]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/sh/kernel/setup.c
Merge branch 'sh/stable-updates'
[mv-sheeva.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/mmu_context.h>
43
44 /*
45  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
46  * This value will be used at the very early stage of serial setup.
47  * The bigger value means no problem.
48  */
49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
50         [0] = {
51                 .type                   = CPU_SH_NONE,
52                 .loops_per_jiffy        = 10000000,
53         },
54 };
55 EXPORT_SYMBOL(cpu_data);
56
57 /*
58  * The machine vector. First entry in .machvec.init, or clobbered by
59  * sh_mv= on the command line, prior to .machvec.init teardown.
60  */
61 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
62 EXPORT_SYMBOL(sh_mv);
63
64 #ifdef CONFIG_VT
65 struct screen_info screen_info;
66 #endif
67
68 extern int root_mountflags;
69
70 #define RAMDISK_IMAGE_START_MASK        0x07FF
71 #define RAMDISK_PROMPT_FLAG             0x8000
72 #define RAMDISK_LOAD_FLAG               0x4000
73
74 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
75
76 static struct resource code_resource = {
77         .name = "Kernel code",
78         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80
81 static struct resource data_resource = {
82         .name = "Kernel data",
83         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85
86 static struct resource bss_resource = {
87         .name   = "Kernel bss",
88         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
89 };
90
91 unsigned long memory_start;
92 EXPORT_SYMBOL(memory_start);
93 unsigned long memory_end = 0;
94 EXPORT_SYMBOL(memory_end);
95
96 static struct resource mem_resources[MAX_NUMNODES];
97
98 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
99
100 static int __init early_parse_mem(char *p)
101 {
102         unsigned long size;
103
104         memory_start = (unsigned long)__va(__MEMORY_START);
105         size = memparse(p, &p);
106
107         if (size > __MEMORY_SIZE) {
108                 printk(KERN_ERR
109                         "Using mem= to increase the size of kernel memory "
110                         "is not allowed.\n"
111                         "  Recompile the kernel with the correct value for "
112                         "CONFIG_MEMORY_SIZE.\n");
113                 return 0;
114         }
115
116         memory_end = memory_start + size;
117
118         return 0;
119 }
120 early_param("mem", early_parse_mem);
121
122 /*
123  * Register fully available low RAM pages with the bootmem allocator.
124  */
125 static void __init register_bootmem_low_pages(void)
126 {
127         unsigned long curr_pfn, last_pfn, pages;
128
129         /*
130          * We are rounding up the start address of usable memory:
131          */
132         curr_pfn = PFN_UP(__MEMORY_START);
133
134         /*
135          * ... and at the end of the usable range downwards:
136          */
137         last_pfn = PFN_DOWN(__pa(memory_end));
138
139         if (last_pfn > max_low_pfn)
140                 last_pfn = max_low_pfn;
141
142         pages = last_pfn - curr_pfn;
143         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
144 }
145
146 #ifdef CONFIG_KEXEC
147 static void __init reserve_crashkernel(void)
148 {
149         unsigned long long free_mem;
150         unsigned long long crash_size, crash_base;
151         void *vp;
152         int ret;
153
154         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
155
156         ret = parse_crashkernel(boot_command_line, free_mem,
157                         &crash_size, &crash_base);
158         if (ret == 0 && crash_size) {
159                 if (crash_base <= 0) {
160                         vp = alloc_bootmem_nopanic(crash_size);
161                         if (!vp) {
162                                 printk(KERN_INFO "crashkernel allocation "
163                                        "failed\n");
164                                 return;
165                         }
166                         crash_base = __pa(vp);
167                 } else if (reserve_bootmem(crash_base, crash_size,
168                                         BOOTMEM_EXCLUSIVE) < 0) {
169                         printk(KERN_INFO "crashkernel reservation failed - "
170                                         "memory is in use\n");
171                         return;
172                 }
173
174                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
175                                 "for crashkernel (System RAM: %ldMB)\n",
176                                 (unsigned long)(crash_size >> 20),
177                                 (unsigned long)(crash_base >> 20),
178                                 (unsigned long)(free_mem >> 20));
179                 crashk_res.start = crash_base;
180                 crashk_res.end   = crash_base + crash_size - 1;
181                 insert_resource(&iomem_resource, &crashk_res);
182         }
183 }
184 #else
185 static inline void __init reserve_crashkernel(void)
186 {}
187 #endif
188
189 void __cpuinit calibrate_delay(void)
190 {
191         struct clk *clk = clk_get(NULL, "cpu_clk");
192
193         if (IS_ERR(clk))
194                 panic("Need a sane CPU clock definition!");
195
196         loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
197
198         printk(KERN_INFO "Calibrating delay loop (skipped)... "
199                          "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200                          loops_per_jiffy/(500000/HZ),
201                          (loops_per_jiffy/(5000/HZ)) % 100,
202                          loops_per_jiffy);
203 }
204
205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
206                                                 unsigned long end_pfn)
207 {
208         struct resource *res = &mem_resources[nid];
209
210         WARN_ON(res->name); /* max one active range per node for now */
211
212         res->name = "System RAM";
213         res->start = start_pfn << PAGE_SHIFT;
214         res->end = (end_pfn << PAGE_SHIFT) - 1;
215         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
216         if (request_resource(&iomem_resource, res)) {
217                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
218                        start_pfn, end_pfn);
219                 return;
220         }
221
222         /*
223          *  We don't know which RAM region contains kernel data,
224          *  so we try it repeatedly and let the resource manager
225          *  test it.
