]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/perf_event.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/perfctr.h>
29 #include <asm/cacheflush.h>
30
31 #include "kernel.h"
32 #include "kstack.h"
33
34 /* Sparc64 chips have two performance counters, 32-bits each, with
35  * overflow interrupts generated on transition from 0xffffffff to 0.
36  * The counters are accessed in one go using a 64-bit register.
37  *
38  * Both counters are controlled using a single control register.  The
39  * only way to stop all sampling is to clear all of the context (user,
40  * supervisor, hypervisor) sampling enable bits.  But these bits apply
41  * to both counters, thus the two counters can't be enabled/disabled
42  * individually.
43  *
44  * The control register has two event fields, one for each of the two
45  * counters.  It's thus nearly impossible to have one counter going
46  * while keeping the other one stopped.  Therefore it is possible to
47  * get overflow interrupts for counters not currently "in use" and
48  * that condition must be checked in the overflow interrupt handler.
49  *
50  * So we use a hack, in that we program inactive counters with the
51  * "sw_count0" and "sw_count1" events.  These count how many times
52  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
53  * unusual way to encode a NOP and therefore will not trigger in
54  * normal code.
55  */
56
57 #define MAX_HWEVENTS                    2
58 #define MAX_PERIOD                      ((1UL << 32) - 1)
59
60 #define PIC_UPPER_INDEX                 0
61 #define PIC_LOWER_INDEX                 1
62 #define PIC_NO_INDEX                    -1
63
64 struct cpu_hw_events {
65         /* Number of events currently scheduled onto this cpu.
66          * This tells how many entries in the arrays below
67          * are valid.
68          */
69         int                     n_events;
70
71         /* Number of new events added since the last hw_perf_disable().
72          * This works because the perf event layer always adds new
73          * events inside of a perf_{disable,enable}() sequence.
74          */
75         int                     n_added;
76
77         /* Array of events current scheduled on this cpu.  */
78         struct perf_event       *event[MAX_HWEVENTS];
79
80         /* Array of encoded longs, specifying the %pcr register
81          * encoding and the mask of PIC counters this even can
82          * be scheduled on.  See perf_event_encode() et al.
83          */
84         unsigned long           events[MAX_HWEVENTS];
85
86         /* The current counter index assigned to an event.  When the
87          * event hasn't been programmed into the cpu yet, this will
88          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
89          * we ought to schedule the event.
90          */
91         int                     current_idx[MAX_HWEVENTS];
92
93         /* Software copy of %pcr register on this cpu.  */
94         u64                     pcr;
95
96         /* Enabled/disable state.  */
97         int                     enabled;
98
99         unsigned int            group_flag;
100 };
101 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
102
103 /* An event map describes the characteristics of a performance
104  * counter event.  In particular it gives the encoding as well as
105  * a mask telling which counters the event can be measured on.
106  */
107 struct perf_event_map {
108         u16     encoding;
109         u8      pic_mask;
110 #define PIC_NONE        0x00
111 #define PIC_UPPER       0x01
112 #define PIC_LOWER       0x02
113 };
114
115 /* Encode a perf_event_map entry into a long.  */
116 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
117 {
118         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
119 }
120
121 static u8 perf_event_get_msk(unsigned long val)
122 {
123         return val & 0xff;
124 }
125
126 static u64 perf_event_get_enc(unsigned long val)
127 {
128         return val >> 16;
129 }
130
131 #define C(x) PERF_COUNT_HW_CACHE_##x
132
133 #define CACHE_OP_UNSUPPORTED    0xfffe
134 #define CACHE_OP_NONSENSE       0xffff
135
136 typedef struct perf_event_map cache_map_t
137                                 [PERF_COUNT_HW_CACHE_MAX]
138                                 [PERF_COUNT_HW_CACHE_OP_MAX]
139                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
140
141 struct sparc_pmu {
142         const struct perf_event_map     *(*event_map)(int);
143         const cache_map_t               *cache_map;
144         int                             max_events;
145         int                             upper_shift;
146         int                             lower_shift;
147         int                             event_mask;
148         int                             hv_bit;
149         int                             irq_bit;
150         int                             upper_nop;
151         int                             lower_nop;
152 };
153
154 static const struct perf_event_map ultra3_perfmon_event_map[] = {
155         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
156         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
157         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
158         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
159 };
160
161 static const struct perf_event_map *ultra3_event_map(int event_id)
162 {
163         return &ultra3_perfmon_event_map[event_id];
164 }
165
166 static const cache_map_t ultra3_cache_map = {
167 [C(L1D)] = {
168         [C(OP_READ)] = {
169                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
170                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
171         },
172         [C(OP_WRITE)] = {
173                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
174                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
175         },
176         [C(OP_PREFETCH)] = {
177                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
178                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
179         },
180 },
181 [C(L1I)] = {
182         [C(OP_READ)] = {
183                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
184                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
185         },
186         [ C(OP_WRITE) ] = {
187                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
188                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
189         },
190         [ C(OP_PREFETCH) ] = {
191                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
192                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
193         },
194 },
195 [C(LL)] = {
196         [C(OP_READ)] = {
197                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
198                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
199         },
200         [C(OP_WRITE)] = {
201                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
202                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
203         },
204         [C(OP_PREFETCH)] = {
205                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
206                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
207         },
208 },
209 [C(DTLB)] = {
210         [C(OP_READ)] = {
211                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
212                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
213         },
214         [ C(OP_WRITE) ] = {
215                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
216                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
217         },
218         [ C(OP_PREFETCH) ] = {
219                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
220                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
221         },
222 },
223 [C(ITLB)] = {
224         [C(OP_READ)] = {
225                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
226                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
227         },
228         [ C(OP_WRITE) ] = {
