]> git.karo-electronics.de Git - linux-beck.git/blob - arch/s390/kernel/smp.c
9261495ca2c35dd40a9cc087a0811a1715421c3d
[linux-beck.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54
55 static struct task_struct *current_set[NR_CPUS];
56
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
59
60 enum s390_cpu_state {
61         CPU_STATE_STANDBY,
62         CPU_STATE_CONFIGURED,
63 };
64
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
69
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
71
72 static void smp_ext_bitcall(int, ec_bit_sig);
73
74 void smp_send_stop(void)
75 {
76         int cpu, rc;
77
78         /* Disable all interrupts/machine checks */
79         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
80         trace_hardirqs_off();
81
82         /* stop all processors */
83         for_each_online_cpu(cpu) {
84                 if (cpu == smp_processor_id())
85                         continue;
86                 do {
87                         rc = signal_processor(cpu, sigp_stop);
88                 } while (rc == sigp_busy);
89
90                 while (!smp_cpu_not_running(cpu))
91                         cpu_relax();
92         }
93 }
94
95 /*
96  * This is the main routine where commands issued by other
97  * cpus are handled.
98  */
99
100 static void do_ext_call_interrupt(__u16 code)
101 {
102         unsigned long bits;
103
104         /*
105          * handle bit signal external calls
106          *
107          * For the ec_schedule signal we have to do nothing. All the work
108          * is done automatically when we return from the interrupt.
109          */
110         bits = xchg(&S390_lowcore.ext_call_fast, 0);
111
112         if (test_bit(ec_call_function, &bits))
113                 generic_smp_call_function_interrupt();
114
115         if (test_bit(ec_call_function_single, &bits))
116                 generic_smp_call_function_single_interrupt();
117 }
118
119 /*
120  * Send an external call sigp to another cpu and return without waiting
121  * for its completion.
122  */
123 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
124 {
125         /*
126          * Set signaling bit in lowcore of target cpu and kick it
127          */
128         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
129         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
130                 udelay(10);
131 }
132
133 void arch_send_call_function_ipi(cpumask_t mask)
134 {
135         int cpu;
136
137         for_each_cpu_mask(cpu, mask)
138                 smp_ext_bitcall(cpu, ec_call_function);
139 }
140
141 void arch_send_call_function_single_ipi(int cpu)
142 {
143         smp_ext_bitcall(cpu, ec_call_function_single);
144 }
145
146 #ifndef CONFIG_64BIT
147 /*
148  * this function sends a 'purge tlb' signal to another CPU.
149  */
150 static void smp_ptlb_callback(void *info)
151 {
152         __tlb_flush_local();
153 }
154
155 void smp_ptlb_all(void)
156 {
157         on_each_cpu(smp_ptlb_callback, NULL, 1);
158 }
159 EXPORT_SYMBOL(smp_ptlb_all);
160 #endif /* ! CONFIG_64BIT */
161
162 /*
163  * this function sends a 'reschedule' IPI to another CPU.
164  * it goes straight through and wastes no time serializing
165  * anything. Worst case is that we lose a reschedule ...