226          */
227         request_resource(res, &code_resource);
228         request_resource(res, &data_resource);
229         request_resource(res, &bss_resource);
230
231         add_active_range(nid, start_pfn, end_pfn);
232 }
233
234 void __init setup_bootmem_allocator(unsigned long free_pfn)
235 {
236         unsigned long bootmap_size;
237         unsigned long bootmap_pages, bootmem_paddr;
238         u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
239         int i;
240
241         bootmap_pages = bootmem_bootmap_pages(total_pages);
242
243         bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
244
245         /*
246          * Find a proper area for the bootmem bitmap. After this
247          * bootstrap step all allocations (until the page allocator
248          * is intact) must be done via bootmem_alloc().
249          */
250         bootmap_size = init_bootmem_node(NODE_DATA(0),
251                                          bootmem_paddr >> PAGE_SHIFT,
252                                          min_low_pfn, max_low_pfn);
253
254         /* Add active regions with valid PFNs. */
255         for (i = 0; i < lmb.memory.cnt; i++) {
256                 unsigned long start_pfn, end_pfn;
257                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
258                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
259                 __add_active_range(0, start_pfn, end_pfn);
260         }
261
262         /*
263          * Add all physical memory to the bootmem map and mark each
264          * area as present.
265          */
266         register_bootmem_low_pages();
267
268         /* Reserve the sections we're already using. */
269         for (i = 0; i < lmb.reserved.cnt; i++)
270                 reserve_bootmem(lmb.reserved.region[i].base,
271                                 lmb_size_bytes(&lmb.reserved, i),
272                                 BOOTMEM_DEFAULT);
273
274         node_set_online(0);
275
276         sparse_memory_present_with_active_regions(0);
277
278 #ifdef CONFIG_BLK_DEV_INITRD
279         ROOT_DEV = Root_RAM0;
280
281         if (LOADER_TYPE && INITRD_START) {
282                 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
283
284                 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
285                         reserve_bootmem(initrd_start_phys, INITRD_SIZE,
286                                         BOOTMEM_DEFAULT);
287                         initrd_start = (unsigned long)__va(initrd_start_phys);
288                         initrd_end = initrd_start + INITRD_SIZE;
289                 } else {
290                         printk("initrd extends beyond end of memory "
291                                "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
292                                initrd_start_phys + INITRD_SIZE,
293                                (unsigned long)PFN_PHYS(max_low_pfn));
294                         initrd_start = 0;
295                 }
296         }
297 #endif
298
299         reserve_crashkernel();
300 }
301
302 #ifndef CONFIG_NEED_MULTIPLE_NODES
303 static void __init setup_memory(void)
304 {
305         unsigned long start_pfn;
306         u64 base = min_low_pfn << PAGE_SHIFT;
307         u64 size = (max_low_pfn << PAGE_SHIFT) - base;
308
309         /*
310          * Partially used pages are not usable - thus
311          * we are rounding upwards:
312          */
313         start_pfn = PFN_UP(__pa(_end));
314
315         lmb_add(base, size);
316
317         /*
318          * Reserve the kernel text and
319          * Reserve the bootmem bitmap. We do this in two steps (first step
320          * was init_bootmem()), because this catches the (definitely buggy)
321          * case of us accidentally initializing the bootmem allocator with
322          * an invalid RAM area.
