]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/s390/kernel/crash_dump.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[karo-tx-linux.git] / arch / s390 / kernel / crash_dump.c
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/slab.h>
15 #include <linux/bootmem.h>
16 #include <linux/elf.h>
17 #include <asm/asm-offsets.h>
18 #include <linux/memblock.h>
19 #include <asm/os_info.h>
20 #include <asm/elf.h>
21 #include <asm/ipl.h>
22 #include <asm/sclp.h>
23
24 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
25 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
26 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
27
28 static struct memblock_region oldmem_region;
29
30 static struct memblock_type oldmem_type = {
31         .cnt = 1,
32         .max = 1,
33         .total_size = 0,
34         .regions = &oldmem_region,
35 };
36
37 struct save_area {
38         struct list_head list;
39         u64 psw[2];
40         u64 ctrs[16];
41         u64 gprs[16];
42         u32 acrs[16];
43         u64 fprs[16];
44         u32 fpc;
45         u32 prefix;
46         u64 todpreg;
47         u64 timer;
48         u64 todcmp;
49         u64 vxrs_low[16];
50         __vector128 vxrs_high[16];
51 };
52
53 static LIST_HEAD(dump_save_areas);
54
55 /*
56  * Allocate a save area
57  */
58 struct save_area * __init save_area_alloc(bool is_boot_cpu)
59 {
60         struct save_area *sa;
61
62         sa = (void *) memblock_alloc(sizeof(*sa), 8);
63         if (is_boot_cpu)
64                 list_add(&sa->list, &dump_save_areas);
65         else
66                 list_add_tail(&sa->list, &dump_save_areas);
67         return sa;
68 }
69
70 /*
71  * Return the address of the save area for the boot CPU
72  */
73 struct save_area * __init save_area_boot_cpu(void)
74 {
75         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
76 }
77
78 /*
79  * Copy CPU registers into the save area
80  */
81 void __init save_area_add_regs(struct save_area *sa, void *regs)
82 {
83         struct lowcore *lc;
84
85         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
86         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
87         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
88         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
89         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
90         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
91         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
92         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
93         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
94         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
95         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
96 }
97
98 /*
99  * Copy vector registers into the save area
100  */
101 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
102 {
103         int i;
104
105         /* Copy lower halves of vector registers 0-15 */
106         for (i = 0; i < 16; i++)
107                 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
108         /* Copy vector registers 16-31 */
109         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
110 }
111
112 /*
113  * Return physical address for virtual address
114  */
115 static inline void *load_real_addr(void *addr)
116 {
117         unsigned long real_addr;
118
119         asm volatile(
120                    "    lra     %0,0(%1)\n"
121                    "    jz      0f\n"
122                    "    la      %0,0\n"
123                    "0:"
124                    : "=a" (real_addr) : "a" (addr) : "cc");
125         return (void *)real_addr;
126 }
127
128 /*
129  * Copy memory of the old, dumped system to a kernel space virtual address
130  */
131 int copy_oldmem_kernel(void *dst, void *src, size_t count)
132 {
133         unsigned long from, len;
134         void *ra;
135         int rc;
136
137         while (count) {
138                 from = __pa(src);
139                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
140                         /* Copy from zfcpdump HSA area */
141                         len = min(count, sclp.hsa_size - from);
142                         rc = memcpy_hsa_kernel(dst, from, len);
143                         if (rc)
144                                 return rc;
145                 } else {
146                         /* Check for swapped kdump oldmem areas */
147                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
148                                 from -= OLDMEM_BASE;
149                                 len = min(count, OLDMEM_SIZE - from);
150                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
151                                 len = min(count, OLDMEM_SIZE - from);
152                                 from += OLDMEM_BASE;
153                         } else {
154                                 len = count;
155                         }
156                         if (is_vmalloc_or_module_addr(dst)) {
157                                 ra = load_real_addr(dst);
158                                 len = min(PAGE_SIZE - offset_in_page(ra), len);