166  */
167 void smp_send_reschedule(int cpu)
168 {
169         smp_ext_bitcall(cpu, ec_schedule);
170 }
171
172 /*
173  * parameter area for the set/clear control bit callbacks
174  */
175 struct ec_creg_mask_parms {
176         unsigned long orvals[16];
177         unsigned long andvals[16];
178 };
179
180 /*
181  * callback for setting/clearing control bits
182  */
183 static void smp_ctl_bit_callback(void *info)
184 {
185         struct ec_creg_mask_parms *pp = info;
186         unsigned long cregs[16];
187         int i;
188
189         __ctl_store(cregs, 0, 15);
190         for (i = 0; i <= 15; i++)
191                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
192         __ctl_load(cregs, 0, 15);
193 }
194
195 /*
196  * Set a bit in a control register of all cpus
197  */
198 void smp_ctl_set_bit(int cr, int bit)
199 {
200         struct ec_creg_mask_parms parms;
201
202         memset(&parms.orvals, 0, sizeof(parms.orvals));
203         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
204         parms.orvals[cr] = 1 << bit;
205         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
206 }
207 EXPORT_SYMBOL(smp_ctl_set_bit);
208
209 /*
210  * Clear a bit in a control register of all cpus
211  */
212 void smp_ctl_clear_bit(int cr, int bit)
213 {
214         struct ec_creg_mask_parms parms;
215
216         memset(&parms.orvals, 0, sizeof(parms.orvals));
217         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
218         parms.andvals[cr] = ~(1L << bit);
219         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
220 }
221 EXPORT_SYMBOL(smp_ctl_clear_bit);
222
223 /*
224  * In early ipl state a temp. logically cpu number is needed, so the sigp
225  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
226  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
227  */
228 #define CPU_INIT_NO     1
229
230 #ifdef CONFIG_ZFCPDUMP
231
232 /*
233  * zfcpdump_prefix_array holds prefix registers for the following scenario:
234  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
235  * save its prefix registers, since they get lost, when switching from 31 bit
236  * to 64 bit.
237  */
238 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
239         __attribute__((__section__(".data")));
240
241 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
242 {
243         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
244                 return;
245         if (cpu >= NR_CPUS) {
246                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
247                            "the dump\n", cpu, NR_CPUS - 1);
248                 return;
249         }
250         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
251         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
252         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
253                sigp_busy)
254                 cpu_relax();
255         memcpy(zfcpdump_save_areas[cpu],
256                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
257                SAVE_AREA_SIZE);
258 #ifdef CONFIG_64BIT
259         /* copy original prefix register */
260         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
261 #endif
262 }
263
264 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
265 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
266
267 #else
268
269 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
270
271 #endif /* CONFIG_ZFCPDUMP */
272
273 static int cpu_stopped(int cpu)
274 {
275         __u32 status;
276
277         /* Check for stopped state */
278         if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
279             sigp_status_stored) {
280                 if (status & 0x40)
281                         return 1;
282         }
283         return 0;
284 }
285
286 static int cpu_known(int cpu_id)
287 {
288         int cpu;
289
290         for_each_present_cpu(cpu) {
291                 if (__cpu_logical_map[cpu] == cpu_id)
292                         return 1;
293         }
294         return 0;
295 }
296
297 static int smp_rescan_cpus_sigp(cpumask_t avail)
298 {
299         int cpu_id, logical_cpu;
300
301         logical_cpu = cpumask_first(&avail);
302         if (logical_cpu >= nr_cpu_ids)
303                 return 0;
304         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
305                 if (cpu_known(cpu_id))
306                         continue;
307                 __cpu_logical_map[logical_cpu] = cpu_id;
308                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
309                 if (!cpu_stopped(logical_cpu))
310                         continue;
311                 cpu_set(logical_cpu, cpu_present_map);
312                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
313                 logical_cpu = cpumask_next(logical_cpu, &avail);
314                 if (logical_cpu >= nr_cpu_ids)
315                         break;
316         }
317         return 0;
318 }
319
320 static int smp_rescan_cpus_sclp(cpumask_t avail)
321 {
322         struct sclp_cpu_info *info;
323         int cpu_id, logical_cpu, cpu;
324         int rc;
325
