]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/s390/kernel/crash_dump.c
Merge remote-tracking branch 'wireless-next/master'
[karo-tx-linux.git] / arch / s390 / kernel / crash_dump.c
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/os_info.h>
17 #include <asm/elf.h>
18 #include <asm/ipl.h>
19 #include <asm/sclp.h>
20
21 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
22 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
23 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
24
25 struct dump_save_areas dump_save_areas;
26
27 /*
28  * Allocate and add a save area for a CPU
29  */
30 struct save_area *dump_save_area_create(int cpu)
31 {
32         struct save_area **save_areas, *save_area;
33
34         save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
35         if (!save_area)
36                 return NULL;
37         if (cpu + 1 > dump_save_areas.count) {
38                 dump_save_areas.count = cpu + 1;
39                 save_areas = krealloc(dump_save_areas.areas,
40                                       dump_save_areas.count * sizeof(void *),
41                                       GFP_KERNEL | __GFP_ZERO);
42                 if (!save_areas) {
43                         kfree(save_area);
44                         return NULL;
45                 }
46                 dump_save_areas.areas = save_areas;
47         }
48         dump_save_areas.areas[cpu] = save_area;
49         return save_area;
50 }
51
52 /*
53  * Return physical address for virtual address
54  */
55 static inline void *load_real_addr(void *addr)
56 {
57         unsigned long real_addr;
58
59         asm volatile(
60                    "    lra     %0,0(%1)\n"
61                    "    jz      0f\n"
62                    "    la      %0,0\n"
63                    "0:"
64                    : "=a" (real_addr) : "a" (addr) : "cc");
65         return (void *)real_addr;
66 }
67
68 /*
69  * Copy real to virtual or real memory
70  */
71 static int copy_from_realmem(void *dest, void *src, size_t count)
72 {
73         unsigned long size;
74
75         if (!count)
76                 return 0;
77         if (!is_vmalloc_or_module_addr(dest))
78                 return memcpy_real(dest, src, count);
79         do {
80                 size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
81                 if (memcpy_real(load_real_addr(dest), src, size))
82                         return -EFAULT;
83                 count -= size;
84                 dest += size;
85                 src += size;
86         } while (count);
87         return 0;
88 }
89
90 /*
91  * Pointer to ELF header in new kernel
92  */
93 static void *elfcorehdr_newmem;
94
95 /*
96  * Copy one page from zfcpdump "oldmem"
97  *
98  * For pages below ZFCPDUMP_HSA_SIZE memory from the HSA is copied. Otherwise
99  * real memory copy is used.
100  */
101 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
102                                          unsigned long src, int userbuf)
103 {
104         int rc;
105
106         if (src < ZFCPDUMP_HSA_SIZE) {
107                 rc = memcpy_hsa(buf, src, csize, userbuf);
108         } else {
109                 if (userbuf)
110                         rc = copy_to_user_real((void __force __user *) buf,
111                                                (void *) src, csize);
112                 else
113                         rc = memcpy_real(buf, (void *) src, csize);
114         }
115         return rc ? rc : csize;
116 }
117
118 /*
119  * Copy one page from kdump "oldmem"
120  *
121  * For the kdump reserved memory this functions performs a swap operation:
122  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
123  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
124  */
125 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
126                                       unsigned long src, int userbuf)
127
128 {
129         int rc;
130
131         if (src < OLDMEM_SIZE)
132                 src += OLDMEM_BASE;
133         else if (src > OLDMEM_BASE &&
134                  src < OLDMEM_BASE + OLDMEM_SIZE)
135                 src -= OLDMEM_BASE;
136         if (userbuf)
137                 rc = copy_to_user_real((void __force __user *) buf,
138                                        (void *) src, csize);
139         else
140                 rc = copy_from_realmem(buf, (void *) src, csize);
141         return (rc == 0) ? rc : csize;
142 }
143
144 /*
145  * Copy one page from "oldmem"
146  */
147 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
148                          unsigned long offset, int userbuf)
149 {
150         unsigned long src;
151
152         if (!csize)
153                 return 0;
154         src = (pfn << PAGE_SHIFT) + offset;
155         if (OLDMEM_BASE)
156                 return copy_oldmem_page_kdump(buf, csize, src, userbuf);
157         else
158                 return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
159 }
160
161 /*
162  * Remap "oldmem" for kdump
163  *
164  * For the kdump reserved memory this functions performs a swap operation:
165  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
166  */
167 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
168                                         unsigned long from, unsigned long pfn,
169                                         unsigned long size, pgprot_t prot)
170 {
171         unsigned long size_old;
172         int rc;
173
174         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
175                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
176                 rc = remap_pfn_range(vma, from,
177                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
178                                      size_old, prot);
179                 if (rc || size == size_old)
180                         return rc;
181                 size -= size_old;
182                 from += size_old;
183                 pfn += size_old >> PAGE_SHIFT;
184         }
185         return remap_pfn_range(vma, from, pfn, size, prot);
186 }
187
188 /*
189  * Remap "oldmem" for zfcpdump
190  *
191  * We only map available memory above ZFCPDUMP_HSA_SIZE. Memory below
192  * ZFCPDUMP_HSA_SIZE is read on demand using the copy_oldmem_page() function.