159                         } else {
160                                 ra = dst;
161                         }
162                         if (memcpy_real(ra, (void *) from, len))
163                                 return -EFAULT;
164                 }
165                 dst += len;
166                 src += len;
167                 count -= len;
168         }
169         return 0;
170 }
171
172 /*
173  * Copy memory of the old, dumped system to a user space virtual address
174  */
175 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
176 {
177         unsigned long from, len;
178         int rc;
179
180         while (count) {
181                 from = __pa(src);
182                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
183                         /* Copy from zfcpdump HSA area */
184                         len = min(count, sclp.hsa_size - from);
185                         rc = memcpy_hsa_user(dst, from, len);
186                         if (rc)
187                                 return rc;
188                 } else {
189                         /* Check for swapped kdump oldmem areas */
190                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
191                                 from -= OLDMEM_BASE;
192                                 len = min(count, OLDMEM_SIZE - from);
193                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
194                                 len = min(count, OLDMEM_SIZE - from);
195                                 from += OLDMEM_BASE;
196                         } else {
197                                 len = count;
198                         }
199                         rc = copy_to_user_real(dst, (void *) from, count);
200                         if (rc)
201                                 return rc;
202                 }
203                 dst += len;
204                 src += len;
205                 count -= len;
206         }
207         return 0;
208 }
209
210 /*
211  * Copy one page from "oldmem"
212  */
213 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
214                          unsigned long offset, int userbuf)
215 {
216         void *src;
217         int rc;
218
219         if (!csize)
220                 return 0;
221         src = (void *) (pfn << PAGE_SHIFT) + offset;
222         if (userbuf)
223                 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
224         else
225                 rc = copy_oldmem_kernel((void *) buf, src, csize);
226         return rc;
227 }
228
229 /*
230  * Remap "oldmem" for kdump
231  *
232  * For the kdump reserved memory this functions performs a swap operation:
233  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
234  */
235 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
236                                         unsigned long from, unsigned long pfn,
237                                         unsigned long size, pgprot_t prot)
238 {
239         unsigned long size_old;
240         int rc;
241
242         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
243                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
244                 rc = remap_pfn_range(vma, from,
245                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
246                                      size_old, prot);
247                 if (rc || size == size_old)
248                         return rc;
249                 size -= size_old;
250                 from += size_old;
251                 pfn += size_old >> PAGE_SHIFT;
252         }
253         return remap_pfn_range(vma, from, pfn, size, prot);
254 }
255
256 /*
257  * Remap "oldmem" for zfcpdump
258  *
259  * We only map available memory above HSA size. Memory below HSA size
260  * is read on demand using the copy_oldmem_page() function.
261  */
262 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
263                                            unsigned long from,
264                                            unsigned long pfn,
265                                            unsigned long size, pgprot_t prot)
266 {
267         unsigned long hsa_end = sclp.hsa_size;
268         unsigned long size_hsa;
269
270         if (pfn < hsa_end >> PAGE_SHIFT) {
271                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
272                 if (size == size_hsa)
273                         return 0;
274                 size -= size_hsa;
275                 from += size_hsa;
276                 pfn += size_hsa >> PAGE_SHIFT;
277         }
278         return remap_pfn_range(vma, from, pfn, size, prot);
279 }
280
281 /*
282  * Remap "oldmem" for kdump or zfcpdump
283  */
284 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
285                            unsigned long pfn, unsigned long size, pgprot_t prot)
286 {
287         if (OLDMEM_BASE)
288                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
289         else
290                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
291                                                        prot);
292 }
293
294 /*
295  * Alloc memory and panic in case of ENOMEM
296  */
