]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sh/kernel/setup.c
sh: Make initrd detection more robust.
[karo-tx-linux.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/smp.h>
43 #include <asm/mmu_context.h>
44
45 /*
46  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
47  * This value will be used at the very early stage of serial setup.
48  * The bigger value means no problem.
49  */
50 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
51         [0] = {
52                 .type                   = CPU_SH_NONE,
53                 .family                 = CPU_FAMILY_UNKNOWN,
54                 .loops_per_jiffy        = 10000000,
55         },
56 };
57 EXPORT_SYMBOL(cpu_data);
58
59 /*
60  * The machine vector. First entry in .machvec.init, or clobbered by
61  * sh_mv= on the command line, prior to .machvec.init teardown.
62  */
63 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
64 EXPORT_SYMBOL(sh_mv);
65
66 #ifdef CONFIG_VT
67 struct screen_info screen_info;
68 #endif
69
70 extern int root_mountflags;
71
72 #define RAMDISK_IMAGE_START_MASK        0x07FF
73 #define RAMDISK_PROMPT_FLAG             0x8000
74 #define RAMDISK_LOAD_FLAG               0x4000
75
76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
77
78 static struct resource code_resource = {
79         .name = "Kernel code",
80         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
81 };
82
83 static struct resource data_resource = {
84         .name = "Kernel data",
85         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
86 };
87
88 static struct resource bss_resource = {
89         .name   = "Kernel bss",
90         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
91 };
92
93 unsigned long memory_start;
94 EXPORT_SYMBOL(memory_start);
95 unsigned long memory_end = 0;
96 EXPORT_SYMBOL(memory_end);
97
98 static struct resource mem_resources[MAX_NUMNODES];
99
100 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
101
102 static int __init early_parse_mem(char *p)
103 {
104         unsigned long size;
105
106         memory_start = (unsigned long)__va(__MEMORY_START);
107         size = memparse(p, &p);
108
109         if (size > __MEMORY_SIZE) {
110                 printk(KERN_ERR
111                         "Using mem= to increase the size of kernel memory "
112                         "is not allowed.\n"
113                         "  Recompile the kernel with the correct value for "
114                         "CONFIG_MEMORY_SIZE.\n");
115                 return 0;
116         }
117
118         memory_end = memory_start + size;
119
120         return 0;
121 }
122 early_param("mem", early_parse_mem);
123
124 /*
125  * Register fully available low RAM pages with the bootmem allocator.
126  */
127 static void __init register_bootmem_low_pages(void)
128 {
129         unsigned long curr_pfn, last_pfn, pages;
130
131         /*
132          * We are rounding up the start address of usable memory:
133          */
134         curr_pfn = PFN_UP(__MEMORY_START);
135
136         /*
137          * ... and at the end of the usable range downwards:
138          */
139         last_pfn = PFN_DOWN(__pa(memory_end));
140
141         if (last_pfn > max_low_pfn)
142                 last_pfn = max_low_pfn;
143
144         pages = last_pfn - curr_pfn;
145         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
146 }
147
148 #ifdef CONFIG_KEXEC
149 static void __init reserve_crashkernel(void)
150 {
151         unsigned long long free_mem;
152         unsigned long long crash_size, crash_base;
153         void *vp;
154         int ret;
155
156         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
157
158         ret = parse_crashkernel(boot_command_line, free_mem,
159                         &crash_size, &crash_base);
160         if (ret == 0 && crash_size) {
161                 if (crash_base <= 0) {
162                         vp = alloc_bootmem_nopanic(crash_size);
163                         if (!vp) {
164                                 printk(KERN_INFO "crashkernel allocation "
165                                        "failed\n");
166                                 return;
167                         }
168                         crash_base = __pa(vp);
169                 } else if (reserve_bootmem(crash_base, crash_size,
170                                         BOOTMEM_EXCLUSIVE) < 0) {
171                         printk(KERN_INFO "crashkernel reservation failed - "
172                                         "memory is in use\n");
173                         return;
174                 }
175
176                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
177                                 "for crashkernel (System RAM: %ldMB)\n",
178                                 (unsigned long)(crash_size >> 20),
179                                 (unsigned long)(crash_base >> 20),
180                                 (unsigned long)(free_mem >> 20));
181                 crashk_res.start = crash_base;
182                 crashk_res.end   = crash_base + crash_size - 1;
183                 insert_resource(&iomem_resource, &crashk_res);
184         }
185 }
186 #else
187 static inline void __init reserve_crashkernel(void)
188 {}
189 #endif
190
191 static void __init check_for_initrd(void)
192 {
193 #ifdef CONFIG_BLK_DEV_INITRD
194         unsigned long start, end;
195
196         /*
197          * Check for the rare cases where boot loaders adhere to the boot
198          * ABI.