326         logical_cpu = cpumask_first(&avail);
327         if (logical_cpu >= nr_cpu_ids)
328                 return 0;
329         info = kmalloc(sizeof(*info), GFP_KERNEL);
330         if (!info)
331                 return -ENOMEM;
332         rc = sclp_get_cpu_info(info);
333         if (rc)
334                 goto out;
335         for (cpu = 0; cpu < info->combined; cpu++) {
336                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
337                         continue;
338                 cpu_id = info->cpu[cpu].address;
339                 if (cpu_known(cpu_id))
340                         continue;
341                 __cpu_logical_map[logical_cpu] = cpu_id;
342                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
343                 cpu_set(logical_cpu, cpu_present_map);
344                 if (cpu >= info->configured)
345                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
346                 else
347                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
348                 logical_cpu = cpumask_next(logical_cpu, &avail);
349                 if (logical_cpu >= nr_cpu_ids)
350                         break;
351         }
352 out:
353         kfree(info);
354         return rc;
355 }
356
357 static int __smp_rescan_cpus(void)
358 {
359         cpumask_t avail;
360
361         cpus_xor(avail, cpu_possible_map, cpu_present_map);
362         if (smp_use_sigp_detection)
363                 return smp_rescan_cpus_sigp(avail);
364         else
365                 return smp_rescan_cpus_sclp(avail);
366 }
367
368 static void __init smp_detect_cpus(void)
369 {
370         unsigned int cpu, c_cpus, s_cpus;
371         struct sclp_cpu_info *info;
372         u16 boot_cpu_addr, cpu_addr;
373
374         c_cpus = 1;
375         s_cpus = 0;
376         boot_cpu_addr = __cpu_logical_map[0];
377         info = kmalloc(sizeof(*info), GFP_KERNEL);
378         if (!info)
379                 panic("smp_detect_cpus failed to allocate memory\n");
380         /* Use sigp detection algorithm if sclp doesn't work. */
381         if (sclp_get_cpu_info(info)) {
382                 smp_use_sigp_detection = 1;
383                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
384                         if (cpu == boot_cpu_addr)
385                                 continue;
386                         __cpu_logical_map[CPU_INIT_NO] = cpu;
387                         if (!cpu_stopped(CPU_INIT_NO))
388                                 continue;
389                         smp_get_save_area(c_cpus, cpu);
390                         c_cpus++;
391                 }
392                 goto out;
393         }
394
395         if (info->has_cpu_type) {
396                 for (cpu = 0; cpu < info->combined; cpu++) {
397                         if (info->cpu[cpu].address == boot_cpu_addr) {
398                                 smp_cpu_type = info->cpu[cpu].type;
399                                 break;
400                         }
401                 }
402         }
403
404         for (cpu = 0; cpu < info->combined; cpu++) {
405                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
406                         continue;
407                 cpu_addr = info->cpu[cpu].address;
408                 if (cpu_addr == boot_cpu_addr)
409                         continue;
410                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
411                 if (!cpu_stopped(CPU_INIT_NO)) {
412                         s_cpus++;
413                         continue;
414                 }
415                 smp_get_save_area(c_cpus, cpu_addr);
416                 c_cpus++;
417         }
418 out:
419         kfree(info);
420         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
421         get_online_cpus();
422         __smp_rescan_cpus();
423         put_online_cpus();
424 }
425
426 /*
427  *      Activate a secondary processor.
428  */
429 int __cpuinit start_secondary(void *cpuvoid)
430 {
431         /* Setup the cpu */
432         cpu_init();
433         preempt_disable();
434         /* Enable TOD clock interrupts on the secondary cpu. */
435         init_cpu_timer();
436         /* Enable cpu timer interrupts on the secondary cpu. */
437         init_cpu_vtimer();
438         /* Enable pfault pseudo page faults on this cpu. */
439         pfault_init();
440
441         /* call cpu notifiers */
442         notify_cpu_starting(smp_processor_id());
443         /* Mark this cpu as online */
444         ipi_call_lock();
445         cpu_set(smp_processor_id(), cpu_online_map);
446         ipi_call_unlock();
447         /* Switch on interrupts */
448         local_irq_enable();
449         /* Print info about this processor */
450         print_cpu_info();
451         /* cpu_idle will call schedule for us */
452         cpu_idle();
453         return 0;
454 }
455
456 static void __init smp_create_idle(unsigned int cpu)
457 {
458         struct task_struct *p;
459
460         /*
461          *  don't care about the psw and regs settings since we'll never
462          *  reschedule the forked task.
