]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/perf_event.c
sparc64: Fix bit twiddling in sparc_pmu_enable_event().
[karo-tx-linux.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28
29 #include "kernel.h"
30 #include "kstack.h"
31
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33  * overflow interrupts generated on transition from 0xffffffff to 0.
34  * The counters are accessed in one go using a 64-bit register.
35  *
36  * Both counters are controlled using a single control register.  The
37  * only way to stop all sampling is to clear all of the context (user,
38  * supervisor, hypervisor) sampling enable bits.  But these bits apply
39  * to both counters, thus the two counters can't be enabled/disabled
40  * individually.
41  *
42  * The control register has two event fields, one for each of the two
43  * counters.  It's thus nearly impossible to have one counter going
44  * while keeping the other one stopped.  Therefore it is possible to
45  * get overflow interrupts for counters not currently "in use" and
46  * that condition must be checked in the overflow interrupt handler.
47  *
48  * So we use a hack, in that we program inactive counters with the
49  * "sw_count0" and "sw_count1" events.  These count how many times
50  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
51  * unusual way to encode a NOP and therefore will not trigger in
52  * normal code.
53  */
54
55 #define MAX_HWEVENTS                    2
56 #define MAX_PERIOD                      ((1UL << 32) - 1)
57
58 #define PIC_UPPER_INDEX                 0
59 #define PIC_LOWER_INDEX                 1
60 #define PIC_NO_INDEX                    -1
61
62 struct cpu_hw_events {
63         /* Number of events currently scheduled onto this cpu.
64          * This tells how many entries in the arrays below
65          * are valid.
66          */
67         int                     n_events;
68
69         /* Number of new events added since the last hw_perf_disable().
70          * This works because the perf event layer always adds new
71          * events inside of a perf_{disable,enable}() sequence.
72          */
73         int                     n_added;
74
75         /* Array of events current scheduled on this cpu.  */
76         struct perf_event       *event[MAX_HWEVENTS];
77
78         /* Array of encoded longs, specifying the %pcr register
79          * encoding and the mask of PIC counters this even can
80          * be scheduled on.  See perf_event_encode() et al.
81          */
82         unsigned long           events[MAX_HWEVENTS];
83
84         /* The current counter index assigned to an event.  When the
85          * event hasn't been programmed into the cpu yet, this will
86          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
87          * we ought to schedule the event.
88          */
89         int                     current_idx[MAX_HWEVENTS];
90
91         /* Software copy of %pcr register on this cpu.  */
92         u64                     pcr;
93
94         /* Enabled/disable state.  */
95         int                     enabled;
96
97         unsigned int            group_flag;
98 };
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100
101 /* An event map describes the characteristics of a performance
102  * counter event.  In particular it gives the encoding as well as
103  * a mask telling which counters the event can be measured on.
104  */
105 struct perf_event_map {
106         u16     encoding;
107         u8      pic_mask;
108 #define PIC_NONE        0x00
109 #define PIC_UPPER       0x01
110 #define PIC_LOWER       0x02
111 };
112
113 /* Encode a perf_event_map entry into a long.  */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 {
116         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 }
118
119 static u8 perf_event_get_msk(unsigned long val)
120 {
121         return val & 0xff;
122 }
123
124 static u64 perf_event_get_enc(unsigned long val)
125 {
126         return val >> 16;
127 }
128
129 #define C(x) PERF_COUNT_HW_CACHE_##x
130
131 #define CACHE_OP_UNSUPPORTED    0xfffe
132 #define CACHE_OP_NONSENSE       0xffff
133
134 typedef struct perf_event_map cache_map_t
135                                 [PERF_COUNT_HW_CACHE_MAX]
136                                 [PERF_COUNT_HW_CACHE_OP_MAX]
137                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138
139 struct sparc_pmu {
140         const struct perf_event_map     *(*event_map)(int);
141         const cache_map_t               *cache_map;
142         int                             max_events;
143         int                             upper_shift;
144         int                             lower_shift;
145         int                             event_mask;
146         int                             hv_bit;
147         int                             irq_bit;
148         int                             upper_nop;
149         int                             lower_nop;
150 };
151
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 };
158
159 static const struct perf_event_map *ultra3_event_map(int event_id)
160 {
161         return &ultra3_perfmon_event_map[event_id];
162 }
163
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166         [C(OP_READ)] = {
167                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169         },
170         [C(OP_WRITE)] = {
171                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173         },
174         [C(OP_PREFETCH)] = {
175                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177         },
178 },
179 [C(L1I)] = {
180         [C(OP_READ)] = {
181                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183         },
184         [ C(OP_WRITE) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
187         },
188         [ C(OP_PREFETCH) ] = {
189                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
191         },
192 },
193 [C(LL)] = {
194         [C(OP_READ)] = {
195                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197         },
198         [C(OP_WRITE)] = {
199                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201         },
202         [C(OP_PREFETCH)] = {
203                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205         },
206 },
207 [C(DTLB)] = {
208         [C(OP_READ)] = {
209                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211         },
212         [ C(OP_WRITE) ] = {
213                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215         },
216         [ C(OP_PREFETCH) ] = {
217                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
219         },
220 },
221 [C(ITLB)] = {
222         [C(OP_READ)] = {
223                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225         },
226         [ C(OP_WRITE) ] = {
227                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229         },
230         [ C(OP_PREFETCH) ] = {
231                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
233         },
234 },
235 [C(BPU)] = {
236         [C(OP_READ)] = {
237                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239         },
240         [ C(OP_WRITE) ] = {
241                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243         },
244         [ C(OP_PREFETCH) ] = {
245                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247         },
248 },
249 [C(NODE)] = {
250         [C(OP_READ)] = {
251                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
252                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
253         },
254         [ C(OP_WRITE) ] = {
255                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
256                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
257         },
258         [ C(OP_PREFETCH) ] = {
259                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
260                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
261         },
262 },
263 };
264
265 static const struct sparc_pmu ultra3_pmu = {
266         .event_map      = ultra3_event_map,
267         .cache_map      = &ultra3_cache_map,
268         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
269         .upper_shift    = 11,
270         .lower_shift    = 4,
271         .event_mask     = 0x3f,
272         .upper_nop      = 0x1c,
273         .lower_nop      = 0x14,
274 };
275
276 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
277  * only instructions, so it is free running which creates all kinds of
278  * problems.  Some hardware designs make one wonder if the creator
279  * even looked at how this stuff gets used by software.