199          */
200         if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
201                 goto disable;
202
203         start = INITRD_START + __MEMORY_START;
204         end = start + INITRD_SIZE;
205
206         if (unlikely(end <= start))
207                 goto disable;
208         if (unlikely(start & ~PAGE_MASK)) {
209                 pr_err("initrd must be page aligned\n");
210                 goto disable;
211         }
212
213         if (unlikely(start < PAGE_OFFSET)) {
214                 pr_err("initrd start < PAGE_OFFSET\n");
215                 goto disable;
216         }
217
218         if (unlikely(end > lmb_end_of_DRAM())) {
219                 pr_err("initrd extends beyond end of memory "
220                        "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
221                        end, (unsigned long)lmb_end_of_DRAM());
222                 goto disable;
223         }
224
225         /*
226          * If we got this far inspite of the boot loader's best efforts
227          * to the contrary, assume we actually have a valid initrd and
228          * fix up the root dev.
229          */
230         ROOT_DEV = Root_RAM0;
231
232         /*
233          * Address sanitization
234          */
235         initrd_start = (unsigned long)__va(__pa(start));
236         initrd_end = initrd_start + INITRD_SIZE;
237
238         reserve_bootmem(__pa(initrd_start), INITRD_SIZE, BOOTMEM_DEFAULT);
239
240         return;
241
242 disable:
243         pr_info("initrd disabled\n");
244         initrd_start = initrd_end = 0;
245 #endif
246 }
247
248 void __cpuinit calibrate_delay(void)
249 {
250         struct clk *clk = clk_get(NULL, "cpu_clk");
251
252         if (IS_ERR(clk))
253                 panic("Need a sane CPU clock definition!");
254
255         loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
256
257         printk(KERN_INFO "Calibrating delay loop (skipped)... "
258                          "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
259                          loops_per_jiffy/(500000/HZ),
260                          (loops_per_jiffy/(5000/HZ)) % 100,
261                          loops_per_jiffy);
262 }
263
264 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
265                                                 unsigned long end_pfn)
266 {
267         struct resource *res = &mem_resources[nid];
268
269         WARN_ON(res->name); /* max one active range per node for now */
270
271         res->name = "System RAM";
272         res->start = start_pfn << PAGE_SHIFT;
273         res->end = (end_pfn << PAGE_SHIFT) - 1;
274         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
275         if (request_resource(&iomem_resource, res)) {
276                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
277                        start_pfn, end_pfn);
278                 return;
279         }
280
281         /*
282          *  We don't know which RAM region contains kernel data,
283          *  so we try it repeatedly and let the resource manager
284          *  test it.
285          */
286         request_resource(res, &code_resource);
287         request_resource(res, &data_resource);
288         request_resource(res, &bss_resource);
289
290         add_active_range(nid, start_pfn, end_pfn);
291 }
292
293 void __init setup_bootmem_allocator(unsigned long free_pfn)
294 {
295         unsigned long bootmap_size;
296         unsigned long bootmap_pages, bootmem_paddr;
297         u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
298         int i;
299
300         bootmap_pages = bootmem_bootmap_pages(total_pages);
301
302         bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
303
304         /*
305          * Find a proper area for the bootmem bitmap. After this
306          * bootstrap step all allocations (until the page allocator
307          * is intact) must be done via bootmem_alloc().
308          */
309         bootmap_size = init_bootmem_node(NODE_DATA(0),
310                                          bootmem_paddr >> PAGE_SHIFT,
311                                          min_low_pfn, max_low_pfn);
312
313         /* Add active regions with valid PFNs. */
314         for (i = 0; i < lmb.memory.cnt; i++) {
315                 unsigned long start_pfn, end_pfn;
316                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
317                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
318                 __add_active_range(0, start_pfn, end_pfn);
319         }
320
321         /*
322          * Add all physical memory to the bootmem map and mark each
323          * area as present.
324          */
325         register_bootmem_low_pages();
326
327         /* Reserve the sections we're already using. */
328         for (i = 0; i < lmb.reserved.cnt; i++)
329                 reserve_bootmem(lmb.reserved.region[i].base,
330                                 lmb_size_bytes(&lmb.reserved, i),
331                                 BOOTMEM_DEFAULT);
332
333         node_set_online(0);
334
335         sparse_memory_present_with_active_regions(0);
336
337         check_for_initrd();
338
339         reserve_crashkernel();
340 }
341
342 #ifndef CONFIG_NEED_MULTIPLE_NODES
343 static void __init setup_memory(void)
344 {
345         unsigned long start_pfn;
346         u64 base = min_low_pfn << PAGE_SHIFT;
347         u64 size = (max_low_pfn << PAGE_SHIFT) - base;
348
349         /*
350          * Partially used pages are not usable - thus
351          * we are rounding upwards:
352          */
353         start_pfn = PFN_UP(__pa(_end));
354
355         lmb_add(base, size);
356
357         /*
358          * Reserve the kernel text and
359          * Reserve the bootmem bitmap. We do this in two steps (first step
360          * was init_bootmem()), because this catches the (definitely buggy)
361          * case of us accidentally initializing the bootmem allocator with
362          * an invalid RAM area.
