]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/s390/kernel/smp.c
Merge tag 'mac80211-for-davem-2015-09-22' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/switch_to.h>
37 #include <asm/facility.h>
38 #include <asm/ipl.h>
39 #include <asm/setup.h>
40 #include <asm/irq.h>
41 #include <asm/tlbflush.h>
42 #include <asm/vtimer.h>
43 #include <asm/lowcore.h>
44 #include <asm/sclp.h>
45 #include <asm/vdso.h>
46 #include <asm/debug.h>
47 #include <asm/os_info.h>
48 #include <asm/sigp.h>
49 #include <asm/idle.h>
50 #include "entry.h"
51
52 enum {
53         ec_schedule = 0,
54         ec_call_function_single,
55         ec_stop_cpu,
56 };
57
58 enum {
59         CPU_STATE_STANDBY,
60         CPU_STATE_CONFIGURED,
61 };
62
63 static DEFINE_PER_CPU(struct cpu *, cpu_device);
64
65 struct pcpu {
66         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
67         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
68         signed char state;              /* physical cpu state */
69         signed char polarization;       /* physical polarization */
70         u16 address;                    /* physical cpu address */
71 };
72
73 static u8 boot_core_type;
74 static struct pcpu pcpu_devices[NR_CPUS];
75
76 unsigned int smp_cpu_mt_shift;
77 EXPORT_SYMBOL(smp_cpu_mt_shift);
78
79 unsigned int smp_cpu_mtid;
80 EXPORT_SYMBOL(smp_cpu_mtid);
81
82 static unsigned int smp_max_threads __initdata = -1U;
83
84 static int __init early_nosmt(char *s)
85 {
86         smp_max_threads = 1;
87         return 0;
88 }
89 early_param("nosmt", early_nosmt);
90
91 static int __init early_smt(char *s)
92 {
93         get_option(&s, &smp_max_threads);
94         return 0;
95 }
96 early_param("smt", early_smt);
97
98 /*
99  * The smp_cpu_state_mutex must be held when changing the state or polarization
100  * member of a pcpu data structure within the pcpu_devices arreay.
101  */
102 DEFINE_MUTEX(smp_cpu_state_mutex);
103
104 /*
105  * Signal processor helper functions.
106  */
107 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
108                                     u32 *status)
109 {
110         int cc;
111
112         while (1) {
113                 cc = __pcpu_sigp(addr, order, parm, NULL);
114                 if (cc != SIGP_CC_BUSY)
115                         return cc;
116                 cpu_relax();
117         }
118 }
119
120 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
121 {
122         int cc, retry;
123
124         for (retry = 0; ; retry++) {
125                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
126                 if (cc != SIGP_CC_BUSY)
127                         break;
128                 if (retry >= 3)
129                         udelay(10);
130         }
131         return cc;
132 }
133
134 static inline int pcpu_stopped(struct pcpu *pcpu)
135 {
136         u32 uninitialized_var(status);
137
138         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
139                         0, &status) != SIGP_CC_STATUS_STORED)
140                 return 0;
141         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
142 }
143
144 static inline int pcpu_running(struct pcpu *pcpu)
145 {
146         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
147                         0, NULL) != SIGP_CC_STATUS_STORED)
148                 return 1;
149         /* Status stored condition code is equivalent to cpu not running. */
150         return 0;
151 }
152
153 /*
154  * Find struct pcpu by cpu address.