280  */
281 static const struct perf_event_map niagara1_perfmon_event_map[] = {
282         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
283         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
284         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
285         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
286 };
287
288 static const struct perf_event_map *niagara1_event_map(int event_id)
289 {
290         return &niagara1_perfmon_event_map[event_id];
291 }
292
293 static const cache_map_t niagara1_cache_map = {
294 [C(L1D)] = {
295         [C(OP_READ)] = {
296                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
297                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
298         },
299         [C(OP_WRITE)] = {
300                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
301                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
302         },
303         [C(OP_PREFETCH)] = {
304                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
305                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
306         },
307 },
308 [C(L1I)] = {
309         [C(OP_READ)] = {
310                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
311                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
312         },
313         [ C(OP_WRITE) ] = {
314                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
315                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
316         },
317         [ C(OP_PREFETCH) ] = {
318                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
319                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
320         },
321 },
322 [C(LL)] = {
323         [C(OP_READ)] = {
324                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
326         },
327         [C(OP_WRITE)] = {
328                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
329                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
330         },
331         [C(OP_PREFETCH)] = {
332                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
333                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
334         },
335 },
336 [C(DTLB)] = {
337         [C(OP_READ)] = {
338                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
348         },
349 },
350 [C(ITLB)] = {
351         [C(OP_READ)] = {
352                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
362         },
363 },
364 [C(BPU)] = {
365         [C(OP_READ)] = {
366                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
367                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
368         },
369         [ C(OP_WRITE) ] = {
370                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
372         },
373         [ C(OP_PREFETCH) ] = {
374                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
375                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
376         },
377 },
378 [C(NODE)] = {
379         [C(OP_READ)] = {
380                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
381                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
382         },
383         [ C(OP_WRITE) ] = {
384                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
385                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
386         },
387         [ C(OP_PREFETCH) ] = {
388                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
389                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
390         },
391 },
392 };
393
394 static const struct sparc_pmu niagara1_pmu = {
395         .event_map      = niagara1_event_map,
396         .cache_map      = &niagara1_cache_map,
397         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
398         .upper_shift    = 0,
399         .lower_shift    = 4,
400         .event_mask     = 0x7,
401         .upper_nop      = 0x0,
402         .lower_nop      = 0x0,
403 };
404
405 static const struct perf_event_map niagara2_perfmon_event_map[] = {
406         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
407         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
408         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
409         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
410         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
411         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
412 };
413
414 static const struct perf_event_map *niagara2_event_map(int event_id)
415 {
416         return &niagara2_perfmon_event_map[event_id];
417 }
418
419 static const cache_map_t niagara2_cache_map = {
420 [C(L1D)] = {
421         [C(OP_READ)] = {
422                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
424         },
425         [C(OP_WRITE)] = {
426                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
428         },
429         [C(OP_PREFETCH)] = {
430                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432         },
433 },
434 [C(L1I)] = {
435         [C(OP_READ)] = {
436                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
437                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
438         },
439         [ C(OP_WRITE) ] = {
440                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
441                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
442         },
443         [ C(OP_PREFETCH) ] = {
444                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
446         },
447 },
448 [C(LL)] = {
449         [C(OP_READ)] = {
450                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
451                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
452         },
453         [C(OP_WRITE)] = {
454                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
455                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
456         },
457         [C(OP_PREFETCH)] = {
458                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
459                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
460         },
461 },
462 [C(DTLB)] = {
463         [C(OP_READ)] = {
464                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
466         },
467         [ C(OP_WRITE) ] = {