363          */
364         lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
365                     (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
366                     (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
367
368         /*
369          * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
370          */
371         if (CONFIG_ZERO_PAGE_OFFSET != 0)
372                 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
373
374         lmb_analyze();
375         lmb_dump_all();
376
377         setup_bootmem_allocator(start_pfn);
378 }
379 #else
380 extern void __init setup_memory(void);
381 #endif
382
383 /*
384  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
385  * is_kdump_kernel() to determine if we are booting after a panic. Hence
386  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
387  */
388 #ifdef CONFIG_CRASH_DUMP
389 /* elfcorehdr= specifies the location of elf core header
390  * stored by the crashed kernel.
391  */
392 static int __init parse_elfcorehdr(char *arg)
393 {
394         if (!arg)
395                 return -EINVAL;
396         elfcorehdr_addr = memparse(arg, &arg);
397         return 0;
398 }
399 early_param("elfcorehdr", parse_elfcorehdr);
400 #endif
401
402 void __init __attribute__ ((weak)) plat_early_device_setup(void)
403 {
404 }
405
406 void __init setup_arch(char **cmdline_p)
407 {
408         enable_mmu();
409
410         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
411
412         printk(KERN_NOTICE "Boot params:\n"
413                            "... MOUNT_ROOT_RDONLY - %08lx\n"
414                            "... RAMDISK_FLAGS     - %08lx\n"
415                            "... ORIG_ROOT_DEV     - %08lx\n"
416                            "... LOADER_TYPE       - %08lx\n"
417                            "... INITRD_START      - %08lx\n"
418                            "... INITRD_SIZE       - %08lx\n",
419                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
420                            ORIG_ROOT_DEV, LOADER_TYPE,
421                            INITRD_START, INITRD_SIZE);
422
423 #ifdef CONFIG_BLK_DEV_RAM
424         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
425         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
426         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
427 #endif
428
429         if (!MOUNT_ROOT_RDONLY)
430                 root_mountflags &= ~MS_RDONLY;
431         init_mm.start_code = (unsigned long) _text;
432         init_mm.end_code = (unsigned long) _etext;
433         init_mm.end_data = (unsigned long) _edata;
434         init_mm.brk = (unsigned long) _end;
435
436         code_resource.start = virt_to_phys(_text);
437         code_resource.end = virt_to_phys(_etext)-1;
438         data_resource.start = virt_to_phys(_etext);
439         data_resource.end = virt_to_phys(_edata)-1;
440         bss_resource.start = virt_to_phys(__bss_start);
441         bss_resource.end = virt_to_phys(_ebss)-1;
442
443         memory_start = (unsigned long)__va(__MEMORY_START);
444         if (!memory_end)
445                 memory_end = memory_start + __MEMORY_SIZE;
446
447 #ifdef CONFIG_CMDLINE_OVERWRITE
448         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
449 #else
450         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
451 #ifdef CONFIG_CMDLINE_EXTEND
452         strlcat(command_line, " ", sizeof(command_line));
453         strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
454 #endif
455 #endif
456
457         /* Save unparsed command line copy for /proc/cmdline */
458         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
459         *cmdline_p = command_line;
460
461         parse_early_param();
462
463         uncached_init();
464
465         plat_early_device_setup();
466
467         /* Let earlyprintk output early console messages */
468         early_platform_driver_probe("earlyprintk", 1, 1);
469
470         sh_mv_setup();
471
472         /*
473          * Find the highest page frame number we have available
474          */
475         max_pfn = PFN_DOWN(__pa(memory_end));
476
477         /*
478          * Determine low and high memory ranges:
479          */
480         max_low_pfn = max_pfn;
481         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
482
483         nodes_clear(node_online_map);
484
485         pmb_init();
486         lmb_init();
487         setup_memory();
488         sparse_init();
489
490 #ifdef CONFIG_DUMMY_CONSOLE
491         conswitchp = &dummy_con;
492 #endif
493         paging_init();
494
495         ioremap_fixed_init();
496
497         /* Perform the machine specific initialisation */
498         if (likely(sh_mv.mv_setup))
499                 sh_mv.mv_setup(cmdline_p);
500
501         plat_smp_setup();
502 }
503
504 /* processor boot mode configuration */
505 int generic_mode_pins(void)
506 {
507         pr_warning("generic_mode_pins(): missing mode pin configuration\n");
508         return 0;
509 }
510
511 int test_mode_pin(int pin)
512 {
513         return sh_mv.mv_mode_pins() & pin;
514 }
515
516 static const char *cpu_name[] = {
517         [CPU_SH7201]    = "SH7201",
518         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
519         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