193  */
194 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
195                                            unsigned long from,
196                                            unsigned long pfn,
197                                            unsigned long size, pgprot_t prot)
198 {
199         unsigned long size_hsa;
200
201         if (pfn < ZFCPDUMP_HSA_SIZE >> PAGE_SHIFT) {
202                 size_hsa = min(size, ZFCPDUMP_HSA_SIZE - (pfn << PAGE_SHIFT));
203                 if (size == size_hsa)
204                         return 0;
205                 size -= size_hsa;
206                 from += size_hsa;
207                 pfn += size_hsa >> PAGE_SHIFT;
208         }
209         return remap_pfn_range(vma, from, pfn, size, prot);
210 }
211
212 /*
213  * Remap "oldmem" for kdump or zfcpdump
214  */
215 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
216                            unsigned long pfn, unsigned long size, pgprot_t prot)
217 {
218         if (OLDMEM_BASE)
219                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
220         else
221                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
222                                                        prot);
223 }
224
225 /*
226  * Copy memory from old kernel
227  */
228 int copy_from_oldmem(void *dest, void *src, size_t count)
229 {
230         unsigned long copied = 0;
231         int rc;
232
233         if (OLDMEM_BASE) {
234                 if ((unsigned long) src < OLDMEM_SIZE) {
235                         copied = min(count, OLDMEM_SIZE - (unsigned long) src);
236                         rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
237                         if (rc)
238                                 return rc;
239                 }
240         } else {
241                 if ((unsigned long) src < ZFCPDUMP_HSA_SIZE) {
242                         copied = min(count,
243                                      ZFCPDUMP_HSA_SIZE - (unsigned long) src);
244                         rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
245                         if (rc)
246                                 return rc;
247                 }
248         }
249         return copy_from_realmem(dest + copied, src + copied, count - copied);
250 }
251
252 /*
253  * Alloc memory and panic in case of ENOMEM
254  */
255 static void *kzalloc_panic(int len)
256 {
257         void *rc;
258
259         rc = kzalloc(len, GFP_KERNEL);
260         if (!rc)
261                 panic("s390 kdump kzalloc (%d) failed", len);
262         return rc;
263 }
264
265 /*
266  * Get memory layout and create hole for oldmem
267  */
268 static struct mem_chunk *get_memory_layout(void)
269 {
270         struct mem_chunk *chunk_array;
271
272         chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
273         detect_memory_layout(chunk_array, 0);
274         create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
275         return chunk_array;
276 }
277
278 /*
279  * Initialize ELF note
280  */
281 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
282                      const char *name)
283 {
284         Elf64_Nhdr *note;
285         u64 len;
286
287         note = (Elf64_Nhdr *)buf;
288         note->n_namesz = strlen(name) + 1;
289         note->n_descsz = d_len;
290         note->n_type = type;
291         len = sizeof(Elf64_Nhdr);
292
293         memcpy(buf + len, name, note->n_namesz);
294         len = roundup(len + note->n_namesz, 4);
295
296         memcpy(buf + len, desc, note->n_descsz);
297         len = roundup(len + note->n_descsz, 4);
298
299         return PTR_ADD(buf, len);
300 }
301
302 /*
303  * Initialize prstatus note
304  */
305 static void *nt_prstatus(void *ptr, struct save_area *sa)
306 {
307         struct elf_prstatus nt_prstatus;
308         static int cpu_nr = 1;
309
310         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
311         memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
312         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
313         memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
314         nt_prstatus.pr_pid = cpu_nr;
315         cpu_nr++;
316
317         return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
318                          "CORE");
319 }
320
321 /*
322  * Initialize fpregset (floating point) note
323  */
324 static void *nt_fpregset(void *ptr, struct save_area *sa)
325 {
326         elf_fpregset_t nt_fpregset;
327
328         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
329         memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
330         memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
331
332         return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
333                        "CORE");
334 }
335
336 /*
337  * Initialize timer note
338  */
339 static void *nt_s390_timer(void *ptr, struct save_area *sa)
340 {
341         return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
