]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/sparc/kernel/smp_64.c
x86_64: fix incorrect comments
[mv-sheeva.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24 #include <linux/cpu.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32 #include <asm/hvtramp.h>
33 #include <asm/io.h>
34 #include <asm/timer.h>
35
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/oplib.h>
41 #include <asm/uaccess.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
49
50 int sparc64_multi_core __read_mostly;
51
52 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
53 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
54         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
55
56 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
57 EXPORT_SYMBOL(cpu_core_map);
58
59 static cpumask_t smp_commenced_mask;
60
61 void smp_info(struct seq_file *m)
62 {
63         int i;
64         
65         seq_printf(m, "State:\n");
66         for_each_online_cpu(i)
67                 seq_printf(m, "CPU%d:\t\tonline\n", i);
68 }
69
70 void smp_bogo(struct seq_file *m)
71 {
72         int i;
73         
74         for_each_online_cpu(i)
75                 seq_printf(m,
76                            "Cpu%dClkTck\t: %016lx\n",
77                            i, cpu_data(i).clock_tick);
78 }
79
80 extern void setup_sparc64_timer(void);
81
82 static volatile unsigned long callin_flag = 0;
83
84 void __cpuinit smp_callin(void)
85 {
86         int cpuid = hard_smp_processor_id();
87
88         __local_per_cpu_offset = __per_cpu_offset(cpuid);
89
90         if (tlb_type == hypervisor)
91                 sun4v_ktsb_register();
92
93         __flush_tlb_all();
94
95         setup_sparc64_timer();
96
97         if (cheetah_pcache_forced_on)
98                 cheetah_enable_pcache();
99
100         local_irq_enable();
101
102         callin_flag = 1;
103         __asm__ __volatile__("membar #Sync\n\t"
104                              "flush  %%g6" : : : "memory");
105
106         /* Clear this or we will die instantly when we
107          * schedule back to this idler...
108          */
109         current_thread_info()->new_child = 0;
110
111         /* Attach to the address space of init_task. */
112         atomic_inc(&init_mm.mm_count);
113         current->active_mm = &init_mm;
114
115         /* inform the notifiers about the new cpu */
116         notify_cpu_starting(cpuid);
117
118         while (!cpu_isset(cpuid, smp_commenced_mask))
119                 rmb();
120
121         ipi_call_lock();
122         cpu_set(cpuid, cpu_online_map);
123         ipi_call_unlock();
124
125         /* idle thread is expected to have preempt disabled */
126         preempt_disable();
127 }
128
129 void cpu_panic(void)
130 {
131         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132         panic("SMP bolixed\n");
133 }
134
135 /* This tick register synchronization scheme is taken entirely from
136  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
137  *
138  * The only change I've made is to rework it so that the master
139  * initiates the synchonization instead of the slave. -DaveM
140  */
141
142 #define MASTER  0
143 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
144
145 #define NUM_ROUNDS      64      /* magic value */
146 #define NUM_ITERS       5       /* likewise */
147
148 static DEFINE_SPINLOCK(itc_sync_lock);
149 static unsigned long go[SLAVE + 1];
150
151 #define DEBUG_TICK_SYNC 0
152
153 static inline long get_delta (long *rt, long *master)
154 {
155         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156         unsigned long tcenter, t0, t1, tm;
157         unsigned long i;
158
159         for (i = 0; i < NUM_ITERS; i++) {
160                 t0 = tick_ops->get_tick();
161                 go[MASTER] = 1;
162                 membar_safe("#StoreLoad");
163                 while (!(tm = go[SLAVE]))
164                         rmb();
165                 go[SLAVE] = 0;
166                 wmb();
167                 t1 = tick_ops->get_tick();
168
169                 if (t1 - t0 < best_t1 - best_t0)
170                         best_t0 = t0, best_t1 = t1, best_tm = tm;
171         }
172
173         *rt = best_t1 - best_t0;
174         *master = best_tm - best_t0;
175
176         /* average best_t0 and best_t1 without overflow: */
177         tcenter = (best_t0/2 + best_t1/2);
178         if (best_t0 % 2 + best_t1 % 2 == 2)
179                 tcenter++;
180         return tcenter - best_tm;
181 }
182
183 void smp_synchronize_tick_client(void)
184 {
185         long i, delta, adj, adjust_latency = 0, done = 0;
186         unsigned long flags, rt, master_time_stamp, bound;
187 #if DEBUG_TICK_SYNC
188         struct {
189                 long rt;        /* roundtrip time */
190                 long master;    /* master's timestamp */
191                 long diff;      /* difference between midpoint and master's timestamp */
192                 long lat;       /* estimate of itc adjustment latency */
193         } t[NUM_ROUNDS];
194 #endif
195
196         go[MASTER] = 1;
197