520         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
521         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
522         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
523         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
524         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
525         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
526         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
527         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
528         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
529         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
530         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
531         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
532         [CPU_SH7786]    = "SH7786",     [CPU_SH7757]    = "SH7757",
533         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
534         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
535         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
536         [CPU_SH7366]    = "SH7366",     [CPU_SH7724]    = "SH7724",
537         [CPU_SH_NONE]   = "Unknown"
538 };
539
540 const char *get_cpu_subtype(struct sh_cpuinfo *c)
541 {
542         return cpu_name[c->type];
543 }
544 EXPORT_SYMBOL(get_cpu_subtype);
545
546 #ifdef CONFIG_PROC_FS
547 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
548 static const char *cpu_flags[] = {
549         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
550         "ptea", "llsc", "l2", "op32", "pteaex", NULL
551 };
552
553 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
554 {
555         unsigned long i;
556
557         seq_printf(m, "cpu flags\t:");
558
559         if (!c->flags) {
560                 seq_printf(m, " %s\n", cpu_flags[0]);
561                 return;
562         }
563
564         for (i = 0; cpu_flags[i]; i++)
565                 if ((c->flags & (1 << i)))
566                         seq_printf(m, " %s", cpu_flags[i+1]);
567
568         seq_printf(m, "\n");
569 }
570
571 static void show_cacheinfo(struct seq_file *m, const char *type,
572                            struct cache_info info)
573 {
574         unsigned int cache_size;
575
576         cache_size = info.ways * info.sets * info.linesz;
577
578         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
579                    type, cache_size >> 10, info.ways);
580 }
581
582 /*
583  *      Get CPU information for use by the procfs.
584  */
585 static int show_cpuinfo(struct seq_file *m, void *v)
586 {
587         struct sh_cpuinfo *c = v;
588         unsigned int cpu = c - cpu_data;
589
590         if (!cpu_online(cpu))
591                 return 0;
592
593         if (cpu == 0)
594                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
595         else
596                 seq_printf(m, "\n");
597
598         seq_printf(m, "processor\t: %d\n", cpu);
599         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
600         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
601         if (c->cut_major == -1)
602                 seq_printf(m, "cut\t\t: unknown\n");
603         else if (c->cut_minor == -1)
604                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
605         else
606                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
607
608         show_cpuflags(m, c);
609
610         seq_printf(m, "cache type\t: ");
611
612         /*
613          * Check for what type of cache we have, we support both the
614          * unified cache on the SH-2 and SH-3, as well as the harvard
615          * style cache on the SH-4.
616          */
617         if (c->icache.flags & SH_CACHE_COMBINED) {
618                 seq_printf(m, "unified\n");
619                 show_cacheinfo(m, "cache", c->icache);
620         } else {
621                 seq_printf(m, "split (harvard)\n");
622                 show_cacheinfo(m, "icache", c->icache);
623                 show_cacheinfo(m, "dcache", c->dcache);
624         }
625
626         /* Optional secondary cache */
627         if (c->flags & CPU_HAS_L2_CACHE)
628                 show_cacheinfo(m, "scache", c->scache);
629
630         seq_printf(m, "bogomips\t: %lu.%02lu\n",
631                      c->loops_per_jiffy/(500000/HZ),
632                      (c->loops_per_jiffy/(5000/HZ)) % 100);
633
634         return 0;
635 }
636
637 static void *c_start(struct seq_file *m, loff_t *pos)
638 {
639         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
640 }
641 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
642 {
643         ++*pos;
644         return c_start(m, pos);
645 }
646 static void c_stop(struct seq_file *m, void *v)
647 {
648 }
649 const struct seq_operations cpuinfo_op = {
650         .start  = c_start,
651         .next   = c_next,
652         .stop   = c_stop,
653         .show   = show_cpuinfo,
654 };
655 #endif /* CONFIG_PROC_FS */
656
657 struct dentry *sh_debugfs_root;
658
659 static int __init sh_debugfs_init(void)
660 {
661         sh_debugfs_root = debugfs_create_dir("sh", NULL);
662         if (!sh_debugfs_root)
663                 return -ENOMEM;
664         if (IS_ERR(sh_debugfs_root))
665                 return PTR_ERR(sh_debugfs_root);
666
667         return 0;
668 }
669 arch_initcall(sh_debugfs_init);