468                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470         },
471         [ C(OP_PREFETCH) ] = {
472                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
474         },
475 },
476 [C(ITLB)] = {
477         [C(OP_READ)] = {
478                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
479                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
480         },
481         [ C(OP_WRITE) ] = {
482                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
483                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
484         },
485         [ C(OP_PREFETCH) ] = {
486                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
487                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
488         },
489 },
490 [C(BPU)] = {
491         [C(OP_READ)] = {
492                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
493                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
494         },
495         [ C(OP_WRITE) ] = {
496                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
497                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
498         },
499         [ C(OP_PREFETCH) ] = {
500                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
501                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
502         },
503 },
504 [C(NODE)] = {
505         [C(OP_READ)] = {
506                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
507                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
508         },
509         [ C(OP_WRITE) ] = {
510                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
511                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
512         },
513         [ C(OP_PREFETCH) ] = {
514                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
515                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
516         },
517 },
518 };
519
520 static const struct sparc_pmu niagara2_pmu = {
521         .event_map      = niagara2_event_map,
522         .cache_map      = &niagara2_cache_map,
523         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
524         .upper_shift    = 19,
525         .lower_shift    = 6,
526         .event_mask     = 0xfff,
527         .hv_bit         = 0x8,
528         .irq_bit        = 0x30,
529         .upper_nop      = 0x220,
530         .lower_nop      = 0x220,
531 };
532
533 static const struct sparc_pmu *sparc_pmu __read_mostly;
534
535 static u64 event_encoding(u64 event_id, int idx)
536 {
537         if (idx == PIC_UPPER_INDEX)
538                 event_id <<= sparc_pmu->upper_shift;
539         else
540                 event_id <<= sparc_pmu->lower_shift;
541         return event_id;
542 }
543
544 static u64 mask_for_index(int idx)
545 {
546         return event_encoding(sparc_pmu->event_mask, idx);
547 }
548
549 static u64 nop_for_index(int idx)
550 {
551         return event_encoding(idx == PIC_UPPER_INDEX ?
552                               sparc_pmu->upper_nop :
553                               sparc_pmu->lower_nop, idx);
554 }
555
556 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
557 {
558         u64 enc, val, mask = mask_for_index(idx);
559
560         enc = perf_event_get_enc(cpuc->events[idx]);
561
562         val = cpuc->pcr;
563         val &= ~mask;
564         val |= event_encoding(enc, idx);
565         cpuc->pcr = val;
566
567         pcr_ops->write(cpuc->pcr);
568 }
569
570 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
571 {
572         u64 mask = mask_for_index(idx);
573         u64 nop = nop_for_index(idx);
574         u64 val;
575
576         val = cpuc->pcr;
577         val &= ~mask;
578         val |= nop;
579         cpuc->pcr = val;
580
581         pcr_ops->write(cpuc->pcr);
582 }
583
584 static u32 read_pmc(int idx)
585 {
586         u64 val;
587
588         read_pic(val);
589         if (idx == PIC_UPPER_INDEX)
590                 val >>= 32;
591
592         return val & 0xffffffff;
593 }
594
595 static void write_pmc(int idx, u64 val)
596 {
597         u64 shift, mask, pic;
598
599         shift = 0;
600         if (idx == PIC_UPPER_INDEX)
601                 shift = 32;
602
603         mask = ((u64) 0xffffffff) << shift;
604         val <<= shift;
605
606         read_pic(pic);
607         pic &= ~mask;
608         pic |= val;
609         write_pic(pic);
610 }
611
612 static u64 sparc_perf_event_update(struct perf_event *event,
613                                    struct hw_perf_event *hwc, int idx)
614 {
615         int shift = 64 - 32;
616         u64 prev_raw_count, new_raw_count;
617         s64 delta;
618
619 again:
620         prev_raw_count = local64_read(&hwc->prev_count);
621         new_raw_count = read_pmc(idx);
622
623         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
624                              new_raw_count) != prev_raw_count)
625                 goto again;
626
627         delta = (new_raw_count << shift) - (prev_raw_count << shift);
628         delta >>= shift;
629
630         local64_add(delta, &event->count);
631         local64_sub(delta, &hwc->period_left);
632
633         return new_raw_count;
634 }
635
636 static int sparc_perf_event_set_period(struct perf_event *event,
637                                        struct hw_perf_event *hwc, int idx)
638 {
639         s64 left = local64_read(&hwc->period_left);
640         s64 period = hwc->sample_period;
641         int ret = 0;
642
643         if (unlikely(left <= -period)) {
644                 left = period;
645                 local64_set(&hwc->period_left, left);
646                 hwc->last_period = period;
647                 ret = 1;
648         }
649
650         if (unlikely(left <= 0)) {
651                 left += period;
652                 local64_set(&hwc->period_left, left);
653                 hwc->last_period = period;
654                 ret = 1;
655         }
656         if (left > MAX_PERIOD)
657                 left = MAX_PERIOD;
658
659         local64_set(&hwc->prev_count, (u64)-left);
660
661         write_pmc(idx, (u64)(-left) & 0xffffffff);
662
663         perf_event_update_userpage(event);
664
665         return ret;
666 }
667
668 /* If performance event entries have been added, move existing
669  * events around (if necessary) and then assign new entries to
670  * counters.
