]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sh/kernel/smp.c
Merge remote-tracking branch 'airlied/drm-prime-vmap' into drm-intel-next-queued
[karo-tx-linux.git] / arch / sh / kernel / smp.c
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <asm/processor.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31
32 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
33 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
34
35 struct plat_smp_ops *mp_ops = NULL;
36
37 /* State of each CPU */
38 DEFINE_PER_CPU(int, cpu_state) = { 0 };
39
40 void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
41 {
42         if (mp_ops)
43                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
44
45         mp_ops = ops;
46 }
47
48 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
49 {
50         struct sh_cpuinfo *c = cpu_data + cpu;
51
52         memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
53
54         c->loops_per_jiffy = loops_per_jiffy;
55 }
56
57 void __init smp_prepare_cpus(unsigned int max_cpus)
58 {
59         unsigned int cpu = smp_processor_id();
60
61         init_new_context(current, &init_mm);
62         current_thread_info()->cpu = cpu;
63         mp_ops->prepare_cpus(max_cpus);
64
65 #ifndef CONFIG_HOTPLUG_CPU
66         init_cpu_present(cpu_possible_mask);
67 #endif
68 }
69
70 void __init smp_prepare_boot_cpu(void)
71 {
72         unsigned int cpu = smp_processor_id();
73
74         __cpu_number_map[0] = cpu;
75         __cpu_logical_map[0] = cpu;
76
77         set_cpu_online(cpu, true);
78         set_cpu_possible(cpu, true);
79
80         per_cpu(cpu_state, cpu) = CPU_ONLINE;
81 }
82
83 #ifdef CONFIG_HOTPLUG_CPU
84 void native_cpu_die(unsigned int cpu)
85 {
86         unsigned int i;
87
88         for (i = 0; i < 10; i++) {
89                 smp_rmb();
90                 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
91                         if (system_state == SYSTEM_RUNNING)
92                                 pr_info("CPU %u is now offline\n", cpu);
93
94                         return;
95                 }
96
97                 msleep(100);
98         }
99
100         pr_err("CPU %u didn't die...\n", cpu);
101 }
102
103 int native_cpu_disable(unsigned int cpu)
104 {
105         return cpu == 0 ? -EPERM : 0;
106 }
107
108 void play_dead_common(void)
109 {
110         idle_task_exit();
111         irq_ctx_exit(raw_smp_processor_id());
112         mb();
113
114         __get_cpu_var(cpu_state) = CPU_DEAD;
115         local_irq_disable();
116 }
117
118 void native_play_dead(void)
119 {
120         play_dead_common();
121 }
122
123 int __cpu_disable(void)
124 {
125         unsigned int cpu = smp_processor_id();
126         struct task_struct *p;
127         int ret;
128
129         ret = mp_ops->cpu_disable(cpu);
130         if (ret)
131                 return ret;
132
133         /*
134          * Take this CPU offline.  Once we clear this, we can't return,
135          * and we must not schedule until we're ready to give up the cpu.
136          */
137         set_cpu_online(cpu, false);
138
139         /*
140          * OK - migrate IRQs away from this CPU
141          */
142         migrate_irqs();
143
144         /*
145          * Stop the local timer for this CPU.
146          */
147         local_timer_stop(cpu);
148
149         /*
150          * Flush user cache and TLB mappings, and then remove this CPU
151          * from the vm mask set of all processes.
