]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/kernel/process_64.c
Merge remote-tracking branch 'userns/for-next'
[karo-tx-linux.git] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 static void sparc64_yield(int cpu)
56 {
57         if (tlb_type != hypervisor) {
58                 touch_nmi_watchdog();
59                 return;
60         }
61
62         clear_thread_flag(TIF_POLLING_NRFLAG);
63         smp_mb__after_clear_bit();
64
65         while (!need_resched() && !cpu_is_offline(cpu)) {
66                 unsigned long pstate;
67
68                 /* Disable interrupts. */
69                 __asm__ __volatile__(
70                         "rdpr %%pstate, %0\n\t"
71                         "andn %0, %1, %0\n\t"
72                         "wrpr %0, %%g0, %%pstate"
73                         : "=&r" (pstate)
74                         : "i" (PSTATE_IE));
75
76                 if (!need_resched() && !cpu_is_offline(cpu))
77                         sun4v_cpu_yield();
78
79                 /* Re-enable interrupts. */
80                 __asm__ __volatile__(
81                         "rdpr %%pstate, %0\n\t"
82                         "or %0, %1, %0\n\t"
83                         "wrpr %0, %%g0, %%pstate"
84                         : "=&r" (pstate)
85                         : "i" (PSTATE_IE));
86         }
87
88         set_thread_flag(TIF_POLLING_NRFLAG);
89 }
90
91 /* The idle loop on sparc64. */
92 void cpu_idle(void)
93 {
94         int cpu = smp_processor_id();
95
96         set_thread_flag(TIF_POLLING_NRFLAG);
97
98         while(1) {
99                 tick_nohz_idle_enter();
100                 rcu_idle_enter();
101
102                 while (!need_resched() && !cpu_is_offline(cpu))
103                         sparc64_yield(cpu);
104
105                 rcu_idle_exit();
106                 tick_nohz_idle_exit();
107
108 #ifdef CONFIG_HOTPLUG_CPU
109                 if (cpu_is_offline(cpu)) {
110                         sched_preempt_enable_no_resched();
111                         cpu_play_dead();
112                 }
113 #endif
114                 schedule_preempt_disabled();
115         }
116 }
117
118 #ifdef CONFIG_COMPAT
119 static void show_regwindow32(struct pt_regs *regs)
120 {
121         struct reg_window32 __user *rw;
122         struct reg_window32 r_w;
123         mm_segment_t old_fs;
124         
125         __asm__ __volatile__ ("flushw");
126         rw = compat_ptr((unsigned)regs->u_regs[14]);
127         old_fs = get_fs();
128         set_fs (USER_DS);
129         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
130                 set_fs (old_fs);
131                 return;
132         }
133
134         set_fs (old_fs);                        
135         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
136                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
137                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
138                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
139         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
140                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
141                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
142                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
143 }
144 #else
145 #define show_regwindow32(regs)  do { } while (0)
146 #endif
147
148 static void show_regwindow(struct pt_regs *regs)
149 {
150         struct reg_window __user *rw;
151         struct reg_window *rwk;
152         struct reg_window r_w;
153         mm_segment_t old_fs;
154
155         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
156                 __asm__ __volatile__ ("flushw");
157                 rw = (struct reg_window __user *)
158                         (regs->u_regs[14] + STACK_BIAS);
159                 rwk = (struct reg_window *)
160                         (regs->u_regs[14] + STACK_BIAS);
161                 if (!(regs->tstate & TSTATE_PRIV)) {
162                         old_fs = get_fs();
163                         set_fs (USER_DS);
164                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
165                                 set_fs (old_fs);
166                                 return;
167                         }
168                         rwk = &r_w;
169                         set_fs (old_fs);                        
170                 }
171         } else {
172                 show_regwindow32(regs);
173                 return;
174         }
175         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
176                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
177         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
178                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
179         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
180                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
181         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
182                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
183         if (regs->tstate & TSTATE_PRIV)
184                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
185 }
186
187 void show_regs(struct pt_regs *regs)
188 {
189         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