671  */
672 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
673 {
674         int i;
675
676         if (!cpuc->n_added)
677                 goto out;
678
679         /* Read in the counters which are moving.  */
680         for (i = 0; i < cpuc->n_events; i++) {
681                 struct perf_event *cp = cpuc->event[i];
682
683                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
684                     cpuc->current_idx[i] != cp->hw.idx) {
685                         sparc_perf_event_update(cp, &cp->hw,
686                                                 cpuc->current_idx[i]);
687                         cpuc->current_idx[i] = PIC_NO_INDEX;
688                 }
689         }
690
691         /* Assign to counters all unassigned events.  */
692         for (i = 0; i < cpuc->n_events; i++) {
693                 struct perf_event *cp = cpuc->event[i];
694                 struct hw_perf_event *hwc = &cp->hw;
695                 int idx = hwc->idx;
696                 u64 enc;
697
698                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
699                         continue;
700
701                 sparc_perf_event_set_period(cp, hwc, idx);
702                 cpuc->current_idx[i] = idx;
703
704                 enc = perf_event_get_enc(cpuc->events[i]);
705                 pcr &= ~mask_for_index(idx);
706                 if (hwc->state & PERF_HES_STOPPED)
707                         pcr |= nop_for_index(idx);
708                 else
709                         pcr |= event_encoding(enc, idx);
710         }
711 out:
712         return pcr;
713 }
714
715 static void sparc_pmu_enable(struct pmu *pmu)
716 {
717         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718         u64 pcr;
719
720         if (cpuc->enabled)
721                 return;
722
723         cpuc->enabled = 1;
724         barrier();
725
726         pcr = cpuc->pcr;
727         if (!cpuc->n_events) {
728                 pcr = 0;
729         } else {
730                 pcr = maybe_change_configuration(cpuc, pcr);
731
732                 /* We require that all of the events have the same
733                  * configuration, so just fetch the settings from the
734                  * first entry.
735                  */
736                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
737         }
738
739         pcr_ops->write(cpuc->pcr);
740 }
741
742 static void sparc_pmu_disable(struct pmu *pmu)
743 {
744         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
745         u64 val;
746
747         if (!cpuc->enabled)
748                 return;
749
750         cpuc->enabled = 0;
751         cpuc->n_added = 0;
752
753         val = cpuc->pcr;
754         val &= ~(PCR_UTRACE | PCR_STRACE |
755                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
756         cpuc->pcr = val;
757
758         pcr_ops->write(cpuc->pcr);
759 }
760
761 static int active_event_index(struct cpu_hw_events *cpuc,
762                               struct perf_event *event)
763 {
764         int i;
765
766         for (i = 0; i < cpuc->n_events; i++) {
767                 if (cpuc->event[i] == event)
768                         break;
769         }
770         BUG_ON(i == cpuc->n_events);
771         return cpuc->current_idx[i];
772 }
773
774 static void sparc_pmu_start(struct perf_event *event, int flags)
775 {
776         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
777         int idx = active_event_index(cpuc, event);
778
779         if (flags & PERF_EF_RELOAD) {
780                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
781                 sparc_perf_event_set_period(event, &event->hw, idx);
782         }
783
784         event->hw.state = 0;
785
786         sparc_pmu_enable_event(cpuc, &event->hw, idx);
787 }
788
789 static void sparc_pmu_stop(struct perf_event *event, int flags)
790 {
791         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
792         int idx = active_event_index(cpuc, event);
793
794         if (!(event->hw.state & PERF_HES_STOPPED)) {
795                 sparc_pmu_disable_event(cpuc, &event->hw, idx);
796                 event->hw.state |= PERF_HES_STOPPED;
797         }
798
799         if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
800                 sparc_perf_event_update(event, &event->hw, idx);
801                 event->hw.state |= PERF_HES_UPTODATE;
802         }
803 }
804
805 static void sparc_pmu_del(struct perf_event *event, int _flags)
806 {
807         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
808         unsigned long flags;
809         int i;
810
811         local_irq_save(flags);
812         perf_pmu_disable(event->pmu);
813
814         for (i = 0; i < cpuc->n_events; i++) {
815                 if (event == cpuc->event[i]) {
816                         /* Absorb the final count and turn off the
817                          * event.
818                          */
819                         sparc_pmu_stop(event, PERF_EF_UPDATE);
820
821                         /* Shift remaining entries down into
822                          * the existing slot.