229                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
230                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
231         },
232         [ C(OP_PREFETCH) ] = {
233                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
234                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
235         },
236 },
237 [C(BPU)] = {
238         [C(OP_READ)] = {
239                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
240                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
241         },
242         [ C(OP_WRITE) ] = {
243                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
245         },
246         [ C(OP_PREFETCH) ] = {
247                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
248                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
249         },
250 },
251 [C(NODE)] = {
252         [C(OP_READ)] = {
253                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
254                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
255         },
256         [ C(OP_WRITE) ] = {
257                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
258                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
259         },
260         [ C(OP_PREFETCH) ] = {
261                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
262                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
263         },
264 },
265 };
266
267 static const struct sparc_pmu ultra3_pmu = {
268         .event_map      = ultra3_event_map,
269         .cache_map      = &ultra3_cache_map,
270         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
271         .upper_shift    = 11,
272         .lower_shift    = 4,
273         .event_mask     = 0x3f,
274         .upper_nop      = 0x1c,
275         .lower_nop      = 0x14,
276 };
277
278 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
279  * only instructions, so it is free running which creates all kinds of
280  * problems.  Some hardware designs make one wonder if the creator
281  * even looked at how this stuff gets used by software.
282  */
283 static const struct perf_event_map niagara1_perfmon_event_map[] = {
284         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
285         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
286         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
287         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
288 };
289
290 static const struct perf_event_map *niagara1_event_map(int event_id)
291 {
292         return &niagara1_perfmon_event_map[event_id];
293 }
294
295 static const cache_map_t niagara1_cache_map = {
296 [C(L1D)] = {
297         [C(OP_READ)] = {
298                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
299                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
300         },
301         [C(OP_WRITE)] = {
302                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
303                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
304         },
305         [C(OP_PREFETCH)] = {
306                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
308         },
309 },
310 [C(L1I)] = {
311         [C(OP_READ)] = {
312                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
313                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
314         },
315         [ C(OP_WRITE) ] = {
316                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
317                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
318         },
319         [ C(OP_PREFETCH) ] = {
320                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
321                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
322         },
323 },
324 [C(LL)] = {
325         [C(OP_READ)] = {
326                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
327                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
328         },
329         [C(OP_WRITE)] = {
330                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
331                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
332         },
333         [C(OP_PREFETCH)] = {
334                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
336         },
337 },
338 [C(DTLB)] = {
339         [C(OP_READ)] = {
340                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
341                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
342         },
343         [ C(OP_WRITE) ] = {
344                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
345                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
346         },
347         [ C(OP_PREFETCH) ] = {
348                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
349                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
350         },
351 },
352 [C(ITLB)] = {
353         [C(OP_READ)] = {
354                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
355                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
356         },
357         [ C(OP_WRITE) ] = {
358                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
359                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
360         },
361         [ C(OP_PREFETCH) ] = {
362                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
363                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
364         },
365 },
366 [C(BPU)] = {
367         [C(OP_READ)] = {
368                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
369                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
370         },
371         [ C(OP_WRITE) ] = {
372                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
373                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
374         },
375         [ C(OP_PREFETCH) ] = {
376                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
377                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
378         },
379 },
380 [C(NODE)] = {
381         [C(OP_READ)] = {
382                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
383                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
384         },
385         [ C(OP_WRITE) ] = {
386                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
387                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
388         },
389         [ C(OP_PREFETCH) ] = {
390                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
391                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
392         },
393 },
394 };
395
396 static const struct sparc_pmu niagara1_pmu = {
397         .event_map      = niagara1_event_map,
398         .cache_map      = &niagara1_cache_map,
399         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
400         .upper_shift    = 0,
401         .lower_shift    = 4,
402         .event_mask     = 0x7,
403         .upper_nop      = 0x0,
404         .lower_nop      = 0x0,
405 };
406
407 static const struct perf_event_map niagara2_perfmon_event_map[] = {
408         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
409         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
410         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
411         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
412         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
413         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
414 };
415
416 static const struct perf_event_map *niagara2_event_map(int event_id)
417 {
418         return &niagara2_perfmon_event_map[event_id];
419 }
420
421 static const cache_map_t niagara2_cache_map = {
422 [C(L1D)] = {
423         [C(OP_READ)] = {
424                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
425                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
426         },
427         [C(OP_WRITE)] = {
428                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