463          */
464         p = fork_idle(cpu);
465         if (IS_ERR(p))
466                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
467         current_set[cpu] = p;
468 }
469
470 static int __cpuinit smp_alloc_lowcore(int cpu)
471 {
472         unsigned long async_stack, panic_stack;
473         struct _lowcore *lowcore;
474         int lc_order;
475
476         lc_order = sizeof(long) == 8 ? 1 : 0;
477         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
478         if (!lowcore)
479                 return -ENOMEM;
480         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
481         panic_stack = __get_free_page(GFP_KERNEL);
482         if (!panic_stack || !async_stack)
483                 goto out;
484         memcpy(lowcore, &S390_lowcore, 512);
485         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
486         lowcore->async_stack = async_stack + ASYNC_SIZE;
487         lowcore->panic_stack = panic_stack + PAGE_SIZE;
488
489 #ifndef CONFIG_64BIT
490         if (MACHINE_HAS_IEEE) {
491                 unsigned long save_area;
492
493                 save_area = get_zeroed_page(GFP_KERNEL);
494                 if (!save_area)
495                         goto out;
496                 lowcore->extended_save_area_addr = (u32) save_area;
497         }
498 #else
499         if (vdso_alloc_per_cpu(cpu, lowcore))
500                 goto out;
501 #endif
502         lowcore_ptr[cpu] = lowcore;
503         return 0;
504
505 out:
506         free_page(panic_stack);
507         free_pages(async_stack, ASYNC_ORDER);
508         free_pages((unsigned long) lowcore, lc_order);
509         return -ENOMEM;
510 }
511
512 static void smp_free_lowcore(int cpu)
513 {
514         struct _lowcore *lowcore;
515         int lc_order;
516
517         lc_order = sizeof(long) == 8 ? 1 : 0;
518         lowcore = lowcore_ptr[cpu];
519 #ifndef CONFIG_64BIT
520         if (MACHINE_HAS_IEEE)
521                 free_page((unsigned long) lowcore->extended_save_area_addr);
522 #else
523         vdso_free_per_cpu(cpu, lowcore);
524 #endif
525         free_page(lowcore->panic_stack - PAGE_SIZE);
526         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
527         free_pages((unsigned long) lowcore, lc_order);
528         lowcore_ptr[cpu] = NULL;
529 }
530
531 /* Upping and downing of CPUs */
532 int __cpuinit __cpu_up(unsigned int cpu)
533 {
534         struct task_struct *idle;
535         struct _lowcore *cpu_lowcore;
536         struct stack_frame *sf;
537         sigp_ccode ccode;
538         u32 lowcore;
539
540         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
541                 return -EIO;
542         if (smp_alloc_lowcore(cpu))
543                 return -ENOMEM;
544         do {
545                 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
546                 if (ccode == sigp_busy)
547                         udelay(10);
548                 if (ccode == sigp_not_operational)
549                         goto err_out;
550         } while (ccode == sigp_busy);
551
552         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
553         while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
554                 udelay(10);
555
556         idle = current_set[cpu];
557         cpu_lowcore = lowcore_ptr[cpu];
558         cpu_lowcore->kernel_stack = (unsigned long)
559                 task_stack_page(idle) + THREAD_SIZE;
560         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
561         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
562                                      - sizeof(struct pt_regs)
563                                      - sizeof(struct stack_frame));
564         memset(sf, 0, sizeof(struct stack_frame));
565         sf->gprs[9] = (unsigned long) sf;
566         cpu_lowcore->save_area[15] = (unsigned long) sf;
567         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
568         asm volatile(
569                 "       stam    0,15,0(%0)"
570                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
571         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
572         cpu_lowcore->current_task = (unsigned long) idle;
573         cpu_lowcore->cpu_nr = cpu;
574         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
575         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
576         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
577         eieio();
578
579         while (signal_processor(cpu, sigp_restart) == sigp_busy)
580                 udelay(10);
581
582         while (!cpu_online(cpu))
583                 cpu_relax();
584         return 0;