342                          KEXEC_CORE_NOTE_NAME);
343 }
344
345 /*
346  * Initialize TOD clock comparator note
347  */
348 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
349 {
350         return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
351                        sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
352 }
353
354 /*
355  * Initialize TOD programmable register note
356  */
357 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
358 {
359         return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
360                        sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
361 }
362
363 /*
364  * Initialize control register note
365  */
366 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
367 {
368         return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
369                        sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
370 }
371
372 /*
373  * Initialize prefix register note
374  */
375 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
376 {
377         return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
378                          sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
379 }
380
381 /*
382  * Fill ELF notes for one CPU with save area registers
383  */
384 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
385 {
386         ptr = nt_prstatus(ptr, sa);
387         ptr = nt_fpregset(ptr, sa);
388         ptr = nt_s390_timer(ptr, sa);
389         ptr = nt_s390_tod_cmp(ptr, sa);
390         ptr = nt_s390_tod_preg(ptr, sa);
391         ptr = nt_s390_ctrs(ptr, sa);
392         ptr = nt_s390_prefix(ptr, sa);
393         return ptr;
394 }
395
396 /*
397  * Initialize prpsinfo note (new kernel)
398  */
399 static void *nt_prpsinfo(void *ptr)
400 {
401         struct elf_prpsinfo prpsinfo;
402
403         memset(&prpsinfo, 0, sizeof(prpsinfo));
404         prpsinfo.pr_sname = 'R';
405         strcpy(prpsinfo.pr_fname, "vmlinux");
406         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
407                        KEXEC_CORE_NOTE_NAME);
408 }
409
410 /*
411  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
412  */
413 static void *get_vmcoreinfo_old(unsigned long *size)
414 {
415         char nt_name[11], *vmcoreinfo;
416         Elf64_Nhdr note;
417         void *addr;
418
419         if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
420                 return NULL;
421         memset(nt_name, 0, sizeof(nt_name));
422         if (copy_from_oldmem(&note, addr, sizeof(note)))
423                 return NULL;
424         if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
425                 return NULL;
426         if (strcmp(nt_name, "VMCOREINFO") != 0)
427                 return NULL;
428         vmcoreinfo = kzalloc_panic(note.n_descsz);
429         if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
430                 return NULL;
431         *size = note.n_descsz;
432         return vmcoreinfo;
433 }
434
435 /*
436  * Initialize vmcoreinfo note (new kernel)
437  */
438 static void *nt_vmcoreinfo(void *ptr)
439 {
440         unsigned long size;
441         void *vmcoreinfo;
442
443         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
444         if (!vmcoreinfo)
445                 vmcoreinfo = get_vmcoreinfo_old(&size);
446         if (!vmcoreinfo)
447                 return ptr;
448         return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
449 }
450
451 /*
452  * Initialize ELF header (new kernel)
453  */
454 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
455 {
456         memset(ehdr, 0, sizeof(*ehdr));
457         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
458         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
459         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
460         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
461         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
462         ehdr->e_type = ET_CORE;
463         ehdr->e_machine = EM_S390;
464         ehdr->e_version = EV_CURRENT;
465         ehdr->e_phoff = sizeof(Elf64_Ehdr);
466         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
467         ehdr->e_phentsize = sizeof(Elf64_Phdr);
468         ehdr->e_phnum = mem_chunk_cnt + 1;
469         return ehdr + 1;
470 }
471
472 /*
473  * Return CPU count for ELF header (new kernel)
474  */
475 static int get_cpu_cnt(void)
476 {
477         int i, cpus = 0;
478
479         for (i = 0; i < dump_save_areas.count; i++) {
480                 if (dump_save_areas.areas[i]->pref_reg == 0)
481                         continue;
482                 cpus++;
483         }
484         return cpus;
485 }
486
487 /*
488  * Return memory chunk count for ELF header (new kernel)
489  */
490 static int get_mem_chunk_cnt(void)
491 {
492         struct mem_chunk *chunk_array, *mem_chunk;
493         int i, cnt = 0;
494
495         chunk_array = get_memory_layout();
496         for (i = 0; i < MEMORY_CHUNKS; i++) {
497                 mem_chunk = &chunk_array[i];