823                          */
824                         while (++i < cpuc->n_events) {
825                                 cpuc->event[i - 1] = cpuc->event[i];
826                                 cpuc->events[i - 1] = cpuc->events[i];
827                                 cpuc->current_idx[i - 1] =
828                                         cpuc->current_idx[i];
829                         }
830
831                         perf_event_update_userpage(event);
832
833                         cpuc->n_events--;
834                         break;
835                 }
836         }
837
838         perf_pmu_enable(event->pmu);
839         local_irq_restore(flags);
840 }
841
842 static void sparc_pmu_read(struct perf_event *event)
843 {
844         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
845         int idx = active_event_index(cpuc, event);
846         struct hw_perf_event *hwc = &event->hw;
847
848         sparc_perf_event_update(event, hwc, idx);
849 }
850
851 static atomic_t active_events = ATOMIC_INIT(0);
852 static DEFINE_MUTEX(pmc_grab_mutex);
853
854 static void perf_stop_nmi_watchdog(void *unused)
855 {
856         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
857
858         stop_nmi_watchdog(NULL);
859         cpuc->pcr = pcr_ops->read();
860 }
861
862 void perf_event_grab_pmc(void)
863 {
864         if (atomic_inc_not_zero(&active_events))
865                 return;
866
867         mutex_lock(&pmc_grab_mutex);
868         if (atomic_read(&active_events) == 0) {
869                 if (atomic_read(&nmi_active) > 0) {
870                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
871                         BUG_ON(atomic_read(&nmi_active) != 0);
872                 }
873                 atomic_inc(&active_events);
874         }
875         mutex_unlock(&pmc_grab_mutex);
876 }
877
878 void perf_event_release_pmc(void)
879 {
880         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
881                 if (atomic_read(&nmi_active) == 0)
882                         on_each_cpu(start_nmi_watchdog, NULL, 1);
883                 mutex_unlock(&pmc_grab_mutex);
884         }
885 }
886
887 static const struct perf_event_map *sparc_map_cache_event(u64 config)
888 {
889         unsigned int cache_type, cache_op, cache_result;
890         const struct perf_event_map *pmap;
891
892         if (!sparc_pmu->cache_map)
893                 return ERR_PTR(-ENOENT);
894
895         cache_type = (config >>  0) & 0xff;
896         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
897                 return ERR_PTR(-EINVAL);
898
899         cache_op = (config >>  8) & 0xff;
900         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
901                 return ERR_PTR(-EINVAL);
902
903         cache_result = (config >> 16) & 0xff;
904         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
905                 return ERR_PTR(-EINVAL);
906
907         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
908
909         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
910                 return ERR_PTR(-ENOENT);
911
912         if (pmap->encoding == CACHE_OP_NONSENSE)
913                 return ERR_PTR(-EINVAL);
914
915         return pmap;
916 }
917
918 static void hw_perf_event_destroy(struct perf_event *event)
919 {
920         perf_event_release_pmc();
921 }
922
923 /* Make sure all events can be scheduled into the hardware at
924  * the same time.  This is simplified by the fact that we only
925  * need to support 2 simultaneous HW events.
926  *
927  * As a side effect, the evts[]->hw.idx values will be assigned
928  * on success.  These are pending indexes.  When the events are
929  * actually programmed into the chip, these values will propagate
930  * to the per-cpu cpuc->current_idx[] slots, see the code in
931  * maybe_change_configuration() for details.
932  */
933 static int sparc_check_constraints(struct perf_event **evts,
934                                    unsigned long *events, int n_ev)
935 {
936         u8 msk0 = 0, msk1 = 0;
937         int idx0 = 0;
938
939         /* This case is possible when we are invoked from
940          * hw_perf_group_sched_in().
941          */
942         if (!n_ev)
943                 return 0;
944
945         if (n_ev > MAX_HWEVENTS)
946                 return -1;
947
948         msk0 = perf_event_get_msk(events[0]);
949         if (n_ev == 1) {
950                 if (msk0 & PIC_LOWER)
951                         idx0 = 1;
952                 goto success;
953         }
954         BUG_ON(n_ev != 2);
955         msk1 = perf_event_get_msk(events[1]);
956
957         /* If both events can go on any counter, OK.  */
958         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
959             msk1 == (PIC_UPPER | PIC_LOWER))
960                 goto success;
961
962         /* If one event is limited to a specific counter,
963          * and the other can go on both, OK.