155  */
156 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
157 {
158         int cpu;
159
160         for_each_cpu(cpu, mask)
161                 if (pcpu_devices[cpu].address == address)
162                         return pcpu_devices + cpu;
163         return NULL;
164 }
165
166 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
167 {
168         int order;
169
170         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
171                 return;
172         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
173         pcpu_sigp_retry(pcpu, order, 0);
174 }
175
176 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
177 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
178
179 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
180 {
181         unsigned long async_stack, panic_stack;
182         struct _lowcore *lc;
183
184         if (pcpu != &pcpu_devices[0]) {
185                 pcpu->lowcore = (struct _lowcore *)
186                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
187                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
188                 panic_stack = __get_free_page(GFP_KERNEL);
189                 if (!pcpu->lowcore || !panic_stack || !async_stack)
190                         goto out;
191         } else {
192                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
193                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
194         }
195         lc = pcpu->lowcore;
196         memcpy(lc, &S390_lowcore, 512);
197         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
198         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
199         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
200         lc->cpu_nr = cpu;
201         lc->spinlock_lockval = arch_spin_lockval(cpu);
202         if (MACHINE_HAS_VX)
203                 lc->vector_save_area_addr =
204                         (unsigned long) &lc->vector_save_area;
205         if (vdso_alloc_per_cpu(lc))
206                 goto out;
207         lowcore_ptr[cpu] = lc;
208         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
209         return 0;
210 out:
211         if (pcpu != &pcpu_devices[0]) {
212                 free_page(panic_stack);
213                 free_pages(async_stack, ASYNC_ORDER);
214                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
215         }
216         return -ENOMEM;
217 }
218
219 #ifdef CONFIG_HOTPLUG_CPU
220
221 static void pcpu_free_lowcore(struct pcpu *pcpu)
222 {
223         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
224         lowcore_ptr[pcpu - pcpu_devices] = NULL;
225         vdso_free_per_cpu(pcpu->lowcore);
226         if (pcpu == &pcpu_devices[0])
227                 return;
228         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
229         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
230         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231 }
232
233 #endif /* CONFIG_HOTPLUG_CPU */
234
235 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
236 {
237         struct _lowcore *lc = pcpu->lowcore;
238
239         if (MACHINE_HAS_TLB_LC)
240                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
241         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
242         atomic_inc(&init_mm.context.attach_count);
243         lc->cpu_nr = cpu;
244         lc->spinlock_lockval = arch_spin_lockval(cpu);
245         lc->percpu_offset = __per_cpu_offset[cpu];
246         lc->kernel_asce = S390_lowcore.kernel_asce;
247         lc->machine_flags = S390_lowcore.machine_flags;
248         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
249         __ctl_store(lc->cregs_save_area, 0, 15);
250         save_access_regs((unsigned int *) lc->access_regs_save_area);
251         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
252                MAX_FACILITY_BIT/8);
253 }
254
255 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
256 {
257         struct _lowcore *lc = pcpu->lowcore;
258         struct thread_info *ti = task_thread_info(tsk);
259
260         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
261                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
262         lc->thread_info = (unsigned long) task_thread_info(tsk);
263         lc->current_task = (unsigned long) tsk;
264         lc->user_timer = ti->user_timer;
265         lc->system_timer = ti->system_timer;
266         lc->steal_timer = 0;
267 }
268
269 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
270 {
271         struct _lowcore *lc = pcpu->lowcore;
272
273         lc->restart_stack = lc->kernel_stack;
274         lc->restart_fn = (unsigned long) func;
275         lc->restart_data = (unsigned long) data;
276         lc->restart_source = -1UL;
277         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
278 }
279
280 /*
281  * Call function via PSW restart on pcpu and stop the current cpu.
282  */
283 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
284                           void *data, unsigned long stack)
285 {
286         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
287         unsigned long source_cpu = stap();
288
289         __load_psw_mask(PSW_KERNEL_BITS);
290         if (pcpu->address == source_cpu)
291                 func(data);     /* should not return */
292         /* Stop target cpu (if func returns this stops the current cpu). */
293         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
294         /* Restart func on the target cpu and stop the current cpu. */
295         mem_assign_absolute(lc->restart_stack, stack);
296         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
297         mem_assign_absolute(lc->restart_data, (unsigned long) data);
298         mem_assign_absolute(lc->restart_source, source_cpu);
299         asm volatile(
300                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
301                 "       brc     2,0b    # busy, try again\n"
302                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
303                 "       brc     2,1b    # busy, try again\n"
304                 : : "d" (pcpu->address), "d" (source_cpu),
305                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
306                 : "0", "1", "cc");
307         for (;;) ;
308 }
309
310 /*
311  * Enable additional logical cpus for multi-threading.
312  */
313 static int pcpu_set_smt(unsigned int mtid)
314 {
315         register unsigned long reg1 asm ("1") = (unsigned long) mtid;
316         int cc;
317
318         if (smp_cpu_mtid == mtid)
319                 return 0;
320         asm volatile(
321                 "       sigp    %1,0,%2 # sigp set multi-threading\n"
322                 "       ipm     %0\n"
323                 "       srl     %0,28\n"
324                 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
325                 : "cc");
326         if (cc == 0) {
327                 smp_cpu_mtid = mtid;
328                 smp_cpu_mt_shift = 0;
329                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
330                         smp_cpu_mt_shift++;
331                 pcpu_devices[0].address = stap();
332         }
333         return cc;
334 }
335
336 /*
337  * Call function on an online CPU.
