
1833                  * errors, and on the first pass the data will be a relative
1834                  * bus number, print that out instead.
1835                  */
1836                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1837                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1838                                 8);
1839                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1840                                  TCE_PCI_SWINV_FREE   |
1841                                  TCE_PCI_SWINV_PAIR);
1842         }
1843         iommu_init_table(tbl, phb->hose->node);
1844
1845         if (pe->flags & PNV_IODA_PE_DEV) {
1846                 /*
1847                  * Setting table base here only for carrying iommu_group
1848                  * further down to let iommu_add_device() do the job.
1849                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1850                  */
1851                 set_iommu_table_base(&pe->pdev->dev, tbl);
1852                 iommu_add_device(&pe->pdev->dev);
1853         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1854                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1855
1856         return;
1857  fail:
1858         /* XXX Failure: Try to fallback to 64-bit only ? */
1859         if (pe->tce32_seg >= 0)
1860                 pe->tce32_seg = -1;
1861         if (tce_mem)
1862                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1863 }
1864
1865 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1866 {
1867         struct pnv_ioda_pe *pe = tbl->data;
1868         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1869         int64_t rc;
1870
1871         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1872         if (enable) {
1873                 phys_addr_t top = memblock_end_of_DRAM();
1874
1875                 top = roundup_pow_of_two(top);
1876                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1877                                                      pe->pe_number,
1878                                                      window_id,
1879                                                      pe->tce_bypass_base,
1880                                                      top);
1881         } else {
1882                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1883                                                      pe->pe_number,
1884                                                      window_id,
1885                                                      pe->tce_bypass_base,
1886                                                      0);
1887         }
1888         if (rc)
1889                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1890         else
1891                 pe->tce_bypass_enabled = enable;
1892 }
1893
1894 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1895                                           struct pnv_ioda_pe *pe)
1896 {
1897         /* TVE #1 is selected by PCI address bit 59 */
1898         pe->tce_bypass_base = 1ull << 59;
1899
1900         /* Install set_bypass callback for VFIO */
1901         pe->tce32_table->set_bypass = pnv_pci_ioda2_set_bypass;
1902
1903         /* Enable bypass by default */
1904         pnv_pci_ioda2_set_bypass(pe->tce32_table, true);
1905 }
1906
1907 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1908                                        struct pnv_ioda_pe *pe)
1909 {
1910         struct page *tce_mem = NULL;
1911         void *addr;
1912         const __be64 *swinvp;
1913         struct iommu_table *tbl;
1914         unsigned int tce_table_size, end;
1915         int64_t rc;
1916
1917         /* We shouldn't already have a 32-bit DMA associated */
1918         if (WARN_ON(pe->tce32_seg >= 0))
1919                 return;
1920
1921         tbl = pe->tce32_table;
1922         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1923
1924         /* The PE will reserve all possible 32-bits space */
1925         pe->tce32_seg = 0;
1926         end = (1 << ilog2(phb->ioda.m32_pci_base));
1927         tce_table_size = (end / 0x1000) * 8;
1928         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1929                 end);
1930
1931         /* Allocate TCE table */
1932         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1933                                    get_order(tce_table_size));
1934         if (!tce_mem) {
1935                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1936                 goto fail;
1937         }
1938         addr = page_address(tce_mem);
1939         memset(addr, 0, tce_table_size);
1940
1941         /*
1942          * Map TCE table through TVT. The TVE index is the PE number
1943          * shifted by 1 bit for 32-bits DMA space.
1944          */
1945         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1946                                         pe->pe_number << 1, 1, __pa(addr),
1947                                         tce_table_size, 0x1000);
1948         if (rc) {
1949                 pe_err(pe, "Failed to configure 32-bit TCE table,"
1950                        " err %ld\n", rc);
1951                 goto fail;
1952         }
1953
1954         /* Setup linux iommu table */
1955         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1956                         IOMMU_PAGE_SHIFT_4K);
1957
1958         /* OPAL variant of PHB3 invalidated TCEs */
1959         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1960         if (swinvp) {
1961                 /* We need a couple more fields -- an address and a data
1962                  * to or.  Since the bus is only printed out on table free
1963                  * errors, and on the first pass the data will be a relative
1964                  * bus number, print that out instead.