429                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
430         },
431         [C(OP_PREFETCH)] = {
432                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
433                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
434         },
435 },
436 [C(L1I)] = {
437         [C(OP_READ)] = {
438                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
439                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
440         },
441         [ C(OP_WRITE) ] = {
442                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
443                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
444         },
445         [ C(OP_PREFETCH) ] = {
446                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
447                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
448         },
449 },
450 [C(LL)] = {
451         [C(OP_READ)] = {
452                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
453                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
454         },
455         [C(OP_WRITE)] = {
456                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
457                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
458         },
459         [C(OP_PREFETCH)] = {
460                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
461                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
462         },
463 },
464 [C(DTLB)] = {
465         [C(OP_READ)] = {
466                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
467                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
468         },
469         [ C(OP_WRITE) ] = {
470                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
471                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
472         },
473         [ C(OP_PREFETCH) ] = {
474                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
475                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
476         },
477 },
478 [C(ITLB)] = {
479         [C(OP_READ)] = {
480                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
481                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
482         },
483         [ C(OP_WRITE) ] = {
484                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
485                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
486         },
487         [ C(OP_PREFETCH) ] = {
488                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
489                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
490         },
491 },
492 [C(BPU)] = {
493         [C(OP_READ)] = {
494                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
495                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
496         },
497         [ C(OP_WRITE) ] = {
498                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
499                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
500         },
501         [ C(OP_PREFETCH) ] = {
502                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
503                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
504         },
505 },
506 [C(NODE)] = {
507         [C(OP_READ)] = {
508                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
509                 [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
510         },
511         [ C(OP_WRITE) ] = {
512                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
513                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
514         },
515         [ C(OP_PREFETCH) ] = {
516                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
518         },
519 },
520 };
521
522 static const struct sparc_pmu niagara2_pmu = {
523         .event_map      = niagara2_event_map,
524         .cache_map      = &niagara2_cache_map,
525         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
526         .upper_shift    = 19,
527         .lower_shift    = 6,
528         .event_mask     = 0xfff,
529         .hv_bit         = 0x8,
530         .irq_bit        = 0x30,
531         .upper_nop      = 0x220,
532         .lower_nop      = 0x220,
533 };
534
535 static const struct sparc_pmu *sparc_pmu __read_mostly;
536
537 static u64 event_encoding(u64 event_id, int idx)
538 {
539         if (idx == PIC_UPPER_INDEX)
540                 event_id <<= sparc_pmu->upper_shift;
541         else
542                 event_id <<= sparc_pmu->lower_shift;
543         return event_id;
544 }
545
546 static u64 mask_for_index(int idx)
547 {
548         return event_encoding(sparc_pmu->event_mask, idx);
549 }
550
551 static u64 nop_for_index(int idx)
552 {
553         return event_encoding(idx == PIC_UPPER_INDEX ?
554                               sparc_pmu->upper_nop :
555                               sparc_pmu->lower_nop, idx);
556 }
557
558 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
559 {
560         u64 val, mask = mask_for_index(idx);
561
562         val = cpuc->pcr;
563         val &= ~mask;
564         val |= hwc->config;
565         cpuc->pcr = val;
566
567         pcr_ops->write(cpuc->pcr);
568 }
569
570 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
571 {
572         u64 mask = mask_for_index(idx);
573         u64 nop = nop_for_index(idx);
574         u64 val;
575
576         val = cpuc->pcr;
577         val &= ~mask;
578         val |= nop;
579         cpuc->pcr = val;
580
581         pcr_ops->write(cpuc->pcr);
582 }
583
584 static u32 read_pmc(int idx)
585 {
586         u64 val;
587
588         read_pic(val);
589         if (idx == PIC_UPPER_INDEX)
590                 val >>= 32;
591
592         return val & 0xffffffff;
593 }
594
595 static void write_pmc(int idx, u64 val)
596 {
597         u64 shift, mask, pic;
598
599         shift = 0;
600         if (idx == PIC_UPPER_INDEX)
601                 shift = 32;
602
603         mask = ((u64) 0xffffffff) << shift;
604         val <<= shift;
605
606         read_pic(pic);
607         pic &= ~mask;
608         pic |= val;
609         write_pic(pic);
610 }
611
612 static u64 sparc_perf_event_update(struct perf_event *event,
613                                    struct hw_perf_event *hwc, int idx)
614 {
615         int shift = 64 - 32;
616         u64 prev_raw_count, new_raw_count;
617         s64 delta;
618
619 again:
620         prev_raw_count = local64_read(&hwc->prev_count);
621         new_raw_count = read_pmc(idx);
622
623         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
624                              new_raw_count) != prev_raw_count)
625                 goto again;
626
627         delta = (new_raw_count << shift) - (prev_raw_count << shift);
628         delta >>= shift;
629
630         local64_add(delta, &event->count);
631         local64_sub(delta, &hwc->period_left);
632
633         return new_raw_count;
634 }
635
636 static int sparc_perf_event_set_period(struct perf_event *event,
637                                        struct hw_perf_event *hwc, int idx)
638 {
639         s64 left = local64_read(&hwc->period_left);
640         s64 period = hwc->sample_period;
641         int ret = 0;
642
643         if (unlikely(left <= -period)) {
644                 left = period;
645                 local64_set(&hwc->period_left, left);
646                 hwc->last_period = period;
647                 ret = 1;
648         }
649
650         if (unlikely(left <= 0)) {
651                 left += period;
652                 local64_set(&hwc->period_left, left);
653                 hwc->last_period = period;
654                 ret = 1;
655         }
656         if (left > MAX_PERIOD)
657                 left = MAX_PERIOD;
658
659         local64_set(&hwc->prev_count, (u64)-left);
660
661         write_pmc(idx, (u64)(-left) & 0xffffffff);
662
663         perf_event_update_userpage(event);
664
665         return ret;
666 }
667
668 /* If performance event entries have been added, move existing
669  * events around (if necessary) and then assign new entries to
670  * counters.