198         while (go[MASTER])
199                 rmb();
200
201         local_irq_save(flags);
202         {
203                 for (i = 0; i < NUM_ROUNDS; i++) {
204                         delta = get_delta(&rt, &master_time_stamp);
205                         if (delta == 0) {
206                                 done = 1;       /* let's lock on to this... */
207                                 bound = rt;
208                         }
209
210                         if (!done) {
211                                 if (i > 0) {
212                                         adjust_latency += -delta;
213                                         adj = -delta + adjust_latency/4;
214                                 } else
215                                         adj = -delta;
216
217                                 tick_ops->add_tick(adj);
218                         }
219 #if DEBUG_TICK_SYNC
220                         t[i].rt = rt;
221                         t[i].master = master_time_stamp;
222                         t[i].diff = delta;
223                         t[i].lat = adjust_latency/4;
224 #endif
225                 }
226         }
227         local_irq_restore(flags);
228
229 #if DEBUG_TICK_SYNC
230         for (i = 0; i < NUM_ROUNDS; i++)
231                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
233 #endif
234
235         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
236                "(last diff %ld cycles, maxerr %lu cycles)\n",
237                smp_processor_id(), delta, rt);
238 }
239
240 static void smp_start_sync_tick_client(int cpu);
241
242 static void smp_synchronize_one_tick(int cpu)
243 {
244         unsigned long flags, i;
245
246         go[MASTER] = 0;
247
248         smp_start_sync_tick_client(cpu);
249
250         /* wait for client to be ready */
251         while (!go[MASTER])
252                 rmb();
253
254         /* now let the client proceed into his loop */
255         go[MASTER] = 0;
256         membar_safe("#StoreLoad");
257
258         spin_lock_irqsave(&itc_sync_lock, flags);
259         {
260                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
261                         while (!go[MASTER])
262                                 rmb();
263                         go[MASTER] = 0;
264                         wmb();
265                         go[SLAVE] = tick_ops->get_tick();
266                         membar_safe("#StoreLoad");
267                 }
268         }
269         spin_unlock_irqrestore(&itc_sync_lock, flags);
270 }
271
272 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
273 /* XXX Put this in some common place. XXX */
274 static unsigned long kimage_addr_to_ra(void *p)
275 {
276         unsigned long val = (unsigned long) p;
277
278         return kern_base + (val - KERNBASE);
279 }
280
281 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
282 {
283         extern unsigned long sparc64_ttable_tl0;
284         extern unsigned long kern_locked_tte_data;
285         struct hvtramp_descr *hdesc;
286         unsigned long trampoline_ra;
287         struct trap_per_cpu *tb;
288         u64 tte_vaddr, tte_data;
289         unsigned long hv_err;
290         int i;
291
292         hdesc = kzalloc(sizeof(*hdesc) +
293                         (sizeof(struct hvtramp_mapping) *
294                          num_kernel_image_mappings - 1),
295                         GFP_KERNEL);
296         if (!hdesc) {
297                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
298                        "hvtramp_descr.\n");
299                 return;
300         }
301
302         hdesc->cpu = cpu;
303         hdesc->num_mappings = num_kernel_image_mappings;
304
305         tb = &trap_block[cpu];
306         tb->hdesc = hdesc;
307
308         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
309         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
310
311         hdesc->thread_reg = thread_reg;
312
313         tte_vaddr = (unsigned long) KERNBASE;
314         tte_data = kern_locked_tte_data;
315
316         for (i = 0; i < hdesc->num_mappings; i++) {
317                 hdesc->maps[i].vaddr = tte_vaddr;
318                 hdesc->maps[i].tte   = tte_data;
319                 tte_vaddr += 0x400000;
320                 tte_data  += 0x400000;
321         }
322
323         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
324
325         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
326                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
327                                  __pa(hdesc));
328         if (hv_err)
329                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
330                        "gives error %lu\n", hv_err);
331 }
332 #endif
333
334 extern unsigned long sparc64_cpu_startup;
335
336 /* The OBP cpu startup callback truncates the 3rd arg cookie to
337  * 32-bits (I think) so to be safe we have it read the pointer
338  * contained here so we work on >4GB machines. -DaveM
339  */
340 static struct thread_info *cpu_new_thread = NULL;
341