1965                  */
1966                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1967                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1968                                 8);
1969                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1970         }
1971         iommu_init_table(tbl, phb->hose->node);
1972
1973         if (pe->flags & PNV_IODA_PE_DEV) {
1974                 /*
1975                  * Setting table base here only for carrying iommu_group
1976                  * further down to let iommu_add_device() do the job.
1977                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
1978                  */
1979                 set_iommu_table_base(&pe->pdev->dev, tbl);
1980                 iommu_add_device(&pe->pdev->dev);
1981         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
1982                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1983
1984         /* Also create a bypass window */
1985         if (!pnv_iommu_bypass_disabled)
1986                 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1987
1988         return;
1989 fail:
1990         if (pe->tce32_seg >= 0)
1991                 pe->tce32_seg = -1;
1992         if (tce_mem)
1993                 __free_pages(tce_mem, get_order(tce_table_size));
1994 }
1995
1996 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1997 {
1998         struct pci_controller *hose = phb->hose;
1999         unsigned int residual, remaining, segs, tw, base;
2000         struct pnv_ioda_pe *pe;
2001
2002         /* If we have more PE# than segments available, hand out one
2003          * per PE until we run out and let the rest fail. If not,
2004          * then we assign at least one segment per PE, plus more based
2005          * on the amount of devices under that PE
2006          */
2007         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2008                 residual = 0;
2009         else
2010                 residual = phb->ioda.tce32_count -
2011                         phb->ioda.dma_pe_count;
2012
2013         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2014                 hose->global_number, phb->ioda.tce32_count);
2015         pr_info("PCI: %d PE# for a total weight of %d\n",
2016                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2017
2018         /* Walk our PE list and configure their DMA segments, hand them
2019          * out one base segment plus any residual segments based on
2020          * weight
2021          */
2022         remaining = phb->ioda.tce32_count;
2023         tw = phb->ioda.dma_weight;
2024         base = 0;
2025         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2026                 if (!pe->dma_weight)
2027                         continue;
2028                 if (!remaining) {
2029                         pe_warn(pe, "No DMA32 resources available\n");
2030                         continue;
2031                 }
2032                 segs = 1;
2033                 if (residual) {
2034                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2035                         if (segs > remaining)
2036                                 segs = remaining;
2037                 }
2038
2039                 /*
2040                  * For IODA2 compliant PHB3, we needn't care about the weight.
2041                  * The all available 32-bits DMA space will be assigned to
2042                  * the specific PE.
2043                  */
2044                 if (phb->type == PNV_PHB_IODA1) {
2045                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2046                                 pe->dma_weight, segs);
2047                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2048                 } else {
2049                         pe_info(pe, "Assign DMA32 space\n");
2050                         segs = 0;
2051                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2052                 }
2053
2054                 remaining -= segs;
2055                 base += segs;
2056         }
2057 }
2058
2059 #ifdef CONFIG_PCI_MSI
2060 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2061 {
2062         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2063         struct irq_chip *chip = irq_data_get_irq_chip(d);
2064         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2065                                            ioda.irq_chip);
2066         int64_t rc;
2067
2068         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2069         WARN_ON_ONCE(rc);
2070
2071         icp_native_eoi(d);
2072 }
2073
2074
2075 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2076 {
2077         struct irq_data *idata;
2078         struct irq_chip *ichip;
2079
2080         if (phb->type != PNV_PHB_IODA2)
2081                 return;
2082
2083         if (!phb->ioda.irq_chip_init) {
2084                 /*
2085                  * First time we setup an MSI IRQ, we need to setup the
2086                  * corresponding IRQ chip to route correctly.
2087                  */
2088                 idata = irq_get_irq_data(virq);
2089                 ichip = irq_data_get_irq_chip(idata);
2090                 phb->ioda.irq_chip_init = 1;
2091                 phb->ioda.irq_chip = *ichip;
2092                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2093         }
2094         irq_set_chip(virq, &phb->ioda.irq_chip);
2095 }
2096
2097 #ifdef CONFIG_CXL_BASE
2098
2099 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2100 {
2101         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2102
2103         return of_node_get(hose->dn);
2104 }
2105 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2106
2107 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2108 {
2109         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2110         struct pnv_phb *phb = hose->private_data;
2111         struct pnv_ioda_pe *pe;
2112         int rc;
2113
2114         pe = pnv_ioda_get_pe(dev);
2115         if (!pe)
2116                 return -ENODEV;
2117
2118         pe_info(pe, "Switching PHB to CXL\n");
2119
2120         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2121         if (rc)
2122                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2123
2124         return rc;
2125 }
2126 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2127
2128 /* Find PHB for cxl dev and allocate MSI hwirqs?