671  */
672 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
673 {
674         int i;
675
676         if (!cpuc->n_added)
677                 goto out;
678
679         /* Read in the counters which are moving.  */
680         for (i = 0; i < cpuc->n_events; i++) {
681                 struct perf_event *cp = cpuc->event[i];
682
683                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
684                     cpuc->current_idx[i] != cp->hw.idx) {
685                         sparc_perf_event_update(cp, &cp->hw,
686                                                 cpuc->current_idx[i]);
687                         cpuc->current_idx[i] = PIC_NO_INDEX;
688                 }
689         }
690
691         /* Assign to counters all unassigned events.  */
692         for (i = 0; i < cpuc->n_events; i++) {
693                 struct perf_event *cp = cpuc->event[i];
694                 struct hw_perf_event *hwc = &cp->hw;
695                 int idx = hwc->idx;
696                 u64 enc;
697
698                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
699                         continue;
700
701                 sparc_perf_event_set_period(cp, hwc, idx);
702                 cpuc->current_idx[i] = idx;
703
704                 enc = perf_event_get_enc(cpuc->events[i]);
705                 pcr &= ~mask_for_index(idx);
706                 if (hwc->state & PERF_HES_STOPPED)
707                         pcr |= nop_for_index(idx);
708                 else
709                         pcr |= event_encoding(enc, idx);
710         }
711 out:
712         return pcr;
713 }
714
715 static void sparc_pmu_enable(struct pmu *pmu)
716 {
717         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718         u64 pcr;
719
720         if (cpuc->enabled)
721                 return;
722
723         cpuc->enabled = 1;
724         barrier();
725
726         pcr = cpuc->pcr;
727         if (!cpuc->n_events) {
728                 pcr = 0;
729         } else {
730                 pcr = maybe_change_configuration(cpuc, pcr);
731
732                 /* We require that all of the events have the same
733                  * configuration, so just fetch the settings from the
734                  * first entry.
735                  */
736                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
737         }
738
739         pcr_ops->write(cpuc->pcr);
740 }
741
742 static void sparc_pmu_disable(struct pmu *pmu)
743 {
744         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
745         u64 val;
746
747         if (!cpuc->enabled)
748                 return;
749
750         cpuc->enabled = 0;
751         cpuc->n_added = 0;
752
753         val = cpuc->pcr;
754         val &= ~(PCR_UTRACE | PCR_STRACE |
755                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
756         cpuc->pcr = val;
757
758         pcr_ops->write(cpuc->pcr);
759 }
760
761 static int active_event_index(struct cpu_hw_events *cpuc,
762                               struct perf_event *event)
763 {
764         int i;
765
766         for (i = 0; i < cpuc->n_events; i++) {
767                 if (cpuc->event[i] == event)
768                         break;
769         }
770         BUG_ON(i == cpuc->n_events);
771         return cpuc->current_idx[i];
772 }
773
774 static void sparc_pmu_start(struct perf_event *event, int flags)
775 {
776         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
777         int idx = active_event_index(cpuc, event);
778
779         if (flags & PERF_EF_RELOAD) {
780                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
781                 sparc_perf_event_set_period(event, &event->hw, idx);
782         }
783
784         event->hw.state = 0;
785
786         sparc_pmu_enable_event(cpuc, &event->hw, idx);
787 }
788
789 static void sparc_pmu_stop(struct perf_event *event, int flags)
790 {
791         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
792         int idx = active_event_index(cpuc, event);
793
794         if (!(event->hw.state & PERF_HES_STOPPED)) {
795                 sparc_pmu_disable_event(cpuc, &event->hw, idx);
796                 event->hw.state |= PERF_HES_STOPPED;
797         }
798
799         if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
800                 sparc_perf_event_update(event, &event->hw, idx);
801                 event->hw.state |= PERF_HES_UPTODATE;
802         }
803 }
804
805 static void sparc_pmu_del(struct perf_event *event, int _flags)
806 {
807         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
808         unsigned long flags;
809         int i;
810
811         local_irq_save(flags);
812         perf_pmu_disable(event->pmu);
813
814         for (i = 0; i < cpuc->n_events; i++) {
815                 if (event == cpuc->event[i]) {
816                         /* Absorb the final count and turn off the
817                          * event.
818                          */
819                         sparc_pmu_stop(event, PERF_EF_UPDATE);
820
821                         /* Shift remaining entries down into
822                          * the existing slot.