498                 if (chunk_array[i].type != CHUNK_READ_WRITE &&
499                     chunk_array[i].type != CHUNK_READ_ONLY)
500                         continue;
501                 if (mem_chunk->size == 0)
502                         continue;
503                 cnt++;
504         }
505         kfree(chunk_array);
506         return cnt;
507 }
508
509 /*
510  * Initialize ELF loads (new kernel)
511  */
512 static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
513 {
514         struct mem_chunk *chunk_array, *mem_chunk;
515         int i;
516
517         chunk_array = get_memory_layout();
518         for (i = 0; i < MEMORY_CHUNKS; i++) {
519                 mem_chunk = &chunk_array[i];
520                 if (mem_chunk->size == 0)
521                         continue;
522                 if (chunk_array[i].type != CHUNK_READ_WRITE &&
523                     chunk_array[i].type != CHUNK_READ_ONLY)
524                         continue;
525                 else
526                         phdr->p_filesz = mem_chunk->size;
527                 phdr->p_type = PT_LOAD;
528                 phdr->p_offset = mem_chunk->addr;
529                 phdr->p_vaddr = mem_chunk->addr;
530                 phdr->p_paddr = mem_chunk->addr;
531                 phdr->p_memsz = mem_chunk->size;
532                 phdr->p_flags = PF_R | PF_W | PF_X;
533                 phdr->p_align = PAGE_SIZE;
534                 phdr++;
535         }
536         kfree(chunk_array);
537         return i;
538 }
539
540 /*
541  * Initialize notes (new kernel)
542  */
543 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
544 {
545         struct save_area *sa;
546         void *ptr_start = ptr;
547         int i;
548
549         ptr = nt_prpsinfo(ptr);
550
551         for (i = 0; i < dump_save_areas.count; i++) {
552                 sa = dump_save_areas.areas[i];
553                 if (sa->pref_reg == 0)
554                         continue;
555                 ptr = fill_cpu_elf_notes(ptr, sa);
556         }
557         ptr = nt_vmcoreinfo(ptr);
558         memset(phdr, 0, sizeof(*phdr));
559         phdr->p_type = PT_NOTE;
560         phdr->p_offset = notes_offset;
561         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
562         phdr->p_memsz = phdr->p_filesz;
563         return ptr;
564 }
565
566 /*
567  * Create ELF core header (new kernel)
568  */
569 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
570 {
571         Elf64_Phdr *phdr_notes, *phdr_loads;
572         int mem_chunk_cnt;
573         void *ptr, *hdr;
574         u32 alloc_size;
575         u64 hdr_off;
576
577         /* If we are not in kdump or zfcpdump mode return */
578         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
579                 return 0;
580         /* If elfcorehdr= has been passed via cmdline, we use that one */
581         if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
582                 return 0;
583         mem_chunk_cnt = get_mem_chunk_cnt();
584
585         alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
586                 mem_chunk_cnt * sizeof(Elf64_Phdr);
587         hdr = kzalloc_panic(alloc_size);
588         /* Init elf header */
589         ptr = ehdr_init(hdr, mem_chunk_cnt);
590         /* Init program headers */
591         phdr_notes = ptr;
592         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
593         phdr_loads = ptr;
594         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
595         /* Init notes */
596         hdr_off = PTR_DIFF(ptr, hdr);
597         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
598         /* Init loads */
599         hdr_off = PTR_DIFF(ptr, hdr);
600         loads_init(phdr_loads, hdr_off);
601         *addr = (unsigned long long) hdr;
602         elfcorehdr_newmem = hdr;
603         *size = (unsigned long long) hdr_off;
604         BUG_ON(elfcorehdr_size > alloc_size);
605         return 0;
606 }
607
608 /*
609  * Free ELF core header (new kernel)
610  */
611 void elfcorehdr_free(unsigned long long addr)
612 {
613         if (!elfcorehdr_newmem)
614                 return;
615         kfree((void *)(unsigned long)addr);
616 }
617
618 /*
619  * Read from ELF header
620  */
621 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
622 {
623         void *src = (void *)(unsigned long)*ppos;
624
625         src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
626         memcpy(buf, src, count);
627         *ppos += count;
628         return count;
629 }
630
631 /*
632  * Read from ELF notes data
633  */
634 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
635 {
636         void *src = (void *)(unsigned long)*ppos;
637         int rc;
638
639         if (elfcorehdr_newmem) {
640                 memcpy(buf, src, count);
641         } else {
642                 rc = copy_from_oldmem(buf, src, count);
643                 if (rc)
644                         return rc;
645         }
646         *ppos += count;
647         return count;
648 }