585
586 err_out:
587         smp_free_lowcore(cpu);
588         return -EIO;
589 }
590
591 static int __init setup_possible_cpus(char *s)
592 {
593         int pcpus, cpu;
594
595         pcpus = simple_strtoul(s, NULL, 0);
596         init_cpu_possible(cpumask_of(0));
597         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
598                 set_cpu_possible(cpu, true);
599         return 0;
600 }
601 early_param("possible_cpus", setup_possible_cpus);
602
603 #ifdef CONFIG_HOTPLUG_CPU
604
605 int __cpu_disable(void)
606 {
607         struct ec_creg_mask_parms cr_parms;
608         int cpu = smp_processor_id();
609
610         cpu_clear(cpu, cpu_online_map);
611
612         /* Disable pfault pseudo page faults on this cpu. */
613         pfault_fini();
614
615         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
616         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
617
618         /* disable all external interrupts */
619         cr_parms.orvals[0] = 0;
620         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
621                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
622         /* disable all I/O interrupts */
623         cr_parms.orvals[6] = 0;
624         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
625                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
626         /* disable most machine checks */
627         cr_parms.orvals[14] = 0;
628         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
629                                  1 << 25 | 1 << 24);
630
631         smp_ctl_bit_callback(&cr_parms);
632
633         return 0;
634 }
635
636 void __cpu_die(unsigned int cpu)
637 {
638         /* Wait until target cpu is down */
639         while (!smp_cpu_not_running(cpu))
640                 cpu_relax();
641         smp_free_lowcore(cpu);
642         pr_info("Processor %d stopped\n", cpu);
643 }
644
645 void cpu_die(void)
646 {
647         idle_task_exit();
648         signal_processor(smp_processor_id(), sigp_stop);
649         BUG();
650         for (;;);
651 }
652
653 #endif /* CONFIG_HOTPLUG_CPU */
654
655 void __init smp_prepare_cpus(unsigned int max_cpus)
656 {
657 #ifndef CONFIG_64BIT
658         unsigned long save_area = 0;
659 #endif
660         unsigned long async_stack, panic_stack;
661         struct _lowcore *lowcore;
662         unsigned int cpu;
663         int lc_order;
664
665         smp_detect_cpus();
666
667         /* request the 0x1201 emergency signal external interrupt */
668         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
669                 panic("Couldn't request external interrupt 0x1201");
670         print_cpu_info();
671
672         /* Reallocate current lowcore, but keep its contents. */
673         lc_order = sizeof(long) == 8 ? 1 : 0;
674         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
675         panic_stack = __get_free_page(GFP_KERNEL);
676         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
677         BUG_ON(!lowcore || !panic_stack || !async_stack);
678 #ifndef CONFIG_64BIT
679         if (MACHINE_HAS_IEEE)
680                 save_area = get_zeroed_page(GFP_KERNEL);
681 #endif
682         local_irq_disable();
683         local_mcck_disable();
684         lowcore_ptr[smp_processor_id()] = lowcore;
685         *lowcore = S390_lowcore;
686         lowcore->panic_stack = panic_stack + PAGE_SIZE;
687         lowcore->async_stack = async_stack + ASYNC_SIZE;
688 #ifndef CONFIG_64BIT
689         if (MACHINE_HAS_IEEE)
690                 lowcore->extended_save_area_addr = (u32) save_area;
691 #endif
692         set_prefix((u32)(unsigned long) lowcore);
693         local_mcck_enable();
694         local_irq_enable();
695 #ifdef CONFIG_64BIT
696         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
697                 BUG();
698 #endif
699         for_each_possible_cpu(cpu)
700                 if (cpu != smp_processor_id())
701                         smp_create_idle(cpu);
702 }
703
704 void __init smp_prepare_boot_cpu(void)
705 {
706         BUG_ON(smp_processor_id() != 0);
707
708         current_thread_info()->cpu = 0;
709         cpu_set(0, cpu_present_map);
710         cpu_set(0, cpu_online_map);
711         S390_lowcore.percpu_offset = __per_cpu_offset[0];
712         current_set[0] = current;
713         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
714         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
715 }
716
717 void __init smp_cpus_done(unsigned int max_cpus)
718 {
719 }
720
721 /*
722  * the frequency of the profiling timer can be changed
723  * by writing a multiplier value into /proc/profile.