342 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
343 {
344         struct trap_per_cpu *tb = &trap_block[cpu];
345         unsigned long entry =
346                 (unsigned long)(&sparc64_cpu_startup);
347         unsigned long cookie =
348                 (unsigned long)(&cpu_new_thread);
349         struct task_struct *p;
350         int timeout, ret;
351
352         p = fork_idle(cpu);
353         if (IS_ERR(p))
354                 return PTR_ERR(p);
355         callin_flag = 0;
356         cpu_new_thread = task_thread_info(p);
357
358         if (tlb_type == hypervisor) {
359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360                 if (ldom_domaining_enabled)
361                         ldom_startcpu_cpuid(cpu,
362                                             (unsigned long) cpu_new_thread);
363                 else
364 #endif
365                         prom_startcpu_cpuid(cpu, entry, cookie);
366         } else {
367                 struct device_node *dp = of_find_node_by_cpuid(cpu);
368
369                 prom_startcpu(dp->node, entry, cookie);
370         }
371
372         for (timeout = 0; timeout < 50000; timeout++) {
373                 if (callin_flag)
374                         break;
375                 udelay(100);
376         }
377
378         if (callin_flag) {
379                 ret = 0;
380         } else {
381                 printk("Processor %d is stuck.\n", cpu);
382                 ret = -ENODEV;
383         }
384         cpu_new_thread = NULL;
385
386         if (tb->hdesc) {
387                 kfree(tb->hdesc);
388                 tb->hdesc = NULL;
389         }
390
391         return ret;
392 }
393
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396         u64 result, target;
397         int stuck, tmp;
398
399         if (this_is_starfire) {
400                 /* map to real upaid */
401                 cpu = (((cpu & 0x3c) << 1) |
402                         ((cpu & 0x40) >> 4) |
403                         (cpu & 0x3));
404         }
405
406         target = (cpu << 14) | 0x70;
407 again:
408         /* Ok, this is the real Spitfire Errata #54.
409          * One must read back from a UDB internal register
410          * after writes to the UDB interrupt dispatch, but
411          * before the membar Sync for that write.
412          * So we use the high UDB control register (ASI 0x7f,
413          * ADDR 0x20) for the dummy read. -DaveM
414          */
415         tmp = 0x40;
416         __asm__ __volatile__(
417         "wrpr   %1, %2, %%pstate\n\t"
418         "stxa   %4, [%0] %3\n\t"
419         "stxa   %5, [%0+%8] %3\n\t"
420         "add    %0, %8, %0\n\t"
421         "stxa   %6, [%0+%8] %3\n\t"
422         "membar #Sync\n\t"
423         "stxa   %%g0, [%7] %3\n\t"
424         "membar #Sync\n\t"
425         "mov    0x20, %%g1\n\t"
426         "ldxa   [%%g1] 0x7f, %%g0\n\t"
427         "membar #Sync"
428         : "=r" (tmp)
429         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430           "r" (data0), "r" (data1), "r" (data2), "r" (target),
431           "r" (0x10), "0" (tmp)
432         : "g1");
433
434         /* NOTE: PSTATE_IE is still clear. */
435         stuck = 100000;
436         do {
437                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438                         : "=r" (result)
439                         : "i" (ASI_INTR_DISPATCH_STAT));
440                 if (result == 0) {
441                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442                                              : : "r" (pstate));
443                         return;
444                 }
445                 stuck -= 1;
446                 if (stuck == 0)
447                         break;
448         } while (result & 0x1);
449         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450                              : : "r" (pstate));
451         if (stuck == 0) {
452                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453                        smp_processor_id(), result);
454         } else {
455                 udelay(2);
456                 goto again;
457         }
458 }
459
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462         u64 *mondo, data0, data1, data2;
463         u16 *cpu_list;
464         u64 pstate;
465         int i;
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468         cpu_list = __va(tb->cpu_list_pa);
469         mondo = __va(tb->cpu_mondo_block_pa);
470         data0 = mondo[0];
471         data1 = mondo[1];
472         data2 = mondo[2];
473         for (i = 0; i < cnt; i++)
474                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483         int nack_busy_id, is_jbus, need_more;
484         u64 *mondo, pstate, ver, busy_mask;
485         u16 *cpu_list;
486
487         cpu_list = __va(tb->cpu_list_pa);
488         mondo = __va(tb->cpu_mondo_block_pa);
489
490         /* Unfortunately, someone at Sun had the brilliant idea to make the
491          * busy/nack fields hard-coded by ITID number for this Ultra-III
492          * derivative processor.