2129  * Returns the absolute hardware IRQ number
2130  */
2131 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2132 {
2133         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2134         struct pnv_phb *phb = hose->private_data;
2135         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2136
2137         if (hwirq < 0) {
2138                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2139                 return -ENOSPC;
2140         }
2141
2142         return phb->msi_base + hwirq;
2143 }
2144 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2145
2146 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2147 {
2148         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2149         struct pnv_phb *phb = hose->private_data;
2150
2151         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2152 }
2153 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2154
2155 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2156                                   struct pci_dev *dev)
2157 {
2158         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2159         struct pnv_phb *phb = hose->private_data;
2160         int i, hwirq;
2161
2162         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2163                 if (!irqs->range[i])
2164                         continue;
2165                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2166                          i, irqs->offset[i],
2167                          irqs->range[i]);
2168                 hwirq = irqs->offset[i] - phb->msi_base;
2169                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2170                                        irqs->range[i]);
2171         }
2172 }
2173 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2174
2175 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2176                                struct pci_dev *dev, int num)
2177 {
2178         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2179         struct pnv_phb *phb = hose->private_data;
2180         int i, hwirq, try;
2181
2182         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2183
2184         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2185         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2186                 try = num;
2187                 while (try) {
2188                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2189                         if (hwirq >= 0)
2190                                 break;
2191                         try /= 2;
2192                 }
2193                 if (!try)
2194                         goto fail;
2195
2196                 irqs->offset[i] = phb->msi_base + hwirq;
2197                 irqs->range[i] = try;
2198                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2199                          i, irqs->offset[i], irqs->range[i]);
2200                 num -= try;
2201         }
2202         if (num)
2203                 goto fail;
2204
2205         return 0;
2206 fail:
2207         pnv_cxl_release_hwirq_ranges(irqs, dev);
2208         return -ENOSPC;
2209 }
2210 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2211
2212 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2213 {
2214         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2215         struct pnv_phb *phb = hose->private_data;
2216
2217         return phb->msi_bmp.irq_count;
2218 }
2219 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2220
2221 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2222                            unsigned int virq)
2223 {
2224         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2225         struct pnv_phb *phb = hose->private_data;
2226         unsigned int xive_num = hwirq - phb->msi_base;
2227         struct pnv_ioda_pe *pe;
2228         int rc;
2229
2230         if (!(pe = pnv_ioda_get_pe(dev)))
2231                 return -ENODEV;
2232
2233         /* Assign XIVE to PE */
2234         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2235         if (rc) {
2236                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2237                         "hwirq 0x%x XIVE 0x%x PE\n",
2238                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2239                 return -EIO;
2240         }
2241         set_msi_irq_chip(phb, virq);
2242
2243         return 0;
2244 }
2245 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2246 #endif
2247
2248 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2249                                   unsigned int hwirq, unsigned int virq,
2250                                   unsigned int is_64, struct msi_msg *msg)
2251 {
2252         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2253         unsigned int xive_num = hwirq - phb->msi_base;
2254         __be32 data;
2255         int rc;
2256
2257         /* No PE assigned ? bail out ... no MSI for you ! */
2258         if (pe == NULL)
2259                 return -ENXIO;
2260
2261         /* Check if we have an MVE */
2262         if (pe->mve_number < 0)
2263                 return -ENXIO;
2264
2265         /* Force 32-bit MSI on some broken devices */
2266         if (dev->no_64bit_msi)
2267                 is_64 = 0;
2268
2269         /* Assign XIVE to PE */
2270         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2271         if (rc) {
2272                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2273                         pci_name(dev), rc, xive_num);
2274                 return -EIO;
2275         }
2276
2277         if (is_64) {
2278                 __be64 addr64;
2279
2280                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2281                                      &addr64, &data);
2282                 if (rc) {