724  *
725  * usually you want to run this on all CPUs ;)
726  */
727 int setup_profiling_timer(unsigned int multiplier)
728 {
729         return 0;
730 }
731
732 #ifdef CONFIG_HOTPLUG_CPU
733 static ssize_t cpu_configure_show(struct sys_device *dev,
734                                 struct sysdev_attribute *attr, char *buf)
735 {
736         ssize_t count;
737
738         mutex_lock(&smp_cpu_state_mutex);
739         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
740         mutex_unlock(&smp_cpu_state_mutex);
741         return count;
742 }
743
744 static ssize_t cpu_configure_store(struct sys_device *dev,
745                                   struct sysdev_attribute *attr,
746                                   const char *buf, size_t count)
747 {
748         int cpu = dev->id;
749         int val, rc;
750         char delim;
751
752         if (sscanf(buf, "%d %c", &val, &delim) != 1)
753                 return -EINVAL;
754         if (val != 0 && val != 1)
755                 return -EINVAL;
756
757         get_online_cpus();
758         mutex_lock(&smp_cpu_state_mutex);
759         rc = -EBUSY;
760         if (cpu_online(cpu))
761                 goto out;
762         rc = 0;
763         switch (val) {
764         case 0:
765                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
766                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
767                         if (!rc) {
768                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
769                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
770                         }
771                 }
772                 break;
773         case 1:
774                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
775                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
776                         if (!rc) {
777                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
778                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
779                         }
780                 }
781                 break;
782         default:
783                 break;
784         }
785 out:
786         mutex_unlock(&smp_cpu_state_mutex);
787         put_online_cpus();
788         return rc ? rc : count;
789 }
790 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
791 #endif /* CONFIG_HOTPLUG_CPU */
792
793 static ssize_t cpu_polarization_show(struct sys_device *dev,
794                                      struct sysdev_attribute *attr, char *buf)
795 {
796         int cpu = dev->id;
797         ssize_t count;
798
799         mutex_lock(&smp_cpu_state_mutex);
800         switch (smp_cpu_polarization[cpu]) {
801         case POLARIZATION_HRZ:
802                 count = sprintf(buf, "horizontal\n");
803                 break;
804         case POLARIZATION_VL:
805                 count = sprintf(buf, "vertical:low\n");
806                 break;
807         case POLARIZATION_VM:
808                 count = sprintf(buf, "vertical:medium\n");
809                 break;
810         case POLARIZATION_VH:
811                 count = sprintf(buf, "vertical:high\n");
812                 break;
813         default:
814                 count = sprintf(buf, "unknown\n");
815                 break;
816         }
817         mutex_unlock(&smp_cpu_state_mutex);
818         return count;
819 }
820 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
821
822 static ssize_t show_cpu_address(struct sys_device *dev,
823                                 struct sysdev_attribute *attr, char *buf)
824 {
825         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
826 }
827 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
828
829
830 static struct attribute *cpu_common_attrs[] = {
831 #ifdef CONFIG_HOTPLUG_CPU
832         &attr_configure.attr,
833 #endif
834         &attr_address.attr,
835         &attr_polarization.attr,
836         NULL,
837 };
838
839 static struct attribute_group cpu_common_attr_group = {
840         .attrs = cpu_common_attrs,
841 };
842
843 static ssize_t show_capability(struct sys_device *dev,
844                                 struct sysdev_attribute *attr, char *buf)
845 {
846         unsigned int capability;