964          */
965         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
966             msk1 == (PIC_UPPER | PIC_LOWER)) {
967                 if (msk0 & PIC_LOWER)
968                         idx0 = 1;
969                 goto success;
970         }
971
972         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
973             msk0 == (PIC_UPPER | PIC_LOWER)) {
974                 if (msk1 & PIC_UPPER)
975                         idx0 = 1;
976                 goto success;
977         }
978
979         /* If the events are fixed to different counters, OK.  */
980         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
981             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
982                 if (msk0 & PIC_LOWER)
983                         idx0 = 1;
984                 goto success;
985         }
986
987         /* Otherwise, there is a conflict.  */
988         return -1;
989
990 success:
991         evts[0]->hw.idx = idx0;
992         if (n_ev == 2)
993                 evts[1]->hw.idx = idx0 ^ 1;
994         return 0;
995 }
996
997 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
998 {
999         int eu = 0, ek = 0, eh = 0;
1000         struct perf_event *event;
1001         int i, n, first;
1002
1003         n = n_prev + n_new;
1004         if (n <= 1)
1005                 return 0;
1006
1007         first = 1;
1008         for (i = 0; i < n; i++) {
1009                 event = evts[i];
1010                 if (first) {
1011                         eu = event->attr.exclude_user;
1012                         ek = event->attr.exclude_kernel;
1013                         eh = event->attr.exclude_hv;
1014                         first = 0;
1015                 } else if (event->attr.exclude_user != eu ||
1016                            event->attr.exclude_kernel != ek ||
1017                            event->attr.exclude_hv != eh) {
1018                         return -EAGAIN;
1019                 }
1020         }
1021
1022         return 0;
1023 }
1024
1025 static int collect_events(struct perf_event *group, int max_count,
1026                           struct perf_event *evts[], unsigned long *events,
1027                           int *current_idx)
1028 {
1029         struct perf_event *event;
1030         int n = 0;
1031
1032         if (!is_software_event(group)) {
1033                 if (n >= max_count)
1034                         return -1;
1035                 evts[n] = group;
1036                 events[n] = group->hw.event_base;
1037                 current_idx[n++] = PIC_NO_INDEX;
1038         }
1039         list_for_each_entry(event, &group->sibling_list, group_entry) {
1040                 if (!is_software_event(event) &&
1041                     event->state != PERF_EVENT_STATE_OFF) {
1042                         if (n >= max_count)
1043                                 return -1;
1044                         evts[n] = event;
1045                         events[n] = event->hw.event_base;
1046                         current_idx[n++] = PIC_NO_INDEX;
1047                 }
1048         }
1049         return n;
1050 }
1051
1052 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053 {
1054         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055         int n0, ret = -EAGAIN;
1056         unsigned long flags;
1057
1058         local_irq_save(flags);
1059         perf_pmu_disable(event->pmu);
1060
1061         n0 = cpuc->n_events;
1062         if (n0 >= MAX_HWEVENTS)
1063                 goto out;
1064
1065         cpuc->event[n0] = event;
1066         cpuc->events[n0] = event->hw.event_base;
1067         cpuc->current_idx[n0] = PIC_NO_INDEX;
1068
1069         event->hw.state = PERF_HES_UPTODATE;
1070         if (!(ef_flags & PERF_EF_START))
1071                 event->hw.state |= PERF_HES_STOPPED;
1072
1073         /*
1074          * If group events scheduling transaction was started,
1075          * skip the schedulability test here, it will be performed
1076          * at commit time(->commit_txn) as a whole
1077          */
1078         if (cpuc->group_flag & PERF_EVENT_TXN)
1079                 goto nocheck;
1080
1081         if (check_excludes(cpuc->event, n0, 1))
1082                 goto out;
1083         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084                 goto out;
1085
1086 nocheck:
1087         cpuc->n_events++;
1088         cpuc->n_added++;
1089
1090         ret = 0;
1091 out:
1092         perf_pmu_enable(event->pmu);
1093         local_irq_restore(flags);
1094         return ret;
1095 }
1096
1097 static int sparc_pmu_event_init(struct perf_event *event)
1098 {
1099         struct perf_event_attr *attr = &event->attr;
1100         struct perf_event *evts[MAX_HWEVENTS];
1101         struct hw_perf_event *hwc = &event->hw;
1102         unsigned long events[MAX_HWEVENTS];
1103         int current_idx_dmy[MAX_HWEVENTS];
1104         const struct perf_event_map *pmap;
1105         int n;
1106
1107         if (atomic_read(&nmi_active) < 0)
1108                 return -ENODEV;
1109
1110         switch (attr->type) {
1111         case PERF_TYPE_HARDWARE:
1112                 if (attr->config >= sparc_pmu->max_events)
1113                         return -EINVAL;
1114                 pmap = sparc_pmu->event_map(attr->config);
1115                 break;
1116
1117         case PERF_TYPE_HW_CACHE:
1118                 pmap = sparc_map_cache_event(attr->config);
1119                 if (IS_ERR(pmap))
1120                         return PTR_ERR(pmap);
1121                 break;
1122
1123         case PERF_TYPE_RAW:
1124                 pmap = NULL;
1125                 break;
1126
1127         default:
1128                 return -ENOENT;
1129
1130         }
1131
1132         if (pmap) {
1133                 hwc->event_base = perf_event_encode(pmap);
1134         } else {
1135                 /*
1136                  * User gives us "(encoding << 16) | pic_mask" for
1137                  * PERF_TYPE_RAW events.