338  */
339 void smp_call_online_cpu(void (*func)(void *), void *data)
340 {
341         struct pcpu *pcpu;
342
343         /* Use the current cpu if it is online. */
344         pcpu = pcpu_find_address(cpu_online_mask, stap());
345         if (!pcpu)
346                 /* Use the first online cpu. */
347                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
348         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
349 }
350
351 /*
352  * Call function on the ipl CPU.
353  */
354 void smp_call_ipl_cpu(void (*func)(void *), void *data)
355 {
356         pcpu_delegate(&pcpu_devices[0], func, data,
357                       pcpu_devices->lowcore->panic_stack -
358                       PANIC_FRAME_OFFSET + PAGE_SIZE);
359 }
360
361 int smp_find_processor_id(u16 address)
362 {
363         int cpu;
364
365         for_each_present_cpu(cpu)
366                 if (pcpu_devices[cpu].address == address)
367                         return cpu;
368         return -1;
369 }
370
371 int smp_vcpu_scheduled(int cpu)
372 {
373         return pcpu_running(pcpu_devices + cpu);
374 }
375
376 void smp_yield_cpu(int cpu)
377 {
378         if (MACHINE_HAS_DIAG9C)
379                 asm volatile("diag %0,0,0x9c"
380                              : : "d" (pcpu_devices[cpu].address));
381         else if (MACHINE_HAS_DIAG44)
382                 asm volatile("diag 0,0,0x44");
383 }
384
385 /*
386  * Send cpus emergency shutdown signal. This gives the cpus the
387  * opportunity to complete outstanding interrupts.
388  */
389 static void smp_emergency_stop(cpumask_t *cpumask)
390 {
391         u64 end;
392         int cpu;
393
394         end = get_tod_clock() + (1000000UL << 12);
395         for_each_cpu(cpu, cpumask) {
396                 struct pcpu *pcpu = pcpu_devices + cpu;
397                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
398                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
399                                    0, NULL) == SIGP_CC_BUSY &&
400                        get_tod_clock() < end)
401                         cpu_relax();
402         }
403         while (get_tod_clock() < end) {
404                 for_each_cpu(cpu, cpumask)
405                         if (pcpu_stopped(pcpu_devices + cpu))
406                                 cpumask_clear_cpu(cpu, cpumask);
407                 if (cpumask_empty(cpumask))
408                         break;
409                 cpu_relax();
410         }
411 }
412
413 /*
414  * Stop all cpus but the current one.
415  */
416 void smp_send_stop(void)
417 {
418         cpumask_t cpumask;
419         int cpu;
420
421         /* Disable all interrupts/machine checks */
422         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
423         trace_hardirqs_off();
424
425         debug_set_critical();
426         cpumask_copy(&cpumask, cpu_online_mask);
427         cpumask_clear_cpu(smp_processor_id(), &cpumask);
428
429         if (oops_in_progress)
430                 smp_emergency_stop(&cpumask);
431
432         /* stop all processors */
433         for_each_cpu(cpu, &cpumask) {
434                 struct pcpu *pcpu = pcpu_devices + cpu;
435                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
436                 while (!pcpu_stopped(pcpu))
437                         cpu_relax();
438         }
439 }
440
441 /*
442  * This is the main routine where commands issued by other
443  * cpus are handled.
444  */
445 static void smp_handle_ext_call(void)
446 {
447         unsigned long bits;
448
449         /* handle bit signal external calls */
450         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
451         if (test_bit(ec_stop_cpu, &bits))
452                 smp_stop_cpu();
453         if (test_bit(ec_schedule, &bits))
454                 scheduler_ipi();
455         if (test_bit(ec_call_function_single, &bits))
456                 generic_smp_call_function_single_interrupt();
457 }
458
459 static void do_ext_call_interrupt(struct ext_code ext_code,
460                                   unsigned int param32, unsigned long param64)
461 {
462         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
463         smp_handle_ext_call();
464 }
465
466 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
467 {
468         int cpu;
469
470         for_each_cpu(cpu, mask)
471                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
472 }
473
474 void arch_send_call_function_single_ipi(int cpu)
475 {
476         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
477 }
478
479 /*
480  * this function sends a 'reschedule' IPI to another CPU.