190                regs->tpc, regs->tnpc, regs->y, print_tainted());
191         printk("TPC: <%pS>\n", (void *) regs->tpc);
192         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
193                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
194                regs->u_regs[3]);
195         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
196                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
197                regs->u_regs[7]);
198         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
199                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
200                regs->u_regs[11]);
201         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
202                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
203                regs->u_regs[15]);
204         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
205         show_regwindow(regs);
206         show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
207 }
208
209 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
210 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
211
212 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
213                               int this_cpu)
214 {
215         struct global_reg_snapshot *rp;
216
217         flushw_all();
218
219         rp = &global_cpu_snapshot[this_cpu].reg;
220
221         rp->tstate = regs->tstate;
222         rp->tpc = regs->tpc;
223         rp->tnpc = regs->tnpc;
224         rp->o7 = regs->u_regs[UREG_I7];
225
226         if (regs->tstate & TSTATE_PRIV) {
227                 struct reg_window *rw;
228
229                 rw = (struct reg_window *)
230                         (regs->u_regs[UREG_FP] + STACK_BIAS);
231                 if (kstack_valid(tp, (unsigned long) rw)) {
232                         rp->i7 = rw->ins[7];
233                         rw = (struct reg_window *)
234                                 (rw->ins[6] + STACK_BIAS);
235                         if (kstack_valid(tp, (unsigned long) rw))
236                                 rp->rpc = rw->ins[7];
237                 }
238         } else {
239                 rp->i7 = 0;
240                 rp->rpc = 0;
241         }
242         rp->thread = tp;
243 }
244
245 /* In order to avoid hangs we do not try to synchronize with the
246  * global register dump client cpus.  The last store they make is to
247  * the thread pointer, so do a short poll waiting for that to become
248  * non-NULL.
249  */
250 static void __global_reg_poll(struct global_reg_snapshot *gp)
251 {
252         int limit = 0;
253
254         while (!gp->thread && ++limit < 100) {
255                 barrier();
256                 udelay(1);
257         }
258 }
259
260 void arch_trigger_all_cpu_backtrace(void)
261 {
262         struct thread_info *tp = current_thread_info();
263         struct pt_regs *regs = get_irq_regs();
264         unsigned long flags;
265         int this_cpu, cpu;
266
267         if (!regs)
268                 regs = tp->kregs;
269
270         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
271
272         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
273
274         this_cpu = raw_smp_processor_id();
275
276         __global_reg_self(tp, regs, this_cpu);
277
278         smp_fetch_global_regs();
279
280         for_each_online_cpu(cpu) {
281                 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
282
283                 __global_reg_poll(gp);
284
285                 tp = gp->thread;
286                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
287                        (cpu == this_cpu ? '*' : ' '), cpu,
288                        gp->tstate, gp->tpc, gp->tnpc,
289                        ((tp && tp->task) ? tp->task->comm : "NULL"),
290                        ((tp && tp->task) ? tp->task->pid : -1));
291
292                 if (gp->tstate & TSTATE_PRIV) {
293                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
294                                (void *) gp->tpc,
295                                (void *) gp->o7,
296                                (void *) gp->i7,
297                                (void *) gp->rpc);
298                 } else {
299                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
300                                gp->tpc, gp->o7, gp->i7, gp->rpc);
301                 }
302         }
303
304         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307 }
308
309 #ifdef CONFIG_MAGIC_SYSRQ
310
311 static void sysrq_handle_globreg(int key)
312 {
313         arch_trigger_all_cpu_backtrace();
314 }
315
316 static struct sysrq_key_op sparc_globalreg_op = {
317         .handler        = sysrq_handle_globreg,
318         .help_msg       = "global-regs(Y)",
319         .action_msg     = "Show Global CPU Regs",
320 };
321
322 static void __global_pmu_self(int this_cpu)
323 {
324         struct global_pmu_snapshot *pp;
325         int i, num;
326
327         pp = &global_cpu_snapshot[this_cpu].pmu;
328
329         num = 1;
330         if (tlb_type == hypervisor &&
331             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
332                 num = 4;
333
334         for (i = 0; i < num; i++) {
335                 pp->pcr[i] = pcr_ops->read_pcr(i);
336                 pp->pic[i] = pcr_ops->read_pic(i);
337         }