152          */
153         flush_cache_all();
154         local_flush_tlb_all();
155
156         read_lock(&tasklist_lock);
157         for_each_process(p)
158                 if (p->mm)
159                         cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
160         read_unlock(&tasklist_lock);
161
162         return 0;
163 }
164 #else /* ... !CONFIG_HOTPLUG_CPU */
165 int native_cpu_disable(unsigned int cpu)
166 {
167         return -ENOSYS;
168 }
169
170 void native_cpu_die(unsigned int cpu)
171 {
172         /* We said "no" in __cpu_disable */
173         BUG();
174 }
175
176 void native_play_dead(void)
177 {
178         BUG();
179 }
180 #endif
181
182 asmlinkage void __cpuinit start_secondary(void)
183 {
184         unsigned int cpu = smp_processor_id();
185         struct mm_struct *mm = &init_mm;
186
187         enable_mmu();
188         atomic_inc(&mm->mm_count);
189         atomic_inc(&mm->mm_users);
190         current->active_mm = mm;
191         enter_lazy_tlb(mm, current);
192         local_flush_tlb_all();
193
194         per_cpu_trap_init();
195
196         preempt_disable();
197
198         notify_cpu_starting(cpu);
199
200         local_irq_enable();
201
202         /* Enable local timers */
203         local_timer_setup(cpu);
204         calibrate_delay();
205
206         smp_store_cpu_info(cpu);
207
208         set_cpu_online(cpu, true);
209         per_cpu(cpu_state, cpu) = CPU_ONLINE;
210
211         cpu_idle();
212 }
213
214 extern struct {
215         unsigned long sp;
216         unsigned long bss_start;
217         unsigned long bss_end;
218         void *start_kernel_fn;
219         void *cpu_init_fn;
220         void *thread_info;
221 } stack_start;
222
223 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tsk)
224 {
225         unsigned long timeout;
226
227         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
228
229         /* Fill in data in head.S for secondary cpus */
230         stack_start.sp = tsk->thread.sp;
231         stack_start.thread_info = tsk->stack;
232         stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
233         stack_start.start_kernel_fn = start_secondary;
234
235         flush_icache_range((unsigned long)&stack_start,
236                            (unsigned long)&stack_start + sizeof(stack_start));
237         wmb();
238
239         mp_ops->start_cpu(cpu, (unsigned long)_stext);
240
241         timeout = jiffies + HZ;
242         while (time_before(jiffies, timeout)) {
243                 if (cpu_online(cpu))
244                         break;
245
246                 udelay(10);
247                 barrier();
248         }
249
250         if (cpu_online(cpu))
251                 return 0;
252
253         return -ENOENT;
254 }
255
256 void __init smp_cpus_done(unsigned int max_cpus)
257 {
258         unsigned long bogosum = 0;
259         int cpu;
260
261         for_each_online_cpu(cpu)
262                 bogosum += cpu_data[cpu].loops_per_jiffy;
263
264         printk(KERN_INFO "SMP: Total of %d processors activated "
265                "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
266                bogosum / (500000/HZ),
267                (bogosum / (5000/HZ)) % 100);
268 }
269
270 void smp_send_reschedule(int cpu)
271 {
272         mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
273 }
274
275 void smp_send_stop(void)
276 {
277         smp_call_function(stop_this_cpu, 0, 0);
278 }
279
280 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
281 {
282         int cpu;
283
284         for_each_cpu(cpu, mask)
285                 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
286 }
287
288 void arch_send_call_function_single_ipi(int cpu)
289 {
290         mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
291 }
292
293 void smp_timer_broadcast(const struct cpumask *mask)
294 {
295         int cpu;
296
297         for_each_cpu(cpu, mask)
298                 mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
299 }
300
301 static void ipi_timer(void)
302 {
303         irq_enter();
304         local_timer_interrupt();
305         irq_exit();
306 }
307
308 void smp_message_recv(unsigned int msg)
309 {
310         switch (msg) {
311         case SMP_MSG_FUNCTION:
312                 generic_smp_call_function_interrupt();
313                 break;
314         case SMP_MSG_RESCHEDULE:
315                 scheduler_ipi();
316                 break;
317         case SMP_MSG_FUNCTION_SINGLE:
318                 generic_smp_call_function_single_interrupt();
319                 break;
320         case SMP_MSG_TIMER:
321                 ipi_timer();
322                 break;
323         default:
324                 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
325                        smp_processor_id(), __func__, msg);
326                 break;
327         }
328 }
329
330 /* Not really SMP stuff ... */
331 int setup_profiling_timer(unsigned int multiplier)
332 {
333         return 0;
334 }
335
336 static void flush_tlb_all_ipi(void *info)
337 {
338         local_flush_tlb_all();
339 }
340
341 void flush_tlb_all(void)
342 {
343         on_each_cpu(flush_tlb_all_ipi, 0, 1);
344 }
345
346 static void flush_tlb_mm_ipi(void *mm)
347 {
348         local_flush_tlb_mm((struct mm_struct *)mm);
349 }
350
351 /*
352  * The following tlb flush calls are invoked when old translations are
353  * being torn down, or pte attributes are changing. For single threaded
354  * address spaces, a new context is obtained on the current cpu, and tlb
355  * context on other cpus are invalidated to force a new context allocation
356  * at switch_mm time, should the mm ever be used on other cpus. For
357  * multithreaded address spaces, intercpu interrupts have to be sent.