481  * it goes straight through and wastes no time serializing
482  * anything. Worst case is that we lose a reschedule ...
483  */
484 void smp_send_reschedule(int cpu)
485 {
486         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
487 }
488
489 /*
490  * parameter area for the set/clear control bit callbacks
491  */
492 struct ec_creg_mask_parms {
493         unsigned long orval;
494         unsigned long andval;
495         int cr;
496 };
497
498 /*
499  * callback for setting/clearing control bits
500  */
501 static void smp_ctl_bit_callback(void *info)
502 {
503         struct ec_creg_mask_parms *pp = info;
504         unsigned long cregs[16];
505
506         __ctl_store(cregs, 0, 15);
507         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
508         __ctl_load(cregs, 0, 15);
509 }
510
511 /*
512  * Set a bit in a control register of all cpus
513  */
514 void smp_ctl_set_bit(int cr, int bit)
515 {
516         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
517
518         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
519 }
520 EXPORT_SYMBOL(smp_ctl_set_bit);
521
522 /*
523  * Clear a bit in a control register of all cpus
524  */
525 void smp_ctl_clear_bit(int cr, int bit)
526 {
527         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
528
529         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
530 }
531 EXPORT_SYMBOL(smp_ctl_clear_bit);
532
533 #ifdef CONFIG_CRASH_DUMP
534
535 static void __init __smp_store_cpu_state(struct save_area_ext *sa_ext,
536                                          u16 address, int is_boot_cpu)
537 {
538         void *lc = (void *)(unsigned long) store_prefix();
539         unsigned long vx_sa;
540
541         if (is_boot_cpu) {
542                 /* Copy the registers of the boot CPU. */
543                 copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
544                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
545                 if (MACHINE_HAS_VX)
546                         save_vx_regs_safe(sa_ext->vx_regs);
547                 return;
548         }
549         /* Get the registers of a non-boot cpu. */
550         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
551         memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
552         if (!MACHINE_HAS_VX)
553                 return;
554         /* Get the VX registers */
555         vx_sa = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
556         if (!vx_sa)
557                 panic("could not allocate memory for VX save area\n");
558         __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
559         memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
560         memblock_free(vx_sa, PAGE_SIZE);
561 }
562
563 int smp_store_status(int cpu)
564 {
565         unsigned long vx_sa;
566         struct pcpu *pcpu;
567
568         pcpu = pcpu_devices + cpu;
569         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
570                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
571                 return -EIO;
572         if (!MACHINE_HAS_VX)
573                 return 0;
574         vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
575         __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
576                           vx_sa, NULL);
577         return 0;
578 }
579
580 #endif /* CONFIG_CRASH_DUMP */
581
582 /*
583  * Collect CPU state of the previous, crashed system.
584  * There are four cases:
585  * 1) standard zfcp dump
586  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
587  *    The state for all CPUs except the boot CPU needs to be collected
588  *    with sigp stop-and-store-status. The boot CPU state is located in
589  *    the absolute lowcore of the memory stored in the HSA. The zcore code
590  *    will allocate the save area and copy the boot CPU state from the HSA.
591  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
592  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
593  *    The state for all CPUs except the boot CPU needs to be collected
594  *    with sigp stop-and-store-status. The firmware or the boot-loader
595  *    stored the registers of the boot CPU in the absolute lowcore in the
596  *    memory of the old system.
597  * 3) kdump and the old kernel did not store the CPU state,
598  *    or stand-alone kdump for DASD
599  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
600  *    The state for all CPUs except the boot CPU needs to be collected
601  *    with sigp stop-and-store-status. The kexec code or the boot-loader
602  *    stored the registers of the boot CPU in the memory of the old system.
603  * 4) kdump and the old kernel stored the CPU state
604  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
605  *    The state of all CPUs is stored in ELF sections in the memory of the
606  *    old system. The ELF sections are picked up by the crash_dump code
607  *    via elfcorehdr_addr.