847         int rc;
848
849         rc = get_cpu_capability(&capability);
850         if (rc)
851                 return rc;
852         return sprintf(buf, "%u\n", capability);
853 }
854 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
855
856 static ssize_t show_idle_count(struct sys_device *dev,
857                                 struct sysdev_attribute *attr, char *buf)
858 {
859         struct s390_idle_data *idle;
860         unsigned long long idle_count;
861         unsigned int sequence;
862
863         idle = &per_cpu(s390_idle, dev->id);
864 repeat:
865         sequence = idle->sequence;
866         smp_rmb();
867         if (sequence & 1)
868                 goto repeat;
869         idle_count = idle->idle_count;
870         if (idle->idle_enter)
871                 idle_count++;
872         smp_rmb();
873         if (idle->sequence != sequence)
874                 goto repeat;
875         return sprintf(buf, "%llu\n", idle_count);
876 }
877 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
878
879 static ssize_t show_idle_time(struct sys_device *dev,
880                                 struct sysdev_attribute *attr, char *buf)
881 {
882         struct s390_idle_data *idle;
883         unsigned long long now, idle_time, idle_enter;
884         unsigned int sequence;
885
886         idle = &per_cpu(s390_idle, dev->id);
887         now = get_clock();
888 repeat:
889         sequence = idle->sequence;
890         smp_rmb();
891         if (sequence & 1)
892                 goto repeat;
893         idle_time = idle->idle_time;
894         idle_enter = idle->idle_enter;
895         if (idle_enter != 0ULL && idle_enter < now)
896                 idle_time += now - idle_enter;
897         smp_rmb();
898         if (idle->sequence != sequence)
899                 goto repeat;
900         return sprintf(buf, "%llu\n", idle_time >> 12);
901 }
902 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
903
904 static struct attribute *cpu_online_attrs[] = {
905         &attr_capability.attr,
906         &attr_idle_count.attr,
907         &attr_idle_time_us.attr,
908         NULL,
909 };
910
911 static struct attribute_group cpu_online_attr_group = {
912         .attrs = cpu_online_attrs,
913 };
914
915 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
916                                     unsigned long action, void *hcpu)
917 {
918         unsigned int cpu = (unsigned int)(long)hcpu;
919         struct cpu *c = &per_cpu(cpu_devices, cpu);
920         struct sys_device *s = &c->sysdev;
921         struct s390_idle_data *idle;
922
923         switch (action) {
924         case CPU_ONLINE:
925         case CPU_ONLINE_FROZEN:
926                 idle = &per_cpu(s390_idle, cpu);
927                 memset(idle, 0, sizeof(struct s390_idle_data));
928                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
929                         return NOTIFY_BAD;
930                 break;
931         case CPU_DEAD:
932         case CPU_DEAD_FROZEN:
933                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
934                 break;
935         }
936         return NOTIFY_OK;
937 }
938
939 static struct notifier_block __cpuinitdata smp_cpu_nb = {
940         .notifier_call = smp_cpu_notify,
941 };
942
943 static int __devinit smp_add_present_cpu(int cpu)
944 {
945         struct cpu *c = &per_cpu(cpu_devices, cpu);
946         struct sys_device *s = &c->sysdev;
947         int rc;
948
949         c->hotpluggable = 1;
950         rc = register_cpu(c, cpu);
951         if (rc)
952                 goto out;
953         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
954         if (rc)
955                 goto out_cpu;
956         if (!cpu_online(cpu))
957                 goto out;
958         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
959         if (!rc)
960                 return 0;
961         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
962 out_cpu:
963 #ifdef CONFIG_HOTPLUG_CPU
964         unregister_cpu(c);
965 #endif
966 out:
967         return rc;
968 }
969
970 #ifdef CONFIG_HOTPLUG_CPU
971
972 int __ref smp_rescan_cpus(void)
973 {
974         cpumask_t newcpus;
975         int cpu;
976         int rc;
977