2283                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2284                                 pci_name(dev), rc);
2285                         return -EIO;
2286                 }
2287                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2288                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2289         } else {
2290                 __be32 addr32;
2291
2292                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2293                                      &addr32, &data);
2294                 if (rc) {
2295                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2296                                 pci_name(dev), rc);
2297                         return -EIO;
2298                 }
2299                 msg->address_hi = 0;
2300                 msg->address_lo = be32_to_cpu(addr32);
2301         }
2302         msg->data = be32_to_cpu(data);
2303
2304         set_msi_irq_chip(phb, virq);
2305
2306         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2307                  " address=%x_%08x data=%x PE# %d\n",
2308                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2309                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2310
2311         return 0;
2312 }
2313
2314 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2315 {
2316         unsigned int count;
2317         const __be32 *prop = of_get_property(phb->hose->dn,
2318                                              "ibm,opal-msi-ranges", NULL);
2319         if (!prop) {
2320                 /* BML Fallback */
2321                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2322         }
2323         if (!prop)
2324                 return;
2325
2326         phb->msi_base = be32_to_cpup(prop);
2327         count = be32_to_cpup(prop + 1);
2328         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2329                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2330                        phb->hose->global_number);
2331                 return;
2332         }
2333
2334         phb->msi_setup = pnv_pci_ioda_msi_setup;
2335         phb->msi32_support = 1;
2336         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2337                 count, phb->msi_base);
2338 }
2339 #else
2340 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2341 #endif /* CONFIG_PCI_MSI */
2342
2343 #ifdef CONFIG_PCI_IOV
2344 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2345 {
2346         struct pci_controller *hose;
2347         struct pnv_phb *phb;
2348         struct resource *res;
2349         int i;
2350         resource_size_t size;
2351         struct pci_dn *pdn;
2352         int mul, total_vfs;
2353
2354         if (!pdev->is_physfn || pdev->is_added)
2355                 return;
2356
2357         hose = pci_bus_to_host(pdev->bus);
2358         phb = hose->private_data;
2359
2360         pdn = pci_get_pdn(pdev);
2361         pdn->vfs_expanded = 0;
2362
2363         total_vfs = pci_sriov_get_totalvfs(pdev);
2364         pdn->m64_per_iov = 1;
2365         mul = phb->ioda.total_pe;
2366
2367         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2368                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2369                 if (!res->flags || res->parent)
2370                         continue;
2371                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2372                         dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2373                                  i, res);
2374                         continue;
2375                 }
2376
2377                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2378
2379                 /* bigger than 64M */
2380                 if (size > (1 << 26)) {
2381                         dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2382                                  i, res);
2383                         pdn->m64_per_iov = M64_PER_IOV;
2384                         mul = roundup_pow_of_two(total_vfs);
2385                         break;
2386                 }
2387         }
2388
2389         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2390                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2391                 if (!res->flags || res->parent)
2392                         continue;
2393                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2394                         dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2395                                  i, res);
2396                         continue;
2397                 }
2398
2399                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2400                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2401                 res->end = res->start + size * mul - 1;
2402                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2403                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2404                          i, res, mul);
2405         }
2406         pdn->vfs_expanded = mul;
2407 }
2408 #endif /* CONFIG_PCI_IOV */
2409
2410 /*
2411  * This function is supposed to be called on basis of PE from top
2412  * to bottom style. So the the I/O or MMIO segment assigned to
2413  * parent PE could be overrided by its child PEs if necessary.
2414  */
2415 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2416                                   struct pnv_ioda_pe *pe)
2417 {
2418         struct pnv_phb *phb = hose->private_data;
2419         struct pci_bus_region region;
2420         struct resource *res;
2421         int i, index;
2422         int rc;
2423
2424         /*
2425          * NOTE: We only care PCI bus based PE for now. For PCI
2426          * device based PE, for example SRIOV sensitive VF should
2427          * be figured out later.