608  */
609 void __init smp_save_dump_cpus(void)
610 {
611 #ifdef CONFIG_CRASH_DUMP
612         int addr, cpu, boot_cpu_addr, max_cpu_addr;
613         struct save_area_ext *sa_ext;
614         bool is_boot_cpu;
615
616         if (is_kdump_kernel())
617                 /* Previous system stored the CPU states. Nothing to do. */
618                 return;
619         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
620                 /* No previous system present, normal boot. */
621                 return;
622         /* Set multi-threading state to the previous system. */
623         pcpu_set_smt(sclp.mtid_prev);
624         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
625         for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
626                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
627                     SIGP_CC_NOT_OPERATIONAL)
628                         continue;
629                 cpu += 1;
630         }
631         dump_save_areas.areas = (void *)memblock_alloc(sizeof(void *) * cpu, 8);
632         dump_save_areas.count = cpu;
633         boot_cpu_addr = stap();
634         for (cpu = 0, addr = 0; addr <= max_cpu_addr; addr++) {
635                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0, NULL) ==
636                     SIGP_CC_NOT_OPERATIONAL)
637                         continue;
638                 sa_ext = (void *) memblock_alloc(sizeof(*sa_ext), 8);
639                 dump_save_areas.areas[cpu] = sa_ext;
640                 if (!sa_ext)
641                         panic("could not allocate memory for save area\n");
642                 is_boot_cpu = (addr == boot_cpu_addr);
643                 cpu += 1;
644                 if (is_boot_cpu && !OLDMEM_BASE)
645                         /* Skip boot CPU for standard zfcp dump. */
646                         continue;
647                 /* Get state for this CPU. */
648                 __smp_store_cpu_state(sa_ext, addr, is_boot_cpu);
649         }
650         diag308_reset();
651         pcpu_set_smt(0);
652 #endif /* CONFIG_CRASH_DUMP */
653 }
654
655 void smp_cpu_set_polarization(int cpu, int val)
656 {
657         pcpu_devices[cpu].polarization = val;
658 }
659
660 int smp_cpu_get_polarization(int cpu)
661 {
662         return pcpu_devices[cpu].polarization;
663 }
664
665 static struct sclp_core_info *smp_get_core_info(void)
666 {
667         static int use_sigp_detection;
668         struct sclp_core_info *info;
669         int address;
670
671         info = kzalloc(sizeof(*info), GFP_KERNEL);
672         if (info && (use_sigp_detection || sclp_get_core_info(info))) {
673                 use_sigp_detection = 1;
674                 for (address = 0;
675                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
676                      address += (1U << smp_cpu_mt_shift)) {
677                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
678                             SIGP_CC_NOT_OPERATIONAL)
679                                 continue;
680                         info->core[info->configured].core_id =
681                                 address >> smp_cpu_mt_shift;
682                         info->configured++;
683                 }
684                 info->combined = info->configured;
685         }
686         return info;
687 }
688
689 static int smp_add_present_cpu(int cpu);
690
691 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
692 {
693         struct pcpu *pcpu;
694         cpumask_t avail;
695         int cpu, nr, i, j;
696         u16 address;
697
698         nr = 0;
699         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
700         cpu = cpumask_first(&avail);
701         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
702                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
703                         continue;
704                 address = info->core[i].core_id << smp_cpu_mt_shift;
705                 for (j = 0; j <= smp_cpu_mtid; j++) {
706                         if (pcpu_find_address(cpu_present_mask, address + j))
707                                 continue;
708                         pcpu = pcpu_devices + cpu;
709                         pcpu->address = address + j;
710                         pcpu->state =
711                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
712                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
713                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
714                         set_cpu_present(cpu, true);
715                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
716                                 set_cpu_present(cpu, false);
717                         else
718                                 nr++;
719                         cpu = cpumask_next(cpu, &avail);
720                         if (cpu >= nr_cpu_ids)
721                                 break;
722                 }
723         }
724         return nr;
725 }
726
727 static void __init smp_detect_cpus(void)
728 {
729         unsigned int cpu, mtid, c_cpus, s_cpus;
730         struct sclp_core_info *info;
731         u16 address;
732
733         /* Get CPU information */
734         info = smp_get_core_info();
735         if (!info)
736                 panic("smp_detect_cpus failed to allocate memory\n");
737
738         /* Find boot CPU type */
739         if (sclp.has_core_type) {
740                 address = stap();
741                 for (cpu = 0; cpu < info->combined; cpu++)
742                         if (info->core[cpu].core_id == address) {
743                                 /* The boot cpu dictates the cpu type. */
744                                 boot_core_type = info->core[cpu].type;
745                                 break;
746                         }
747                 if (cpu >= info->combined)
748                         panic("Could not find boot CPU type");
749         }
750
751         /* Set multi-threading state for the current system */
752         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
753         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
754         pcpu_set_smt(mtid);
755
756         /* Print number of CPUs */
757         c_cpus = s_cpus = 0;
758         for (cpu = 0; cpu < info->combined; cpu++) {
759                 if (sclp.has_core_type &&
760                     info->core[cpu].type != boot_core_type)
761                         continue;
762                 if (cpu < info->configured)
763                         c_cpus += smp_cpu_mtid + 1;
764                 else
765                         s_cpus += smp_cpu_mtid + 1;
766         }
767         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
768
769         /* Add CPUs present at boot */
770         get_online_cpus();
771         __smp_rescan_cpus(info, 0);
772         put_online_cpus();
773         kfree(info);
774 }
775
776 /*
777  *      Activate a secondary processor.