338 }
339
340 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
341 {
342         int limit = 0;
343
344         while (!pp->pcr[0] && ++limit < 100) {
345                 barrier();
346                 udelay(1);
347         }
348 }
349
350 static void pmu_snapshot_all_cpus(void)
351 {
352         unsigned long flags;
353         int this_cpu, cpu;
354
355         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
356
357         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
358
359         this_cpu = raw_smp_processor_id();
360
361         __global_pmu_self(this_cpu);
362
363         smp_fetch_global_pmu();
364
365         for_each_online_cpu(cpu) {
366                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
367
368                 __global_pmu_poll(pp);
369
370                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
371                        (cpu == this_cpu ? '*' : ' '), cpu,
372                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
373                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
374         }
375
376         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
377
378         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
379 }
380
381 static void sysrq_handle_globpmu(int key)
382 {
383         pmu_snapshot_all_cpus();
384 }
385
386 static struct sysrq_key_op sparc_globalpmu_op = {
387         .handler        = sysrq_handle_globpmu,
388         .help_msg       = "global-pmu(X)",
389         .action_msg     = "Show Global PMU Regs",
390 };
391
392 static int __init sparc_sysrq_init(void)
393 {
394         int ret = register_sysrq_key('y', &sparc_globalreg_op);
395
396         if (!ret)
397                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
398         return ret;
399 }
400
401 core_initcall(sparc_sysrq_init);
402
403 #endif
404
405 unsigned long thread_saved_pc(struct task_struct *tsk)
406 {
407         struct thread_info *ti = task_thread_info(tsk);
408         unsigned long ret = 0xdeadbeefUL;
409         
410         if (ti && ti->ksp) {
411                 unsigned long *sp;
412                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
413                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
414                     sp[14]) {
415                         unsigned long *fp;
416                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
417                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
418                                 ret = fp[15];
419                 }
420         }
421         return ret;
422 }
423
424 /* Free current thread data structures etc.. */
425 void exit_thread(void)
426 {
427         struct thread_info *t = current_thread_info();
428
429         if (t->utraps) {
430                 if (t->utraps[0] < 2)
431                         kfree (t->utraps);
432                 else
433                         t->utraps[0]--;
434         }
435 }
436
437 void flush_thread(void)
438 {
439         struct thread_info *t = current_thread_info();
440         struct mm_struct *mm;
441
442         mm = t->task->mm;
443         if (mm)
444                 tsb_context_switch(mm);
445
446         set_thread_wsaved(0);
447
448         /* Clear FPU register state. */
449         t->fpsaved[0] = 0;
450 }
451
452 /* It's a bit more tricky when 64-bit tasks are involved... */
453 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
454 {
455         bool stack_64bit = test_thread_64bit_stack(psp);
456         unsigned long fp, distance, rval;
457
458         if (stack_64bit) {
459                 csp += STACK_BIAS;
460                 psp += STACK_BIAS;
461                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
462                 fp += STACK_BIAS;
463                 if (test_thread_flag(TIF_32BIT))
464                         fp &= 0xffffffff;
465         } else
466                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
467
468         /* Now align the stack as this is mandatory in the Sparc ABI
469          * due to how register windows work.  This hides the
470          * restriction from thread libraries etc.
471          */
472         csp &= ~15UL;
473
474         distance = fp - psp;
475         rval = (csp - distance);
476         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
477                 rval = 0;
478         else if (!stack_64bit) {
479                 if (put_user(((u32)csp),
480                              &(((struct reg_window32 __user *)rval)->ins[6])))
481                         rval = 0;
482         } else {
483                 if (put_user(((u64)csp - STACK_BIAS),
484                              &(((struct reg_window __user *)rval)->ins[6])))
485                         rval = 0;
486                 else
487                         rval = rval - STACK_BIAS;
488         }
489
490         return rval;
491 }
492
493 /* Standard stuff. */
494 static inline void shift_window_buffer(int first_win, int last_win,
495                                        struct thread_info *t)
496 {
497         int i;
498
499         for (i = first_win; i < last_win; i++) {
500                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
501                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
502                        sizeof(struct reg_window));