2428          */
2429         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2430
2431         pci_bus_for_each_resource(pe->pbus, res, i) {
2432                 if (!res || !res->flags ||
2433                     res->start > res->end)
2434                         continue;
2435
2436                 if (res->flags & IORESOURCE_IO) {
2437                         region.start = res->start - phb->ioda.io_pci_base;
2438                         region.end   = res->end - phb->ioda.io_pci_base;
2439                         index = region.start / phb->ioda.io_segsize;
2440
2441                         while (index < phb->ioda.total_pe &&
2442                                region.start <= region.end) {
2443                                 phb->ioda.io_segmap[index] = pe->pe_number;
2444                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2445                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2446                                 if (rc != OPAL_SUCCESS) {
2447                                         pr_err("%s: OPAL error %d when mapping IO "
2448                                                "segment #%d to PE#%d\n",
2449                                                __func__, rc, index, pe->pe_number);
2450                                         break;
2451                                 }
2452
2453                                 region.start += phb->ioda.io_segsize;
2454                                 index++;
2455                         }
2456                 } else if ((res->flags & IORESOURCE_MEM) &&
2457                            !pnv_pci_is_mem_pref_64(res->flags)) {
2458                         region.start = res->start -
2459                                        hose->mem_offset[0] -
2460                                        phb->ioda.m32_pci_base;
2461                         region.end   = res->end -
2462                                        hose->mem_offset[0] -
2463                                        phb->ioda.m32_pci_base;
2464                         index = region.start / phb->ioda.m32_segsize;
2465
2466                         while (index < phb->ioda.total_pe &&
2467                                region.start <= region.end) {
2468                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2469                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2470                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2471                                 if (rc != OPAL_SUCCESS) {
2472                                         pr_err("%s: OPAL error %d when mapping M32 "
2473                                                "segment#%d to PE#%d",
2474                                                __func__, rc, index, pe->pe_number);
2475                                         break;
2476                                 }
2477
2478                                 region.start += phb->ioda.m32_segsize;
2479                                 index++;
2480                         }
2481                 }
2482         }
2483 }
2484
2485 static void pnv_pci_ioda_setup_seg(void)
2486 {
2487         struct pci_controller *tmp, *hose;
2488         struct pnv_phb *phb;
2489         struct pnv_ioda_pe *pe;
2490
2491         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2492                 phb = hose->private_data;
2493                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2494                         pnv_ioda_setup_pe_seg(hose, pe);
2495                 }
2496         }
2497 }
2498
2499 static void pnv_pci_ioda_setup_DMA(void)
2500 {
2501         struct pci_controller *hose, *tmp;
2502         struct pnv_phb *phb;
2503
2504         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2505                 pnv_ioda_setup_dma(hose->private_data);
2506
2507                 /* Mark the PHB initialization done */
2508                 phb = hose->private_data;
2509                 phb->initialized = 1;
2510         }
2511 }
2512
2513 static void pnv_pci_ioda_create_dbgfs(void)
2514 {
2515 #ifdef CONFIG_DEBUG_FS
2516         struct pci_controller *hose, *tmp;
2517         struct pnv_phb *phb;
2518         char name[16];
2519
2520         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2521                 phb = hose->private_data;
2522
2523                 sprintf(name, "PCI%04x", hose->global_number);
2524                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2525                 if (!phb->dbgfs)
2526                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2527                                 __func__, hose->global_number);
2528         }
2529 #endif /* CONFIG_DEBUG_FS */
2530 }
2531
2532 static void pnv_pci_ioda_fixup(void)
2533 {
2534         pnv_pci_ioda_setup_PEs();
2535         pnv_pci_ioda_setup_seg();
2536         pnv_pci_ioda_setup_DMA();
2537
2538         pnv_pci_ioda_create_dbgfs();
2539
2540 #ifdef CONFIG_EEH
2541         eeh_init();
2542         eeh_addr_cache_build();
2543 #endif
2544 }
2545
2546 /*
2547  * Returns the alignment for I/O or memory windows for P2P
2548  * bridges. That actually depends on how PEs are segmented.
2549  * For now, we return I/O or M32 segment size for PE sensitive
2550  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2551  * 1MiB for memory) will be returned.
2552  *
2553  * The current PCI bus might be put into one PE, which was
2554  * create against the parent PCI bridge. For that case, we
2555  * needn't enlarge the alignment so that we can save some
2556  * resources.