358  * Another case where intercpu interrupts are required is when the target
359  * mm might be active on another cpu (eg debuggers doing the flushes on
360  * behalf of debugees, kswapd stealing pages from another process etc).
361  * Kanoj 07/00.
362  */
363 void flush_tlb_mm(struct mm_struct *mm)
364 {
365         preempt_disable();
366
367         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
368                 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
369         } else {
370                 int i;
371                 for (i = 0; i < num_online_cpus(); i++)
372                         if (smp_processor_id() != i)
373                                 cpu_context(i, mm) = 0;
374         }
375         local_flush_tlb_mm(mm);
376
377         preempt_enable();
378 }
379
380 struct flush_tlb_data {
381         struct vm_area_struct *vma;
382         unsigned long addr1;
383         unsigned long addr2;
384 };
385
386 static void flush_tlb_range_ipi(void *info)
387 {
388         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
389
390         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
391 }
392
393 void flush_tlb_range(struct vm_area_struct *vma,
394                      unsigned long start, unsigned long end)
395 {
396         struct mm_struct *mm = vma->vm_mm;
397
398         preempt_disable();
399         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
400                 struct flush_tlb_data fd;
401
402                 fd.vma = vma;
403                 fd.addr1 = start;
404                 fd.addr2 = end;
405                 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
406         } else {
407                 int i;
408                 for (i = 0; i < num_online_cpus(); i++)
409                         if (smp_processor_id() != i)
410                                 cpu_context(i, mm) = 0;
411         }
412         local_flush_tlb_range(vma, start, end);
413         preempt_enable();
414 }
415
416 static void flush_tlb_kernel_range_ipi(void *info)
417 {
418         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
419
420         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
421 }
422
423 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
424 {
425         struct flush_tlb_data fd;
426
427         fd.addr1 = start;
428         fd.addr2 = end;
429         on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
430 }
431
432 static void flush_tlb_page_ipi(void *info)
433 {
434         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
435
436         local_flush_tlb_page(fd->vma, fd->addr1);
437 }
438
439 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
440 {
441         preempt_disable();
442         if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
443             (current->mm != vma->vm_mm)) {
444                 struct flush_tlb_data fd;
445
446                 fd.vma = vma;
447                 fd.addr1 = page;
448                 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
449         } else {
450                 int i;
451                 for (i = 0; i < num_online_cpus(); i++)
452                         if (smp_processor_id() != i)
453                                 cpu_context(i, vma->vm_mm) = 0;
454         }
455         local_flush_tlb_page(vma, page);
456         preempt_enable();
457 }
458
459 static void flush_tlb_one_ipi(void *info)
460 {
461         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
462         local_flush_tlb_one(fd->addr1, fd->addr2);
463 }
464
465 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
466 {
467         struct flush_tlb_data fd;
468
469         fd.addr1 = asid;
470         fd.addr2 = vaddr;
471
472         smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
473         local_flush_tlb_one(asid, vaddr);
474 }