503         }
504 }
505
506 void synchronize_user_stack(void)
507 {
508         struct thread_info *t = current_thread_info();
509         unsigned long window;
510
511         flush_user_windows();
512         if ((window = get_thread_wsaved()) != 0) {
513                 window -= 1;
514                 do {
515                         struct reg_window *rwin = &t->reg_window[window];
516                         int winsize = sizeof(struct reg_window);
517                         unsigned long sp;
518
519                         sp = t->rwbuf_stkptrs[window];
520
521                         if (test_thread_64bit_stack(sp))
522                                 sp += STACK_BIAS;
523                         else
524                                 winsize = sizeof(struct reg_window32);
525
526                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
527                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
528                                 set_thread_wsaved(get_thread_wsaved() - 1);
529                         }
530                 } while (window--);
531         }
532 }
533
534 static void stack_unaligned(unsigned long sp)
535 {
536         siginfo_t info;
537
538         info.si_signo = SIGBUS;
539         info.si_errno = 0;
540         info.si_code = BUS_ADRALN;
541         info.si_addr = (void __user *) sp;
542         info.si_trapno = 0;
543         force_sig_info(SIGBUS, &info, current);
544 }
545
546 void fault_in_user_windows(void)
547 {
548         struct thread_info *t = current_thread_info();
549         unsigned long window;
550
551         flush_user_windows();
552         window = get_thread_wsaved();
553
554         if (likely(window != 0)) {
555                 window -= 1;
556                 do {
557                         struct reg_window *rwin = &t->reg_window[window];
558                         int winsize = sizeof(struct reg_window);
559                         unsigned long sp;
560
561                         sp = t->rwbuf_stkptrs[window];
562
563                         if (test_thread_64bit_stack(sp))
564                                 sp += STACK_BIAS;
565                         else
566                                 winsize = sizeof(struct reg_window32);
567
568                         if (unlikely(sp & 0x7UL))
569                                 stack_unaligned(sp);
570
571                         if (unlikely(copy_to_user((char __user *)sp,
572                                                   rwin, winsize)))
573                                 goto barf;
574                 } while (window--);
575         }
576         set_thread_wsaved(0);
577         return;
578
579 barf:
580         set_thread_wsaved(window + 1);
581         do_exit(SIGILL);
582 }
583
584 asmlinkage long sparc_do_fork(unsigned long clone_flags,
585                               unsigned long stack_start,
586                               struct pt_regs *regs,
587                               unsigned long stack_size)
588 {
589         int __user *parent_tid_ptr, *child_tid_ptr;
590         unsigned long orig_i1 = regs->u_regs[UREG_I1];
591         long ret;
592
593 #ifdef CONFIG_COMPAT
594         if (test_thread_flag(TIF_32BIT)) {
595                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
596                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
597         } else
598 #endif
599         {
600                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
601                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
602         }
603
604         ret = do_fork(clone_flags, stack_start, stack_size,
605                       parent_tid_ptr, child_tid_ptr);
606
607         /* If we get an error and potentially restart the system
608          * call, we're screwed because copy_thread() clobbered
609          * the parent's %o1.  So detect that case and restore it
610          * here.
611          */
612         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
613                 regs->u_regs[UREG_I1] = orig_i1;
614
615         return ret;
616 }
617
618 /* Copy a Sparc thread.  The fork() return value conventions
619  * under SunOS are nothing short of bletcherous:
620  * Parent -->  %o0 == childs  pid, %o1 == 0
621  * Child  -->  %o0 == parents pid, %o1 == 1
622  */
623 int copy_thread(unsigned long clone_flags, unsigned long sp,
624                 unsigned long arg, struct task_struct *p)
625 {
626         struct thread_info *t = task_thread_info(p);
627         struct pt_regs *regs = current_pt_regs();
628         struct sparc_stackf *parent_sf;
629         unsigned long child_stack_sz;
630         char *child_trap_frame;
631
632         /* Calculate offset to stack_frame & pt_regs */
633         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
634         child_trap_frame = (task_stack_page(p) +
635                             (THREAD_SIZE - child_stack_sz));
636
637         t->new_child = 1;
638         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
639         t->kregs = (struct pt_regs *) (child_trap_frame +
640                                        sizeof(struct sparc_stackf));
641         t->fpsaved[0] = 0;
642
643         if (unlikely(p->flags & PF_KTHREAD)) {
644                 memset(child_trap_frame, 0, child_stack_sz);