823                          */
824                         while (++i < cpuc->n_events) {
825                                 cpuc->event[i - 1] = cpuc->event[i];
826                                 cpuc->events[i - 1] = cpuc->events[i];
827                                 cpuc->current_idx[i - 1] =
828                                         cpuc->current_idx[i];
829                         }
830
831                         perf_event_update_userpage(event);
832
833                         cpuc->n_events--;
834                         break;
835                 }
836         }
837
838         perf_pmu_enable(event->pmu);
839         local_irq_restore(flags);
840 }
841
842 static void sparc_pmu_read(struct perf_event *event)
843 {
844         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
845         int idx = active_event_index(cpuc, event);
846         struct hw_perf_event *hwc = &event->hw;
847
848         sparc_perf_event_update(event, hwc, idx);
849 }
850
851 static atomic_t active_events = ATOMIC_INIT(0);
852 static DEFINE_MUTEX(pmc_grab_mutex);
853
854 static void perf_stop_nmi_watchdog(void *unused)
855 {
856         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
857
858         stop_nmi_watchdog(NULL);
859         cpuc->pcr = pcr_ops->read();
860 }
861
862 void perf_event_grab_pmc(void)
863 {
864         if (atomic_inc_not_zero(&active_events))
865                 return;
866
867         mutex_lock(&pmc_grab_mutex);
868         if (atomic_read(&active_events) == 0) {
869                 if (atomic_read(&nmi_active) > 0) {
870                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
871                         BUG_ON(atomic_read(&nmi_active) != 0);
872                 }
873                 atomic_inc(&active_events);
874         }
875         mutex_unlock(&pmc_grab_mutex);
876 }
877
878 void perf_event_release_pmc(void)
879 {
880         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
881                 if (atomic_read(&nmi_active) == 0)
882                         on_each_cpu(start_nmi_watchdog, NULL, 1);
883                 mutex_unlock(&pmc_grab_mutex);
884         }
885 }
886
887 static const struct perf_event_map *sparc_map_cache_event(u64 config)
888 {
889         unsigned int cache_type, cache_op, cache_result;
890         const struct perf_event_map *pmap;
891
892         if (!sparc_pmu->cache_map)
893                 return ERR_PTR(-ENOENT);
894
895         cache_type = (config >>  0) & 0xff;
896         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
897                 return ERR_PTR(-EINVAL);
898
899         cache_op = (config >>  8) & 0xff;
900         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
901                 return ERR_PTR(-EINVAL);
902
903         cache_result = (config >> 16) & 0xff;
904         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
905                 return ERR_PTR(-EINVAL);
906
907         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
908
909         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
910                 return ERR_PTR(-ENOENT);
911
912         if (pmap->encoding == CACHE_OP_NONSENSE)
913                 return ERR_PTR(-EINVAL);
914
915         return pmap;
916 }
917
918 static void hw_perf_event_destroy(struct perf_event *event)
919 {
920         perf_event_release_pmc();
921 }
922
923 /* Make sure all events can be scheduled into the hardware at
924  * the same time.  This is simplified by the fact that we only
925  * need to support 2 simultaneous HW events.
926  *
927  * As a side effect, the evts[]->hw.idx values will be assigned
928  * on success.  These are pending indexes.  When the events are
929  * actually programmed into the chip, these values will propagate
930  * to the per-cpu cpuc->current_idx[] slots, see the code in
931  * maybe_change_configuration() for details.
932  */
933 static int sparc_check_constraints(struct perf_event **evts,
934                                    unsigned long *events, int n_ev)
935 {
936         u8 msk0 = 0, msk1 = 0;
937         int idx0 = 0;
938
939         /* This case is possible when we are invoked from
940          * hw_perf_group_sched_in().
941          */
942         if (!n_ev)
943                 return 0;
944
945         if (n_ev > MAX_HWEVENTS)
946                 return -1;
947
948         msk0 = perf_event_get_msk(events[0]);
949         if (n_ev == 1) {
950                 if (msk0 & PIC_LOWER)
951                         idx0 = 1;
952                 goto success;
953         }
954         BUG_ON(n_ev != 2);
955         msk1 = perf_event_get_msk(events[1]);
956
957         /* If both events can go on any counter, OK.  */
958         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
959             msk1 == (PIC_UPPER | PIC_LOWER))
960                 goto success;
961
962         /* If one event is limited to a specific counter,
963          * and the other can go on both, OK.