2557  */
2558 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2559                                                 unsigned long type)
2560 {
2561         struct pci_dev *bridge;
2562         struct pci_controller *hose = pci_bus_to_host(bus);
2563         struct pnv_phb *phb = hose->private_data;
2564         int num_pci_bridges = 0;
2565
2566         bridge = bus->self;
2567         while (bridge) {
2568                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2569                         num_pci_bridges++;
2570                         if (num_pci_bridges >= 2)
2571                                 return 1;
2572                 }
2573
2574                 bridge = bridge->bus->self;
2575         }
2576
2577         /* We fail back to M32 if M64 isn't supported */
2578         if (phb->ioda.m64_segsize &&
2579             pnv_pci_is_mem_pref_64(type))
2580                 return phb->ioda.m64_segsize;
2581         if (type & IORESOURCE_MEM)
2582                 return phb->ioda.m32_segsize;
2583
2584         return phb->ioda.io_segsize;
2585 }
2586
2587 #ifdef CONFIG_PCI_IOV
2588 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2589                                                       int resno)
2590 {
2591         struct pci_dn *pdn = pci_get_pdn(pdev);
2592         resource_size_t align, iov_align;
2593
2594         iov_align = resource_size(&pdev->resource[resno]);
2595         if (iov_align)
2596                 return iov_align;
2597
2598         align = pci_iov_resource_size(pdev, resno);
2599         if (pdn->vfs_expanded)
2600                 return pdn->vfs_expanded * align;
2601
2602         return align;
2603 }
2604 #endif /* CONFIG_PCI_IOV */
2605
2606 /* Prevent enabling devices for which we couldn't properly
2607  * assign a PE
2608  */
2609 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2610 {
2611         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2612         struct pnv_phb *phb = hose->private_data;
2613         struct pci_dn *pdn;
2614
2615         /* The function is probably called while the PEs have
2616          * not be created yet. For example, resource reassignment
2617          * during PCI probe period. We just skip the check if
2618          * PEs isn't ready.
2619          */
2620         if (!phb->initialized)
2621                 return true;
2622
2623         pdn = pci_get_pdn(dev);
2624         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2625                 return false;
2626
2627         return true;
2628 }
2629
2630 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2631                                u32 devfn)
2632 {
2633         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2634 }
2635
2636 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2637 {
2638         struct pnv_phb *phb = hose->private_data;
2639
2640         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2641                        OPAL_ASSERT_RESET);
2642 }
2643
2644 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2645        .dma_dev_setup = pnv_pci_dma_dev_setup,
2646 #ifdef CONFIG_PCI_MSI
2647        .setup_msi_irqs = pnv_setup_msi_irqs,
2648        .teardown_msi_irqs = pnv_teardown_msi_irqs,
2649 #endif
2650        .enable_device_hook = pnv_pci_enable_device_hook,
2651        .window_alignment = pnv_pci_window_alignment,
2652        .reset_secondary_bus = pnv_pci_reset_secondary_bus,
2653        .dma_set_mask = pnv_pci_ioda_dma_set_mask,
2654        .shutdown = pnv_pci_ioda_shutdown,
2655 };
2656
2657 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2658                                          u64 hub_id, int ioda_type)
2659 {
2660         struct pci_controller *hose;
2661         struct pnv_phb *phb;
2662         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
2663         const __be64 *prop64;
2664         const __be32 *prop32;
2665         int len;
2666         u64 phb_id;
2667         void *aux;
2668         long rc;
2669
2670         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
2671
2672         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2673         if (!prop64) {
2674                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2675                 return;
2676         }
2677         phb_id = be64_to_cpup(prop64);
2678         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2679
2680         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
2681
2682         /* Allocate PCI controller */
2683         phb->hose = hose = pcibios_alloc_controller(np);
2684         if (!phb->hose) {
2685                 pr_err("  Can't allocate PCI controller for %s\n",
2686                        np->full_name);
2687                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
2688                 return;
2689         }
2690
2691         spin_lock_init(&phb->lock);
2692         prop32 = of_get_property(np, "bus-range", &len);
2693         if (prop32 && len == 8) {
2694                 hose->first_busno = be32_to_cpu(prop32[0]);
2695                 hose->last_busno = be32_to_cpu(prop32[1]);
2696         } else {
2697                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
2698                 hose->first_busno = 0;
2699                 hose->last_busno = 0xff;
2700         }
2701         hose->private_data = phb;
2702         phb->hub_id = hub_id;
2703         phb->opal_id = phb_id;
2704         phb->type = ioda_type;
2705         mutex_init(&phb->ioda.pe_alloc_mutex);
2706
2707         /* Detect specific models for error handling */
2708         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2709                 phb->model = PNV_PHB_MODEL_P7IOC;
2710         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2711                 phb->model = PNV_PHB_MODEL_PHB3;
2712         else
2713                 phb->model = PNV_PHB_MODEL_UNKNOWN;
2714
2715         /* Parse 32-bit and IO ranges (if any) */
2716         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2717
2718         /* Get registers */
2719         phb->regs = of_iomap(np, 0);
2720         if (phb->regs == NULL)
2721                 pr_err("  Failed to map registers !\n");
2722
2723         /* Initialize more IODA stuff */
2724         phb->ioda.total_pe = 1;
2725         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
2726         if (prop32)