778  */
779 static void smp_start_secondary(void *cpuvoid)
780 {
781         S390_lowcore.last_update_clock = get_tod_clock();
782         S390_lowcore.restart_stack = (unsigned long) restart_stack;
783         S390_lowcore.restart_fn = (unsigned long) do_restart;
784         S390_lowcore.restart_data = 0;
785         S390_lowcore.restart_source = -1UL;
786         restore_access_regs(S390_lowcore.access_regs_save_area);
787         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
788         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
789         cpu_init();
790         preempt_disable();
791         init_cpu_timer();
792         vtime_init();
793         pfault_init();
794         notify_cpu_starting(smp_processor_id());
795         set_cpu_online(smp_processor_id(), true);
796         inc_irq_stat(CPU_RST);
797         local_irq_enable();
798         cpu_startup_entry(CPUHP_ONLINE);
799 }
800
801 /* Upping and downing of CPUs */
802 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
803 {
804         struct pcpu *pcpu;
805         int base, i, rc;
806
807         pcpu = pcpu_devices + cpu;
808         if (pcpu->state != CPU_STATE_CONFIGURED)
809                 return -EIO;
810         base = cpu - (cpu % (smp_cpu_mtid + 1));
811         for (i = 0; i <= smp_cpu_mtid; i++) {
812                 if (base + i < nr_cpu_ids)
813                         if (cpu_online(base + i))
814                                 break;
815         }
816         /*
817          * If this is the first CPU of the core to get online
818          * do an initial CPU reset.
819          */
820         if (i > smp_cpu_mtid &&
821             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
822             SIGP_CC_ORDER_CODE_ACCEPTED)
823                 return -EIO;
824
825         rc = pcpu_alloc_lowcore(pcpu, cpu);
826         if (rc)
827                 return rc;
828         pcpu_prepare_secondary(pcpu, cpu);
829         pcpu_attach_task(pcpu, tidle);
830         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
831         /* Wait until cpu puts itself in the online & active maps */
832         while (!cpu_online(cpu) || !cpu_active(cpu))
833                 cpu_relax();
834         return 0;
835 }
836
837 static unsigned int setup_possible_cpus __initdata;
838
839 static int __init _setup_possible_cpus(char *s)
840 {
841         get_option(&s, &setup_possible_cpus);
842         return 0;
843 }
844 early_param("possible_cpus", _setup_possible_cpus);
845
846 #ifdef CONFIG_HOTPLUG_CPU
847
848 int __cpu_disable(void)
849 {
850         unsigned long cregs[16];
851
852         /* Handle possible pending IPIs */
853         smp_handle_ext_call();
854         set_cpu_online(smp_processor_id(), false);
855         /* Disable pseudo page faults on this cpu. */
856         pfault_fini();
857         /* Disable interrupt sources via control register. */
858         __ctl_store(cregs, 0, 15);
859         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
860         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
861         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
862         __ctl_load(cregs, 0, 15);
863         clear_cpu_flag(CIF_NOHZ_DELAY);
864         return 0;
865 }
866
867 void __cpu_die(unsigned int cpu)
868 {
869         struct pcpu *pcpu;
870
871         /* Wait until target cpu is down */
872         pcpu = pcpu_devices + cpu;
873         while (!pcpu_stopped(pcpu))
874                 cpu_relax();
875         pcpu_free_lowcore(pcpu);
876         atomic_dec(&init_mm.context.attach_count);
877         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
878         if (MACHINE_HAS_TLB_LC)
879                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
880 }
881
882 void __noreturn cpu_die(void)
883 {
884         idle_task_exit();
885         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
886         for (;;) ;
887 }
888
889 #endif /* CONFIG_HOTPLUG_CPU */
890
891 void __init smp_fill_possible_mask(void)
892 {
893         unsigned int possible, sclp_max, cpu;
894
895         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
896         sclp_max = min(smp_max_threads, sclp_max);
897         sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
898         possible = setup_possible_cpus ?: nr_cpu_ids;
899         possible = min(possible, sclp_max);
900         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
901                 set_cpu_possible(cpu, true);
902 }
903
904 void __init smp_prepare_cpus(unsigned int max_cpus)