964          */
965         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
966             msk1 == (PIC_UPPER | PIC_LOWER)) {
967                 if (msk0 & PIC_LOWER)
968                         idx0 = 1;
969                 goto success;
970         }
971
972         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
973             msk0 == (PIC_UPPER | PIC_LOWER)) {
974                 if (msk1 & PIC_UPPER)
975                         idx0 = 1;
976                 goto success;
977         }
978
979         /* If the events are fixed to different counters, OK.  */
980         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
981             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
982                 if (msk0 & PIC_LOWER)
983                         idx0 = 1;
984                 goto success;
985         }
986
987         /* Otherwise, there is a conflict.  */
988         return -1;
989
990 success:
991         evts[0]->hw.idx = idx0;
992         if (n_ev == 2)
993                 evts[1]->hw.idx = idx0 ^ 1;
994         return 0;
995 }
996
997 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
998 {
999         int eu = 0, ek = 0, eh = 0;
1000         struct perf_event *event;
1001         int i, n, first;
1002
1003         n = n_prev + n_new;
1004         if (n <= 1)
1005                 return 0;
1006
1007         first = 1;
1008         for (i = 0; i < n; i++) {
1009                 event = evts[i];
1010                 if (first) {
1011                         eu = event->attr.exclude_user;
1012                         ek = event->attr.exclude_kernel;
1013                         eh = event->attr.exclude_hv;
1014                         first = 0;
1015                 } else if (event->attr.exclude_user != eu ||
1016                            event->attr.exclude_kernel != ek ||
1017                            event->attr.exclude_hv != eh) {
1018                         return -EAGAIN;
1019                 }
1020         }
1021
1022         return 0;
1023 }
1024
1025 static int collect_events(struct perf_event *group, int max_count,
1026                           struct perf_event *evts[], unsigned long *events,
1027                           int *current_idx)
1028 {
1029         struct perf_event *event;
1030         int n = 0;
1031
1032         if (!is_software_event(group)) {
1033                 if (n >= max_count)
1034                         return -1;
1035                 evts[n] = group;
1036                 events[n] = group->hw.event_base;
1037                 current_idx[n++] = PIC_NO_INDEX;
1038         }
1039         list_for_each_entry(event, &group->sibling_list, group_entry) {
1040                 if (!is_software_event(event) &&
1041                     event->state != PERF_EVENT_STATE_OFF) {
1042                         if (n >= max_count)
1043                                 return -1;
1044                         evts[n] = event;
1045                         events[n] = event->hw.event_base;
1046                         current_idx[n++] = PIC_NO_INDEX;
1047                 }
1048         }
1049         return n;
1050 }
1051
1052 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053 {
1054         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055         int n0, ret = -EAGAIN;
1056         unsigned long flags;
1057
1058         local_irq_save(flags);
1059         perf_pmu_disable(event->pmu);
1060
1061         n0 = cpuc->n_events;
1062         if (n0 >= MAX_HWEVENTS)
1063                 goto out;
1064
1065         cpuc->event[n0] = event;
1066         cpuc->events[n0] = event->hw.event_base;
1067         cpuc->current_idx[n0] = PIC_NO_INDEX;
1068
1069         event->hw.state = PERF_HES_UPTODATE;
1070         if (!(ef_flags & PERF_EF_START))
1071                 event->hw.state |= PERF_HES_STOPPED;
1072
1073         /*
1074          * If group events scheduling transaction was started,
1075          * skip the schedulability test here, it will be performed
1076          * at commit time(->commit_txn) as a whole
1077          */
1078         if (cpuc->group_flag & PERF_EVENT_TXN)
1079                 goto nocheck;
1080
1081         if (check_excludes(cpuc->event, n0, 1))
1082                 goto out;
1083         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084                 goto out;
1085
1086 nocheck:
1087         cpuc->n_events++;
1088         cpuc->n_added++;
1089
1090         ret = 0;
1091 out:
1092         perf_pmu_enable(event->pmu);
1093         local_irq_restore(flags);
1094         return ret;
1095 }
1096
1097 static int sparc_pmu_event_init(struct perf_event *event)
1098 {
1099         struct perf_event_attr *attr = &event->attr;
1100         struct perf_event *evts[MAX_HWEVENTS];
1101         struct hw_perf_event *hwc = &event->hw;
1102         unsigned long events[MAX_HWEVENTS];
1103         int current_idx_dmy[MAX_HWEVENTS];
1104         const struct perf_event_map *pmap;
1105         int n;
1106
1107         if (atomic_read(&nmi_active) < 0)
1108                 return -ENODEV;
1109
1110         /* does not support taken branch sampling */
1111         if (has_branch_stack(event))
1112                 return -EOPNOTSUPP;
1113
1114         switch (attr->type) {
1115         case PERF_TYPE_HARDWARE:
1116                 if (attr->config >= sparc_pmu->max_events)
1117                         return -EINVAL;
1118                 pmap = sparc_pmu->event_map(attr->config);
1119                 break;
1120
1121         case PERF_TYPE_HW_CACHE:
1122                 pmap = sparc_map_cache_event(attr->config);
1123                 if (IS_ERR(pmap))
1124                         return PTR_ERR(pmap);
1125                 break;
1126
1127         case PERF_TYPE_RAW:
1128                 pmap = NULL;
1129                 break;
1130
1131         default:
1132                 return -ENOENT;
1133
1134         }
1135
1136         if (pmap) {
1137                 hwc->event_base = perf_event_encode(pmap);
1138         } else {
1139                 /*
1140                  * User gives us "(encoding << 16) | pic_mask" for
1141                  * PERF_TYPE_RAW events.