2727                 phb->ioda.total_pe = be32_to_cpup(prop32);
2728         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2729         if (prop32)
2730                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
2731
2732         /* Parse 64-bit MMIO range */
2733         pnv_ioda_parse_m64_window(phb);
2734
2735         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2736         /* FW Has already off top 64k of M32 space (MSI space) */
2737         phb->ioda.m32_size += 0x10000;
2738
2739         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2740         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2741         phb->ioda.io_size = hose->pci_io_size;
2742         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2743         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2744
2745         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2746         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2747         m32map_off = size;
2748         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2749         if (phb->type == PNV_PHB_IODA1) {
2750                 iomap_off = size;
2751                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2752         }
2753         pemap_off = size;
2754         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2755         aux = memblock_virt_alloc(size, 0);
2756         phb->ioda.pe_alloc = aux;
2757         phb->ioda.m32_segmap = aux + m32map_off;
2758         if (phb->type == PNV_PHB_IODA1)
2759                 phb->ioda.io_segmap = aux + iomap_off;
2760         phb->ioda.pe_array = aux + pemap_off;
2761         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2762
2763         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2764         INIT_LIST_HEAD(&phb->ioda.pe_list);
2765         mutex_init(&phb->ioda.pe_list_mutex);
2766
2767         /* Calculate how many 32-bit TCE segments we have */
2768         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2769
2770 #if 0 /* We should really do that ... */
2771         rc = opal_pci_set_phb_mem_window(opal->phb_id,
2772                                          window_type,
2773                                          window_num,
2774                                          starting_real_address,
2775                                          starting_pci_address,
2776                                          segment_size);
2777 #endif
2778
2779         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2780                 phb->ioda.total_pe, phb->ioda.reserved_pe,
2781                 phb->ioda.m32_size, phb->ioda.m32_segsize);
2782         if (phb->ioda.m64_size)
2783                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
2784                         phb->ioda.m64_size, phb->ioda.m64_segsize);
2785         if (phb->ioda.io_size)
2786                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
2787                         phb->ioda.io_size, phb->ioda.io_segsize);
2788
2789
2790         phb->hose->ops = &pnv_pci_ops;
2791         phb->get_pe_state = pnv_ioda_get_pe_state;
2792         phb->freeze_pe = pnv_ioda_freeze_pe;
2793         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2794
2795         /* Setup RID -> PE mapping function */
2796         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2797
2798         /* Setup TCEs */
2799         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2800         phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2801
2802         /* Setup MSI support */
2803         pnv_pci_init_ioda_msis(phb);
2804
2805         /*
2806          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2807          * to let the PCI core do resource assignment. It's supposed
2808          * that the PCI core will do correct I/O and MMIO alignment
2809          * for the P2P bridge bars so that each PCI bus (excluding
2810          * the child P2P bridges) can form individual PE.
2811          */
2812         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2813         hose->controller_ops = pnv_pci_ioda_controller_ops;
2814
2815 #ifdef CONFIG_PCI_IOV
2816         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
2817         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
2818 #endif
2819
2820         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2821
2822         /* Reset IODA tables to a clean state */
2823         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2824         if (rc)
2825                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
2826
2827         /* If we're running in kdump kerenl, the previous kerenl never
2828          * shutdown PCI devices correctly. We already got IODA table
2829          * cleaned out. So we have to issue PHB reset to stop all PCI
2830          * transactions from previous kerenl.
2831          */
2832         if (is_kdump_kernel()) {
2833                 pr_info("  Issue PHB reset ...\n");
2834                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2835                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
2836         }
2837
2838         /* Remove M64 resource if we can't configure it successfully */
2839         if (!phb->init_m64 || phb->init_m64(phb))
2840                 hose->mem_resources[1].flags = 0;
2841 }
2842
2843 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2844 {
2845         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2846 }
2847
2848 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2849 {
2850         struct device_node *phbn;
2851         const __be64 *prop64;
2852         u64 hub_id;
2853
2854         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2855
2856         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2857         if (!prop64) {
2858                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2859                 return;
2860         }
2861         hub_id = be64_to_cpup(prop64);
2862         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2863
2864         /* Count child PHBs */
2865         for_each_child_of_node(np, phbn) {
2866                 /* Look for IODA1 PHBs */
2867                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2868                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2869         }
2870 }