323          */
324         lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
325                     (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
326                     (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
327
328         /*
329          * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
330          */
331         if (CONFIG_ZERO_PAGE_OFFSET != 0)
332                 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
333
334         lmb_analyze();
335         lmb_dump_all();
336
337         setup_bootmem_allocator(start_pfn);
338 }
339 #else
340 extern void __init setup_memory(void);
341 #endif
342
343 /*
344  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
345  * is_kdump_kernel() to determine if we are booting after a panic. Hence
346  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
347  */
348 #ifdef CONFIG_CRASH_DUMP
349 /* elfcorehdr= specifies the location of elf core header
350  * stored by the crashed kernel.
351  */
352 static int __init parse_elfcorehdr(char *arg)
353 {
354         if (!arg)
355                 return -EINVAL;
356         elfcorehdr_addr = memparse(arg, &arg);
357         return 0;
358 }
359 early_param("elfcorehdr", parse_elfcorehdr);
360 #endif
361
362 void __init __attribute__ ((weak)) plat_early_device_setup(void)
363 {
364 }
365
366 void __init setup_arch(char **cmdline_p)
367 {
368         enable_mmu();
369
370         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
371
372         printk(KERN_NOTICE "Boot params:\n"
373                            "... MOUNT_ROOT_RDONLY - %08lx\n"
374                            "... RAMDISK_FLAGS     - %08lx\n"
375                            "... ORIG_ROOT_DEV     - %08lx\n"
376                            "... LOADER_TYPE       - %08lx\n"
377                            "... INITRD_START      - %08lx\n"
378                            "... INITRD_SIZE       - %08lx\n",
379                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
380                            ORIG_ROOT_DEV, LOADER_TYPE,
381                            INITRD_START, INITRD_SIZE);
382
383 #ifdef CONFIG_BLK_DEV_RAM
384         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
385         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
386         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
387 #endif
388
389         if (!MOUNT_ROOT_RDONLY)
390                 root_mountflags &= ~MS_RDONLY;
391         init_mm.start_code = (unsigned long) _text;
392         init_mm.end_code = (unsigned long) _etext;
393         init_mm.end_data = (unsigned long) _edata;
394         init_mm.brk = (unsigned long) _end;
395
396         code_resource.start = virt_to_phys(_text);
397         code_resource.end = virt_to_phys(_etext)-1;
398         data_resource.start = virt_to_phys(_etext);
399         data_resource.end = virt_to_phys(_edata)-1;
400         bss_resource.start = virt_to_phys(__bss_start);
401         bss_resource.end = virt_to_phys(_ebss)-1;
402
403         memory_start = (unsigned long)__va(__MEMORY_START);
404         if (!memory_end)
405                 memory_end = memory_start + __MEMORY_SIZE;
406
407 #ifdef CONFIG_CMDLINE_BOOL
408         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
409 #else
410         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
411 #endif
412
413         /* Save unparsed command line copy for /proc/cmdline */
414         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
415         *cmdline_p = command_line;
416
417         parse_early_param();
418
419         plat_early_device_setup();
420
421         sh_mv_setup();
422
423         /*
424          * Find the highest page frame number we have available
425          */
426         max_pfn = PFN_DOWN(__pa(memory_end));
427
428         /*
429          * Determine low and high memory ranges:
430          */
431         max_low_pfn = max_pfn;
432         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
433
434         nodes_clear(node_online_map);
435
436         /* Setup bootmem with available RAM */
437         lmb_init();
438         setup_memory();
439         sparse_init();
440
441 #ifdef CONFIG_DUMMY_CONSOLE
442         conswitchp = &dummy_con;
443 #endif
444
445         /* Perform the machine specific initialisation */
446         if (likely(sh_mv.mv_setup))
447                 sh_mv.mv_setup(cmdline_p);
448
449         paging_init();
450
451 #ifdef CONFIG_SMP
452         plat_smp_setup();
453 #endif
454 }
455
456 /* processor boot mode configuration */
457 int generic_mode_pins(void)
458 {
459         pr_warning("generic_mode_pins(): missing mode pin configuration\n");
460         return 0;
461 }
462
463 int test_mode_pin(int pin)
464 {
465         return sh_mv.mv_mode_pins() & pin;
466 }
467
468 static const char *cpu_name[] = {
469         [CPU_SH7201]    = "SH7201",
470         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
471         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
472         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
473         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