1142                  */
1143                 hwc->event_base = attr->config;
1144         }
1145
1146         /* We save the enable bits in the config_base.  */
1147         hwc->config_base = sparc_pmu->irq_bit;
1148         if (!attr->exclude_user)
1149                 hwc->config_base |= PCR_UTRACE;
1150         if (!attr->exclude_kernel)
1151                 hwc->config_base |= PCR_STRACE;
1152         if (!attr->exclude_hv)
1153                 hwc->config_base |= sparc_pmu->hv_bit;
1154
1155         n = 0;
1156         if (event->group_leader != event) {
1157                 n = collect_events(event->group_leader,
1158                                    MAX_HWEVENTS - 1,
1159                                    evts, events, current_idx_dmy);
1160                 if (n < 0)
1161                         return -EINVAL;
1162         }
1163         events[n] = hwc->event_base;
1164         evts[n] = event;
1165
1166         if (check_excludes(evts, n, 1))
1167                 return -EINVAL;
1168
1169         if (sparc_check_constraints(evts, events, n + 1))
1170                 return -EINVAL;
1171
1172         hwc->idx = PIC_NO_INDEX;
1173
1174         /* Try to do all error checking before this point, as unwinding
1175          * state after grabbing the PMC is difficult.
1176          */
1177         perf_event_grab_pmc();
1178         event->destroy = hw_perf_event_destroy;
1179
1180         if (!hwc->sample_period) {
1181                 hwc->sample_period = MAX_PERIOD;
1182                 hwc->last_period = hwc->sample_period;
1183                 local64_set(&hwc->period_left, hwc->sample_period);
1184         }
1185
1186         return 0;
1187 }
1188
1189 /*
1190  * Start group events scheduling transaction
1191  * Set the flag to make pmu::enable() not perform the
1192  * schedulability test, it will be performed at commit time
1193  */
1194 static void sparc_pmu_start_txn(struct pmu *pmu)
1195 {
1196         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1197
1198         perf_pmu_disable(pmu);
1199         cpuhw->group_flag |= PERF_EVENT_TXN;
1200 }
1201
1202 /*
1203  * Stop group events scheduling transaction
1204  * Clear the flag and pmu::enable() will perform the
1205  * schedulability test.
1206  */
1207 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208 {
1209         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1210
1211         cpuhw->group_flag &= ~PERF_EVENT_TXN;
1212         perf_pmu_enable(pmu);
1213 }
1214
1215 /*
1216  * Commit group events scheduling transaction
1217  * Perform the group schedulability test as a whole
1218  * Return 0 if success
1219  */
1220 static int sparc_pmu_commit_txn(struct pmu *pmu)
1221 {
1222         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1223         int n;
1224
1225         if (!sparc_pmu)
1226                 return -EINVAL;
1227
1228         cpuc = &__get_cpu_var(cpu_hw_events);
1229         n = cpuc->n_events;
1230         if (check_excludes(cpuc->event, 0, n))
1231                 return -EINVAL;
1232         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1233                 return -EAGAIN;
1234
1235         cpuc->group_flag &= ~PERF_EVENT_TXN;
1236         perf_pmu_enable(pmu);
1237         return 0;
1238 }
1239
1240 static struct pmu pmu = {
1241         .pmu_enable     = sparc_pmu_enable,
1242         .pmu_disable    = sparc_pmu_disable,
1243         .event_init     = sparc_pmu_event_init,
1244         .add            = sparc_pmu_add,
1245         .del            = sparc_pmu_del,
1246         .start          = sparc_pmu_start,
1247         .stop           = sparc_pmu_stop,
1248         .read           = sparc_pmu_read,
1249         .start_txn      = sparc_pmu_start_txn,
1250         .cancel_txn     = sparc_pmu_cancel_txn,
1251         .commit_txn     = sparc_pmu_commit_txn,
1252 };
1253
1254 void perf_event_print_debug(void)
1255 {
1256         unsigned long flags;
1257         u64 pcr, pic;
1258         int cpu;
1259
1260         if (!sparc_pmu)
1261                 return;
1262
1263         local_irq_save(flags);
1264
1265         cpu = smp_processor_id();
1266
1267         pcr = pcr_ops->read();
1268         read_pic(pic);
1269
1270         pr_info("\n");
1271         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1272                 cpu, pcr, pic);
1273
1274         local_irq_restore(flags);
1275 }
1276
1277 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278                                             unsigned long cmd, void *__args)
1279 {
1280         struct die_args *args = __args;
1281         struct perf_sample_data data;
1282         struct cpu_hw_events *cpuc;
1283         struct pt_regs *regs;
1284         int i;
1285
1286         if (!atomic_read(&active_events))
1287                 return NOTIFY_DONE;
1288
1289         switch (cmd) {
1290         case DIE_NMI:
1291                 break;
1292
1293         default:
1294                 return NOTIFY_DONE;
1295         }
1296
1297         regs = args->regs;
1298
1299         cpuc = &__get_cpu_var(cpu_hw_events);
1300
1301         /* If the PMU has the TOE IRQ enable bits, we need to do a
1302          * dummy write to the %pcr to clear the overflow bits and thus
1303          * the interrupt.