297 static void *kzalloc_panic(int len)
298 {
299         void *rc;
300
301         rc = kzalloc(len, GFP_KERNEL);
302         if (!rc)
303                 panic("s390 kdump kzalloc (%d) failed", len);
304         return rc;
305 }
306
307 /*
308  * Initialize ELF note
309  */
310 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
311                           const char *name)
312 {
313         Elf64_Nhdr *note;
314         u64 len;
315
316         note = (Elf64_Nhdr *)buf;
317         note->n_namesz = strlen(name) + 1;
318         note->n_descsz = d_len;
319         note->n_type = type;
320         len = sizeof(Elf64_Nhdr);
321
322         memcpy(buf + len, name, note->n_namesz);
323         len = roundup(len + note->n_namesz, 4);
324
325         memcpy(buf + len, desc, note->n_descsz);
326         len = roundup(len + note->n_descsz, 4);
327
328         return PTR_ADD(buf, len);
329 }
330
331 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
332 {
333         const char *note_name = "LINUX";
334
335         if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
336                 note_name = KEXEC_CORE_NOTE_NAME;
337         return nt_init_name(buf, type, desc, d_len, note_name);
338 }
339
340 /*
341  * Fill ELF notes for one CPU with save area registers
342  */
343 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
344 {
345         struct elf_prstatus nt_prstatus;
346         elf_fpregset_t nt_fpregset;
347
348         /* Prepare prstatus note */
349         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
350         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
351         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
352         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
353         nt_prstatus.pr_pid = cpu;
354         /* Prepare fpregset (floating point) note */
355         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
356         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
357         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
358         /* Create ELF notes for the CPU */
359         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
360         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
361         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
362         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
363         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
364         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
365         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
366         if (MACHINE_HAS_VX) {
367                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
368                               &sa->vxrs_high, sizeof(sa->vxrs_high));
369                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
370                               &sa->vxrs_low, sizeof(sa->vxrs_low));
371         }
372         return ptr;
373 }
374
375 /*
376  * Initialize prpsinfo note (new kernel)
377  */
378 static void *nt_prpsinfo(void *ptr)
379 {
380         struct elf_prpsinfo prpsinfo;
381
382         memset(&prpsinfo, 0, sizeof(prpsinfo));
383         prpsinfo.pr_sname = 'R';
384         strcpy(prpsinfo.pr_fname, "vmlinux");
385         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
386 }
387
388 /*
389  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
390  */
391 static void *get_vmcoreinfo_old(unsigned long *size)
392 {
393         char nt_name[11], *vmcoreinfo;
394         Elf64_Nhdr note;
395         void *addr;
396
397         if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
398                 return NULL;
399         memset(nt_name, 0, sizeof(nt_name));
400         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
401                 return NULL;
402         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
403                                sizeof(nt_name) - 1))
404                 return NULL;
405         if (strcmp(nt_name, "VMCOREINFO") != 0)
406                 return NULL;
407         vmcoreinfo = kzalloc_panic(note.n_descsz);
408         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
409                 return NULL;
410         *size = note.n_descsz;
411         return vmcoreinfo;
412 }
413
414 /*
415  * Initialize vmcoreinfo note (new kernel)
416  */
417 static void *nt_vmcoreinfo(void *ptr)
418 {
419         unsigned long size;
420         void *vmcoreinfo;
421
422         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
423         if (!vmcoreinfo)
424                 vmcoreinfo = get_vmcoreinfo_old(&size);
425         if (!vmcoreinfo)
426                 return ptr;
427         return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
428 }
429
430 /*
431  * Initialize ELF header (new kernel)
432  */
433 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
434 {
435         memset(ehdr, 0, sizeof(*ehdr));
436         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
437         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
438         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
439         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