905 {
906         /* request the 0x1201 emergency signal external interrupt */
907         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
908                 panic("Couldn't request external interrupt 0x1201");
909         /* request the 0x1202 external call external interrupt */
910         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
911                 panic("Couldn't request external interrupt 0x1202");
912         smp_detect_cpus();
913 }
914
915 void __init smp_prepare_boot_cpu(void)
916 {
917         struct pcpu *pcpu = pcpu_devices;
918
919         pcpu->state = CPU_STATE_CONFIGURED;
920         pcpu->address = stap();
921         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
922         S390_lowcore.percpu_offset = __per_cpu_offset[0];
923         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
924         set_cpu_present(0, true);
925         set_cpu_online(0, true);
926 }
927
928 void __init smp_cpus_done(unsigned int max_cpus)
929 {
930 }
931
932 void __init smp_setup_processor_id(void)
933 {
934         S390_lowcore.cpu_nr = 0;
935         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
936 }
937
938 /*
939  * the frequency of the profiling timer can be changed
940  * by writing a multiplier value into /proc/profile.
941  *
942  * usually you want to run this on all CPUs ;)
943  */
944 int setup_profiling_timer(unsigned int multiplier)
945 {
946         return 0;
947 }
948
949 #ifdef CONFIG_HOTPLUG_CPU
950 static ssize_t cpu_configure_show(struct device *dev,
951                                   struct device_attribute *attr, char *buf)
952 {
953         ssize_t count;
954
955         mutex_lock(&smp_cpu_state_mutex);
956         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
957         mutex_unlock(&smp_cpu_state_mutex);
958         return count;
959 }
960
961 static ssize_t cpu_configure_store(struct device *dev,
962                                    struct device_attribute *attr,
963                                    const char *buf, size_t count)
964 {
965         struct pcpu *pcpu;
966         int cpu, val, rc, i;
967         char delim;
968
969         if (sscanf(buf, "%d %c", &val, &delim) != 1)
970                 return -EINVAL;
971         if (val != 0 && val != 1)
972                 return -EINVAL;
973         get_online_cpus();
974         mutex_lock(&smp_cpu_state_mutex);
975         rc = -EBUSY;
976         /* disallow configuration changes of online cpus and cpu 0 */
977         cpu = dev->id;
978         cpu -= cpu % (smp_cpu_mtid + 1);
979         if (cpu == 0)
980                 goto out;
981         for (i = 0; i <= smp_cpu_mtid; i++)
982                 if (cpu_online(cpu + i))
983                         goto out;
984         pcpu = pcpu_devices + cpu;
985         rc = 0;
986         switch (val) {
987         case 0:
988                 if (pcpu->state != CPU_STATE_CONFIGURED)
989                         break;
990                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
991                 if (rc)
992                         break;
993                 for (i = 0; i <= smp_cpu_mtid; i++) {
994                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
995                                 continue;
996                         pcpu[i].state = CPU_STATE_STANDBY;
997                         smp_cpu_set_polarization(cpu + i,
998                                                  POLARIZATION_UNKNOWN);
999                 }
1000                 topology_expect_change();
1001                 break;
1002         case 1:
1003                 if (pcpu->state != CPU_STATE_STANDBY)
1004                         break;
1005                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1006                 if (rc)
1007                         break;
1008                 for (i = 0; i <= smp_cpu_mtid; i++) {
1009                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1010                                 continue;
1011                         pcpu[i].state = CPU_STATE_CONFIGURED;
1012                         smp_cpu_set_polarization(cpu + i,
1013                                                  POLARIZATION_UNKNOWN);
1014                 }
1015                 topology_expect_change();
1016                 break;
1017         default:
1018                 break;
1019         }
1020 out:
1021         mutex_unlock(&smp_cpu_state_mutex);
1022         put_online_cpus();
1023         return rc ? rc : count;
1024 }