645                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
646                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
647                 t->current_ds = ASI_P;
648                 t->kregs->u_regs[UREG_G1] = sp; /* function */
649                 t->kregs->u_regs[UREG_G2] = arg;
650                 return 0;
651         }
652
653         parent_sf = ((struct sparc_stackf *) regs) - 1;
654         memcpy(child_trap_frame, parent_sf, child_stack_sz);
655         if (t->flags & _TIF_32BIT) {
656                 sp &= 0x00000000ffffffffUL;
657                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
658         }
659         t->kregs->u_regs[UREG_FP] = sp;
660         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
661                 (regs->tstate + 1) & TSTATE_CWP;
662         t->current_ds = ASI_AIUS;
663         if (sp != regs->u_regs[UREG_FP]) {
664                 unsigned long csp;
665
666                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
667                 if (!csp)
668                         return -EFAULT;
669                 t->kregs->u_regs[UREG_FP] = csp;
670         }
671         if (t->utraps)
672                 t->utraps[0]++;
673
674         /* Set the return value for the child. */
675         t->kregs->u_regs[UREG_I0] = current->pid;
676         t->kregs->u_regs[UREG_I1] = 1;
677
678         /* Set the second return value for the parent. */
679         regs->u_regs[UREG_I1] = 0;
680
681         if (clone_flags & CLONE_SETTLS)
682                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
683
684         return 0;
685 }
686
687 typedef struct {
688         union {
689                 unsigned int    pr_regs[32];
690                 unsigned long   pr_dregs[16];
691         } pr_fr;
692         unsigned int __unused;
693         unsigned int    pr_fsr;
694         unsigned char   pr_qcnt;
695         unsigned char   pr_q_entrysize;
696         unsigned char   pr_en;
697         unsigned int    pr_q[64];
698 } elf_fpregset_t32;
699
700 /*
701  * fill in the fpu structure for a core dump.
702  */
703 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
704 {
705         unsigned long *kfpregs = current_thread_info()->fpregs;
706         unsigned long fprs = current_thread_info()->fpsaved[0];
707
708         if (test_thread_flag(TIF_32BIT)) {
709                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
710
711                 if (fprs & FPRS_DL)
712                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
713                                sizeof(unsigned int) * 32);
714                 else
715                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
716                                sizeof(unsigned int) * 32);
717                 fpregs32->pr_qcnt = 0;
718                 fpregs32->pr_q_entrysize = 8;
719                 memset(&fpregs32->pr_q[0], 0,
720                        (sizeof(unsigned int) * 64));
721                 if (fprs & FPRS_FEF) {
722                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
723                         fpregs32->pr_en = 1;
724                 } else {
725                         fpregs32->pr_fsr = 0;
726                         fpregs32->pr_en = 0;
727                 }
728         } else {
729                 if(fprs & FPRS_DL)
730                         memcpy(&fpregs->pr_regs[0], kfpregs,
731                                sizeof(unsigned int) * 32);
732                 else
733                         memset(&fpregs->pr_regs[0], 0,
734                                sizeof(unsigned int) * 32);
735                 if(fprs & FPRS_DU)
736                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
737                                sizeof(unsigned int) * 32);
738                 else
739                         memset(&fpregs->pr_regs[16], 0,
740                                sizeof(unsigned int) * 32);
741                 if(fprs & FPRS_FEF) {
742                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
743                         fpregs->pr_gsr = current_thread_info()->gsr[0];
744                 } else {
745                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
746                 }
747                 fpregs->pr_fprs = fprs;
748         }
749         return 1;
750 }
751 EXPORT_SYMBOL(dump_fpu);
752
753 unsigned long get_wchan(struct task_struct *task)
754 {
755         unsigned long pc, fp, bias = 0;
756         struct thread_info *tp;
757         struct reg_window *rw;
758         unsigned long ret = 0;
759         int count = 0; 
760
761         if (!task || task == current ||
762             task->state == TASK_RUNNING)
763                 goto out;
764
765         tp = task_thread_info(task);
766         bias = STACK_BIAS;
767         fp = task_thread_info(task)->ksp + bias;
768
769         do {
770                 if (!kstack_valid(tp, fp))
771                         break;
772                 rw = (struct reg_window *) fp;
773                 pc = rw->ins[7];
774                 if (!in_sched_functions(pc)) {
775                         ret = pc;
776                         goto out;
777                 }
778                 fp = rw->ins[6] + bias;
779         } while (++count < 16);
780
781 out:
782         return ret;
783 }