440         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
441         ehdr->e_type = ET_CORE;
442         ehdr->e_machine = EM_S390;
443         ehdr->e_version = EV_CURRENT;
444         ehdr->e_phoff = sizeof(Elf64_Ehdr);
445         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
446         ehdr->e_phentsize = sizeof(Elf64_Phdr);
447         ehdr->e_phnum = mem_chunk_cnt + 1;
448         return ehdr + 1;
449 }
450
451 /*
452  * Return CPU count for ELF header (new kernel)
453  */
454 static int get_cpu_cnt(void)
455 {
456         struct save_area *sa;
457         int cpus = 0;
458
459         list_for_each_entry(sa, &dump_save_areas, list)
460                 if (sa->prefix != 0)
461                         cpus++;
462         return cpus;
463 }
464
465 /*
466  * Return memory chunk count for ELF header (new kernel)
467  */
468 static int get_mem_chunk_cnt(void)
469 {
470         int cnt = 0;
471         u64 idx;
472
473         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
474                            MEMBLOCK_NONE, NULL, NULL, NULL)
475                 cnt++;
476         return cnt;
477 }
478
479 /*
480  * Initialize ELF loads (new kernel)
481  */
482 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
483 {
484         phys_addr_t start, end;
485         u64 idx;
486
487         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
488                            MEMBLOCK_NONE, &start, &end, NULL) {
489                 phdr->p_filesz = end - start;
490                 phdr->p_type = PT_LOAD;
491                 phdr->p_offset = start;
492                 phdr->p_vaddr = start;
493                 phdr->p_paddr = start;
494                 phdr->p_memsz = end - start;
495                 phdr->p_flags = PF_R | PF_W | PF_X;
496                 phdr->p_align = PAGE_SIZE;
497                 phdr++;
498         }
499 }
500
501 /*
502  * Initialize notes (new kernel)
503  */
504 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
505 {
506         struct save_area *sa;
507         void *ptr_start = ptr;
508         int cpu;
509
510         ptr = nt_prpsinfo(ptr);
511
512         cpu = 1;
513         list_for_each_entry(sa, &dump_save_areas, list)
514                 if (sa->prefix != 0)
515                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
516         ptr = nt_vmcoreinfo(ptr);
517         memset(phdr, 0, sizeof(*phdr));
518         phdr->p_type = PT_NOTE;
519         phdr->p_offset = notes_offset;
520         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
521         phdr->p_memsz = phdr->p_filesz;
522         return ptr;
523 }
524
525 /*
526  * Create ELF core header (new kernel)
527  */
528 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
529 {
530         Elf64_Phdr *phdr_notes, *phdr_loads;
531         int mem_chunk_cnt;
532         void *ptr, *hdr;
533         u32 alloc_size;
534         u64 hdr_off;
535
536         /* If we are not in kdump or zfcpdump mode return */
537         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
538                 return 0;
539         /* If we cannot get HSA size for zfcpdump return error */
540         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
541                 return -ENODEV;
542
543         /* For kdump, exclude previous crashkernel memory */
544         if (OLDMEM_BASE) {
545                 oldmem_region.base = OLDMEM_BASE;
546                 oldmem_region.size = OLDMEM_SIZE;
547                 oldmem_type.total_size = OLDMEM_SIZE;
548         }
549
550         mem_chunk_cnt = get_mem_chunk_cnt();
551
552         alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
553                 mem_chunk_cnt * sizeof(Elf64_Phdr);
554         hdr = kzalloc_panic(alloc_size);
555         /* Init elf header */
556         ptr = ehdr_init(hdr, mem_chunk_cnt);
557         /* Init program headers */
558         phdr_notes = ptr;
559         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
560         phdr_loads = ptr;
561         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
562         /* Init notes */
563         hdr_off = PTR_DIFF(ptr, hdr);
564         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
565         /* Init loads */
566         hdr_off = PTR_DIFF(ptr, hdr);
567         loads_init(phdr_loads, hdr_off);
568         *addr = (unsigned long long) hdr;
569         *size = (unsigned long long) hdr_off;
570         BUG_ON(elfcorehdr_size > alloc_size);
571         return 0;
572 }
573
574 /*
575  * Free ELF core header (new kernel)
576  */
577 void elfcorehdr_free(unsigned long long addr)
578 {
579         kfree((void *)(unsigned long)addr);
580 }
581
582 /*
583  * Read from ELF header
584  */
585 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
586 {
587         void *src = (void *)(unsigned long)*ppos;
588
589         memcpy(buf, src, count);
590         *ppos += count;
591         return count;
592 }
593
594 /*
595  * Read from ELF notes data
596  */
597 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
598 {
599         void *src = (void *)(unsigned long)*ppos;
600
601         memcpy(buf, src, count);
602         *ppos += count;
603         return count;
604 }