1025 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1026 #endif /* CONFIG_HOTPLUG_CPU */
1027
1028 static ssize_t show_cpu_address(struct device *dev,
1029                                 struct device_attribute *attr, char *buf)
1030 {
1031         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1032 }
1033 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1034
1035 static struct attribute *cpu_common_attrs[] = {
1036 #ifdef CONFIG_HOTPLUG_CPU
1037         &dev_attr_configure.attr,
1038 #endif
1039         &dev_attr_address.attr,
1040         NULL,
1041 };
1042
1043 static struct attribute_group cpu_common_attr_group = {
1044         .attrs = cpu_common_attrs,
1045 };
1046
1047 static struct attribute *cpu_online_attrs[] = {
1048         &dev_attr_idle_count.attr,
1049         &dev_attr_idle_time_us.attr,
1050         NULL,
1051 };
1052
1053 static struct attribute_group cpu_online_attr_group = {
1054         .attrs = cpu_online_attrs,
1055 };
1056
1057 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1058                           void *hcpu)
1059 {
1060         unsigned int cpu = (unsigned int)(long)hcpu;
1061         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1062         int err = 0;
1063
1064         switch (action & ~CPU_TASKS_FROZEN) {
1065         case CPU_ONLINE:
1066                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1067                 break;
1068         case CPU_DEAD:
1069                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1070                 break;
1071         }
1072         return notifier_from_errno(err);
1073 }
1074
1075 static int smp_add_present_cpu(int cpu)
1076 {
1077         struct device *s;
1078         struct cpu *c;
1079         int rc;
1080
1081         c = kzalloc(sizeof(*c), GFP_KERNEL);
1082         if (!c)
1083                 return -ENOMEM;
1084         per_cpu(cpu_device, cpu) = c;
1085         s = &c->dev;
1086         c->hotpluggable = 1;
1087         rc = register_cpu(c, cpu);
1088         if (rc)
1089                 goto out;
1090         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1091         if (rc)
1092                 goto out_cpu;
1093         if (cpu_online(cpu)) {
1094                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1095                 if (rc)
1096                         goto out_online;
1097         }
1098         rc = topology_cpu_init(c);
1099         if (rc)
1100                 goto out_topology;
1101         return 0;
1102
1103 out_topology:
1104         if (cpu_online(cpu))
1105                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1106 out_online:
1107         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1108 out_cpu:
1109 #ifdef CONFIG_HOTPLUG_CPU
1110         unregister_cpu(c);
1111 #endif
1112 out:
1113         return rc;
1114 }
1115
1116 #ifdef CONFIG_HOTPLUG_CPU
1117
1118 int __ref smp_rescan_cpus(void)
1119 {
1120         struct sclp_core_info *info;
1121         int nr;
1122
1123         info = smp_get_core_info();
1124         if (!info)
1125                 return -ENOMEM;
1126         get_online_cpus();
1127         mutex_lock(&smp_cpu_state_mutex);
1128         nr = __smp_rescan_cpus(info, 1);
1129         mutex_unlock(&smp_cpu_state_mutex);
1130         put_online_cpus();
1131         kfree(info);
1132         if (nr)
1133                 topology_schedule_update();
1134         return 0;
1135 }
1136
1137 static ssize_t __ref rescan_store(struct device *dev,
1138                                   struct device_attribute *attr,
1139                                   const char *buf,
1140                                   size_t count)
1141 {
1142         int rc;
1143
1144         rc = smp_rescan_cpus();
1145         return rc ? rc : count;
1146 }
1147 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1148 #endif /* CONFIG_HOTPLUG_CPU */
1149
1150 static int __init s390_smp_init(void)
1151 {
1152         int cpu, rc = 0;
1153
1154 #ifdef CONFIG_HOTPLUG_CPU
1155         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1156         if (rc)
1157                 return rc;
1158 #endif
1159         cpu_notifier_register_begin();
1160         for_each_present_cpu(cpu) {
1161                 rc = smp_add_present_cpu(cpu);
1162                 if (rc)
1163                         goto out;
1164         }
1165
1166         __hotcpu_notifier(smp_cpu_notify, 0);
1167
1168 out:
1169         cpu_notifier_register_done();
1170         return rc;
1171 }
1172 subsys_initcall(s390_smp_init);