1138                  */
1139                 hwc->event_base = attr->config;
1140         }
1141
1142         /* We save the enable bits in the config_base.  */
1143         hwc->config_base = sparc_pmu->irq_bit;
1144         if (!attr->exclude_user)
1145                 hwc->config_base |= PCR_UTRACE;
1146         if (!attr->exclude_kernel)
1147                 hwc->config_base |= PCR_STRACE;
1148         if (!attr->exclude_hv)
1149                 hwc->config_base |= sparc_pmu->hv_bit;
1150
1151         n = 0;
1152         if (event->group_leader != event) {
1153                 n = collect_events(event->group_leader,
1154                                    MAX_HWEVENTS - 1,
1155                                    evts, events, current_idx_dmy);
1156                 if (n < 0)
1157                         return -EINVAL;
1158         }
1159         events[n] = hwc->event_base;
1160         evts[n] = event;
1161
1162         if (check_excludes(evts, n, 1))
1163                 return -EINVAL;
1164
1165         if (sparc_check_constraints(evts, events, n + 1))
1166                 return -EINVAL;
1167
1168         hwc->idx = PIC_NO_INDEX;
1169
1170         /* Try to do all error checking before this point, as unwinding
1171          * state after grabbing the PMC is difficult.
1172          */
1173         perf_event_grab_pmc();
1174         event->destroy = hw_perf_event_destroy;
1175
1176         if (!hwc->sample_period) {
1177                 hwc->sample_period = MAX_PERIOD;
1178                 hwc->last_period = hwc->sample_period;
1179                 local64_set(&hwc->period_left, hwc->sample_period);
1180         }
1181
1182         return 0;
1183 }
1184
1185 /*
1186  * Start group events scheduling transaction
1187  * Set the flag to make pmu::enable() not perform the
1188  * schedulability test, it will be performed at commit time
1189  */
1190 static void sparc_pmu_start_txn(struct pmu *pmu)
1191 {
1192         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1193
1194         perf_pmu_disable(pmu);
1195         cpuhw->group_flag |= PERF_EVENT_TXN;
1196 }
1197
1198 /*
1199  * Stop group events scheduling transaction
1200  * Clear the flag and pmu::enable() will perform the
1201  * schedulability test.
1202  */
1203 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1204 {
1205         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1206
1207         cpuhw->group_flag &= ~PERF_EVENT_TXN;
1208         perf_pmu_enable(pmu);
1209 }
1210
1211 /*
1212  * Commit group events scheduling transaction
1213  * Perform the group schedulability test as a whole
1214  * Return 0 if success
1215  */
1216 static int sparc_pmu_commit_txn(struct pmu *pmu)
1217 {
1218         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1219         int n;
1220
1221         if (!sparc_pmu)
1222                 return -EINVAL;
1223
1224         cpuc = &__get_cpu_var(cpu_hw_events);
1225         n = cpuc->n_events;
1226         if (check_excludes(cpuc->event, 0, n))
1227                 return -EINVAL;
1228         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1229                 return -EAGAIN;
1230
1231         cpuc->group_flag &= ~PERF_EVENT_TXN;
1232         perf_pmu_enable(pmu);
1233         return 0;
1234 }
1235
1236 static struct pmu pmu = {
1237         .pmu_enable     = sparc_pmu_enable,
1238         .pmu_disable    = sparc_pmu_disable,
1239         .event_init     = sparc_pmu_event_init,
1240         .add            = sparc_pmu_add,
1241         .del            = sparc_pmu_del,
1242         .start          = sparc_pmu_start,
1243         .stop           = sparc_pmu_stop,
1244         .read           = sparc_pmu_read,
1245         .start_txn      = sparc_pmu_start_txn,
1246         .cancel_txn     = sparc_pmu_cancel_txn,
1247         .commit_txn     = sparc_pmu_commit_txn,
1248 };
1249
1250 void perf_event_print_debug(void)
1251 {
1252         unsigned long flags;
1253         u64 pcr, pic;
1254         int cpu;
1255
1256         if (!sparc_pmu)
1257                 return;
1258
1259         local_irq_save(flags);
1260
1261         cpu = smp_processor_id();
1262
1263         pcr = pcr_ops->read();
1264         read_pic(pic);
1265
1266         pr_info("\n");
1267         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1268                 cpu, pcr, pic);
1269
1270         local_irq_restore(flags);
1271 }
1272
1273 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1274                                             unsigned long cmd, void *__args)
1275 {
1276         struct die_args *args = __args;
1277         struct perf_sample_data data;
1278         struct cpu_hw_events *cpuc;
1279         struct pt_regs *regs;
1280         int i;
1281
1282         if (!atomic_read(&active_events))
1283                 return NOTIFY_DONE;
1284
1285         switch (cmd) {
1286         case DIE_NMI:
1287                 break;
1288
1289         default:
1290                 return NOTIFY_DONE;
1291         }
1292
1293         regs = args->regs;
1294
1295         perf_sample_data_init(&data, 0);
1296
1297         cpuc = &__get_cpu_var(cpu_hw_events);
1298
1299         /* If the PMU has the TOE IRQ enable bits, we need to do a
1300          * dummy write to the %pcr to clear the overflow bits and thus
1301          * the interrupt.
1302          *
1303          * Do this before we peek at the counters to determine
1304          * overflow so we don't lose any events.