474         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
475         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
476         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
477         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
478         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
479         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
480         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
481         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
482         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
483         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
484         [CPU_SH7786]    = "SH7786",
485         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
486         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
487         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
488         [CPU_SH7366]    = "SH7366",     [CPU_SH7724]    = "SH7724",
489         [CPU_SH_NONE]   = "Unknown"
490 };
491
492 const char *get_cpu_subtype(struct sh_cpuinfo *c)
493 {
494         return cpu_name[c->type];
495 }
496 EXPORT_SYMBOL(get_cpu_subtype);
497
498 #ifdef CONFIG_PROC_FS
499 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
500 static const char *cpu_flags[] = {
501         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
502         "ptea", "llsc", "l2", "op32", "pteaex", NULL
503 };
504
505 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
506 {
507         unsigned long i;
508
509         seq_printf(m, "cpu flags\t:");
510
511         if (!c->flags) {
512                 seq_printf(m, " %s\n", cpu_flags[0]);
513                 return;
514         }
515
516         for (i = 0; cpu_flags[i]; i++)
517                 if ((c->flags & (1 << i)))
518                         seq_printf(m, " %s", cpu_flags[i+1]);
519
520         seq_printf(m, "\n");
521 }
522
523 static void show_cacheinfo(struct seq_file *m, const char *type,
524                            struct cache_info info)
525 {
526         unsigned int cache_size;
527
528         cache_size = info.ways * info.sets * info.linesz;
529
530         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
531                    type, cache_size >> 10, info.ways);
532 }
533
534 /*
535  *      Get CPU information for use by the procfs.
536  */
537 static int show_cpuinfo(struct seq_file *m, void *v)
538 {
539         struct sh_cpuinfo *c = v;
540         unsigned int cpu = c - cpu_data;
541
542         if (!cpu_online(cpu))
543                 return 0;
544
545         if (cpu == 0)
546                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
547
548         seq_printf(m, "processor\t: %d\n", cpu);
549         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
550         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
551         if (c->cut_major == -1)
552                 seq_printf(m, "cut\t\t: unknown\n");
553         else if (c->cut_minor == -1)
554                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
555         else
556                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
557
558         show_cpuflags(m, c);
559
560         seq_printf(m, "cache type\t: ");
561
562         /*
563          * Check for what type of cache we have, we support both the
564          * unified cache on the SH-2 and SH-3, as well as the harvard
565          * style cache on the SH-4.
566          */
567         if (c->icache.flags & SH_CACHE_COMBINED) {
568                 seq_printf(m, "unified\n");
569                 show_cacheinfo(m, "cache", c->icache);
570         } else {
571                 seq_printf(m, "split (harvard)\n");
572                 show_cacheinfo(m, "icache", c->icache);
573                 show_cacheinfo(m, "dcache", c->dcache);
574         }
575
576         /* Optional secondary cache */
577         if (c->flags & CPU_HAS_L2_CACHE)
578                 show_cacheinfo(m, "scache", c->scache);
579
580         seq_printf(m, "bogomips\t: %lu.%02lu\n",
581                      c->loops_per_jiffy/(500000/HZ),
582                      (c->loops_per_jiffy/(5000/HZ)) % 100);
583
584         return 0;
585 }
586
587 static void *c_start(struct seq_file *m, loff_t *pos)
588 {
589         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
590 }
591 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
592 {
593         ++*pos;
594         return c_start(m, pos);
595 }
596 static void c_stop(struct seq_file *m, void *v)
597 {
598 }
599 const struct seq_operations cpuinfo_op = {
600         .start  = c_start,
601         .next   = c_next,
602         .stop   = c_stop,
603         .show   = show_cpuinfo,
604 };
605 #endif /* CONFIG_PROC_FS */
606
607 struct dentry *sh_debugfs_root;
608
609 static int __init sh_debugfs_init(void)
610 {
611         sh_debugfs_root = debugfs_create_dir("sh", NULL);
612         if (!sh_debugfs_root)
613                 return -ENOMEM;
614         if (IS_ERR(sh_debugfs_root))
615                 return PTR_ERR(sh_debugfs_root);
616
617         return 0;
618 }
619 arch_initcall(sh_debugfs_init);