1304          *
1305          * Do this before we peek at the counters to determine
1306          * overflow so we don't lose any events.
1307          */
1308         if (sparc_pmu->irq_bit)
1309                 pcr_ops->write(cpuc->pcr);
1310
1311         for (i = 0; i < cpuc->n_events; i++) {
1312                 struct perf_event *event = cpuc->event[i];
1313                 int idx = cpuc->current_idx[i];
1314                 struct hw_perf_event *hwc;
1315                 u64 val;
1316
1317                 hwc = &event->hw;
1318                 val = sparc_perf_event_update(event, hwc, idx);
1319                 if (val & (1ULL << 31))
1320                         continue;
1321
1322                 perf_sample_data_init(&data, 0, hwc->last_period);
1323                 if (!sparc_perf_event_set_period(event, hwc, idx))
1324                         continue;
1325
1326                 if (perf_event_overflow(event, &data, regs))
1327                         sparc_pmu_stop(event, 0);
1328         }
1329
1330         return NOTIFY_STOP;
1331 }
1332
1333 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1334         .notifier_call          = perf_event_nmi_handler,
1335 };
1336
1337 static bool __init supported_pmu(void)
1338 {
1339         if (!strcmp(sparc_pmu_type, "ultra3") ||
1340             !strcmp(sparc_pmu_type, "ultra3+") ||
1341             !strcmp(sparc_pmu_type, "ultra3i") ||
1342             !strcmp(sparc_pmu_type, "ultra4+")) {
1343                 sparc_pmu = &ultra3_pmu;
1344                 return true;
1345         }
1346         if (!strcmp(sparc_pmu_type, "niagara")) {
1347                 sparc_pmu = &niagara1_pmu;
1348                 return true;
1349         }
1350         if (!strcmp(sparc_pmu_type, "niagara2") ||
1351             !strcmp(sparc_pmu_type, "niagara3")) {
1352                 sparc_pmu = &niagara2_pmu;
1353                 return true;
1354         }
1355         return false;
1356 }
1357
1358 int __init init_hw_perf_events(void)
1359 {
1360         pr_info("Performance events: ");
1361
1362         if (!supported_pmu()) {
1363                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1364                 return 0;
1365         }
1366
1367         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1368
1369         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1370         register_die_notifier(&perf_event_nmi_notifier);
1371
1372         return 0;
1373 }
1374 early_initcall(init_hw_perf_events);
1375
1376 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1377                            struct pt_regs *regs)
1378 {
1379         unsigned long ksp, fp;
1380 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381         int graph = 0;
1382 #endif
1383
1384         stack_trace_flush();
1385
1386         perf_callchain_store(entry, regs->tpc);
1387
1388         ksp = regs->u_regs[UREG_I6];
1389         fp = ksp + STACK_BIAS;
1390         do {
1391                 struct sparc_stackf *sf;
1392                 struct pt_regs *regs;
1393                 unsigned long pc;
1394
1395                 if (!kstack_valid(current_thread_info(), fp))
1396                         break;
1397
1398                 sf = (struct sparc_stackf *) fp;
1399                 regs = (struct pt_regs *) (sf + 1);
1400
1401                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1402                         if (user_mode(regs))
1403                                 break;
1404                         pc = regs->tpc;
1405                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1406                 } else {
1407                         pc = sf->callers_pc;
1408                         fp = (unsigned long)sf->fp + STACK_BIAS;
1409                 }
1410                 perf_callchain_store(entry, pc);
1411 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1412                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1413                         int index = current->curr_ret_stack;
1414                         if (current->ret_stack && index >= graph) {
1415                                 pc = current->ret_stack[index - graph].ret;
1416                                 perf_callchain_store(entry, pc);
1417                                 graph++;
1418                         }
1419                 }
1420 #endif
1421         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1422 }
1423
1424 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1425                                    struct pt_regs *regs)
1426 {
1427         unsigned long ufp;
1428
1429         perf_callchain_store(entry, regs->tpc);
1430
1431         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1432         do {
1433                 struct sparc_stackf *usf, sf;
1434                 unsigned long pc;
1435
1436                 usf = (struct sparc_stackf *) ufp;
1437                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1438                         break;
1439
1440                 pc = sf.callers_pc;
1441                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1442                 perf_callchain_store(entry, pc);
1443         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1444 }
1445
1446 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1447                                    struct pt_regs *regs)
1448 {
1449         unsigned long ufp;
1450
1451         perf_callchain_store(entry, regs->tpc);
1452
1453         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1454         do {
1455                 struct sparc_stackf32 *usf, sf;
1456                 unsigned long pc;
1457
1458                 usf = (struct sparc_stackf32 *) ufp;
1459                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1460                         break;
1461
1462                 pc = sf.callers_pc;
1463                 ufp = (unsigned long)sf.fp;
1464                 perf_callchain_store(entry, pc);
1465         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1466 }
1467
1468 void
1469 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1470 {
1471         flushw_user();
1472         if (test_thread_flag(TIF_32BIT))
1473                 perf_callchain_user_32(entry, regs);
1474         else
1475                 perf_callchain_user_64(entry, regs);
1476 }