1305          */
1306         if (sparc_pmu->irq_bit)
1307                 pcr_ops->write(cpuc->pcr);
1308
1309         for (i = 0; i < cpuc->n_events; i++) {
1310                 struct perf_event *event = cpuc->event[i];
1311                 int idx = cpuc->current_idx[i];
1312                 struct hw_perf_event *hwc;
1313                 u64 val;
1314
1315                 hwc = &event->hw;
1316                 val = sparc_perf_event_update(event, hwc, idx);
1317                 if (val & (1ULL << 31))
1318                         continue;
1319
1320                 data.period = event->hw.last_period;
1321                 if (!sparc_perf_event_set_period(event, hwc, idx))
1322                         continue;
1323
1324                 if (perf_event_overflow(event, &data, regs))
1325                         sparc_pmu_stop(event, 0);
1326         }
1327
1328         return NOTIFY_STOP;
1329 }
1330
1331 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1332         .notifier_call          = perf_event_nmi_handler,
1333 };
1334
1335 static bool __init supported_pmu(void)
1336 {
1337         if (!strcmp(sparc_pmu_type, "ultra3") ||
1338             !strcmp(sparc_pmu_type, "ultra3+") ||
1339             !strcmp(sparc_pmu_type, "ultra3i") ||
1340             !strcmp(sparc_pmu_type, "ultra4+")) {
1341                 sparc_pmu = &ultra3_pmu;
1342                 return true;
1343         }
1344         if (!strcmp(sparc_pmu_type, "niagara")) {
1345                 sparc_pmu = &niagara1_pmu;
1346                 return true;
1347         }
1348         if (!strcmp(sparc_pmu_type, "niagara2") ||
1349             !strcmp(sparc_pmu_type, "niagara3")) {
1350                 sparc_pmu = &niagara2_pmu;
1351                 return true;
1352         }
1353         return false;
1354 }
1355
1356 int __init init_hw_perf_events(void)
1357 {
1358         pr_info("Performance events: ");
1359
1360         if (!supported_pmu()) {
1361                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1362                 return 0;
1363         }
1364
1365         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1366
1367         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1368         register_die_notifier(&perf_event_nmi_notifier);
1369
1370         return 0;
1371 }
1372 early_initcall(init_hw_perf_events);
1373
1374 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1375                            struct pt_regs *regs)
1376 {
1377         unsigned long ksp, fp;
1378 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379         int graph = 0;
1380 #endif
1381
1382         stack_trace_flush();
1383
1384         perf_callchain_store(entry, regs->tpc);
1385
1386         ksp = regs->u_regs[UREG_I6];
1387         fp = ksp + STACK_BIAS;
1388         do {
1389                 struct sparc_stackf *sf;
1390                 struct pt_regs *regs;
1391                 unsigned long pc;
1392
1393                 if (!kstack_valid(current_thread_info(), fp))
1394                         break;
1395
1396                 sf = (struct sparc_stackf *) fp;
1397                 regs = (struct pt_regs *) (sf + 1);
1398
1399                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1400                         if (user_mode(regs))
1401                                 break;
1402                         pc = regs->tpc;
1403                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1404                 } else {
1405                         pc = sf->callers_pc;
1406                         fp = (unsigned long)sf->fp + STACK_BIAS;
1407                 }
1408                 perf_callchain_store(entry, pc);
1409 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1410                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1411                         int index = current->curr_ret_stack;
1412                         if (current->ret_stack && index >= graph) {
1413                                 pc = current->ret_stack[index - graph].ret;
1414                                 perf_callchain_store(entry, pc);
1415                                 graph++;
1416                         }
1417                 }
1418 #endif
1419         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1420 }
1421
1422 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1423                                    struct pt_regs *regs)
1424 {
1425         unsigned long ufp;
1426
1427         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1428         do {
1429                 struct sparc_stackf *usf, sf;
1430                 unsigned long pc;
1431
1432                 usf = (struct sparc_stackf *) ufp;
1433                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1434                         break;
1435
1436                 pc = sf.callers_pc;
1437                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1438                 perf_callchain_store(entry, pc);
1439         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1440 }
1441
1442 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1443                                    struct pt_regs *regs)
1444 {
1445         unsigned long ufp;
1446
1447         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1448         do {
1449                 struct sparc_stackf32 *usf, sf;
1450                 unsigned long pc;
1451
1452                 usf = (struct sparc_stackf32 *) ufp;
1453                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1454                         break;
1455
1456                 pc = sf.callers_pc;
1457                 ufp = (unsigned long)sf.fp;
1458                 perf_callchain_store(entry, pc);
1459         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1460 }
1461
1462 void
1463 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1464 {
1465         perf_callchain_store(entry, regs->tpc);
1466
1467         if (!current->mm)
1468                 return;
1469
1470         flushw_user();
1471         if (test_thread_flag(TIF_32BIT))
1472                 perf_callchain_user_32(entry, regs);
1473         else
1474                 perf_callchain_user_64(entry, regs);
1475 }