978         get_online_cpus();
979         mutex_lock(&smp_cpu_state_mutex);
980         newcpus = cpu_present_map;
981         rc = __smp_rescan_cpus();
982         if (rc)
983                 goto out;
984         cpus_andnot(newcpus, cpu_present_map, newcpus);
985         for_each_cpu_mask(cpu, newcpus) {
986                 rc = smp_add_present_cpu(cpu);
987                 if (rc)
988                         cpu_clear(cpu, cpu_present_map);
989         }
990         rc = 0;
991 out:
992         mutex_unlock(&smp_cpu_state_mutex);
993         put_online_cpus();
994         if (!cpus_empty(newcpus))
995                 topology_schedule_update();
996         return rc;
997 }
998
999 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
1000                                   size_t count)
1001 {
1002         int rc;
1003
1004         rc = smp_rescan_cpus();
1005         return rc ? rc : count;
1006 }
1007 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1008 #endif /* CONFIG_HOTPLUG_CPU */
1009
1010 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1011 {
1012         ssize_t count;
1013
1014         mutex_lock(&smp_cpu_state_mutex);
1015         count = sprintf(buf, "%d\n", cpu_management);
1016         mutex_unlock(&smp_cpu_state_mutex);
1017         return count;
1018 }
1019
1020 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1021                                  size_t count)
1022 {
1023         int val, rc;
1024         char delim;
1025
1026         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1027                 return -EINVAL;
1028         if (val != 0 && val != 1)
1029                 return -EINVAL;
1030         rc = 0;
1031         get_online_cpus();
1032         mutex_lock(&smp_cpu_state_mutex);
1033         if (cpu_management == val)
1034                 goto out;
1035         rc = topology_set_cpu_management(val);
1036         if (!rc)
1037                 cpu_management = val;
1038 out:
1039         mutex_unlock(&smp_cpu_state_mutex);
1040         put_online_cpus();
1041         return rc ? rc : count;
1042 }
1043 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1044                          dispatching_store);
1045
1046 /*
1047  * If the resume kernel runs on another cpu than the suspended kernel,
1048  * we have to switch the cpu IDs in the logical map.
1049  */
1050 void smp_switch_boot_cpu_in_resume(u32 resume_phys_cpu_id,
1051                                    struct _lowcore *suspend_lowcore)
1052 {
1053         int cpu, suspend_cpu_id, resume_cpu_id;
1054         u32 suspend_phys_cpu_id;
1055
1056         suspend_phys_cpu_id = __cpu_logical_map[suspend_lowcore->cpu_nr];
1057         suspend_cpu_id = suspend_lowcore->cpu_nr;
1058
1059         for_each_present_cpu(cpu) {
1060                 if (__cpu_logical_map[cpu] == resume_phys_cpu_id) {
1061                         resume_cpu_id = cpu;
1062                         goto found;
1063                 }
1064         }
1065         panic("Could not find resume cpu in logical map.\n");
1066
1067 found:
1068         printk("Resume  cpu ID: %i/%i\n", resume_phys_cpu_id, resume_cpu_id);
1069         printk("Suspend cpu ID: %i/%i\n", suspend_phys_cpu_id, suspend_cpu_id);
1070
1071         __cpu_logical_map[resume_cpu_id] = suspend_phys_cpu_id;
1072         __cpu_logical_map[suspend_cpu_id] = resume_phys_cpu_id;
1073
1074         lowcore_ptr[suspend_cpu_id]->cpu_addr = resume_phys_cpu_id;
1075 }
1076
1077 u32 smp_get_phys_cpu_id(void)
1078 {
1079         return __cpu_logical_map[smp_processor_id()];
1080 }
1081
1082 static int __init topology_init(void)
1083 {
1084         int cpu;
1085         int rc;
1086
1087         register_cpu_notifier(&smp_cpu_nb);
1088
1089 #ifdef CONFIG_HOTPLUG_CPU
1090         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1091         if (rc)
1092                 return rc;
1093 #endif
1094         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1095         if (rc)
1096                 return rc;
1097         for_each_present_cpu(cpu) {
1098                 rc = smp_add_present_cpu(cpu);
1099                 if (rc)
1100                         return rc;
1101         }
1102         return 0;
1103 }
1104 subsys_initcall(topology_init);