493          */
494         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496                    (ver >> 32) == __SERRANO_ID);
497
498         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500 retry:
501         need_more = 0;
502         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503                              : : "r" (pstate), "i" (PSTATE_IE));
504
505         /* Setup the dispatch data registers. */
506         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
507                              "stxa      %1, [%4] %6\n\t"
508                              "stxa      %2, [%5] %6\n\t"
509                              "membar    #Sync\n\t"
510                              : /* no outputs */
511                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512                                "r" (0x40), "r" (0x50), "r" (0x60),
513                                "i" (ASI_INTR_W));
514
515         nack_busy_id = 0;
516         busy_mask = 0;
517         {
518                 int i;
519
520                 for (i = 0; i < cnt; i++) {
521                         u64 target, nr;
522
523                         nr = cpu_list[i];
524                         if (nr == 0xffff)
525                                 continue;
526
527                         target = (nr << 14) | 0x70;
528                         if (is_jbus) {
529                                 busy_mask |= (0x1UL << (nr * 2));
530                         } else {
531                                 target |= (nack_busy_id << 24);
532                                 busy_mask |= (0x1UL <<
533                                               (nack_busy_id * 2));
534                         }
535                         __asm__ __volatile__(
536                                 "stxa   %%g0, [%0] %1\n\t"
537                                 "membar #Sync\n\t"
538                                 : /* no outputs */
539                                 : "r" (target), "i" (ASI_INTR_W));
540                         nack_busy_id++;
541                         if (nack_busy_id == 32) {
542                                 need_more = 1;
543                                 break;
544                         }
545                 }
546         }
547
548         /* Now, poll for completion. */
549         {
550                 u64 dispatch_stat, nack_mask;
551                 long stuck;
552
553                 stuck = 100000 * nack_busy_id;
554                 nack_mask = busy_mask << 1;
555                 do {
556                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
557                                              : "=r" (dispatch_stat)
558                                              : "i" (ASI_INTR_DISPATCH_STAT));
559                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
560                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561                                                      : : "r" (pstate));
562                                 if (unlikely(need_more)) {
563                                         int i, this_cnt = 0;
564                                         for (i = 0; i < cnt; i++) {
565                                                 if (cpu_list[i] == 0xffff)
566                                                         continue;
567                                                 cpu_list[i] = 0xffff;
568                                                 this_cnt++;
569                                                 if (this_cnt == 32)
570                                                         break;
571                                         }
572                                         goto retry;
573                                 }
574                                 return;
575                         }
576                         if (!--stuck)
577                                 break;
578                 } while (dispatch_stat & busy_mask);
579
580                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581                                      : : "r" (pstate));
582
583                 if (dispatch_stat & busy_mask) {
584                         /* Busy bits will not clear, continue instead
585                          * of freezing up on this cpu.
586                          */
587                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588                                smp_processor_id(), dispatch_stat);
589                 } else {
590                         int i, this_busy_nack = 0;
591
592                         /* Delay some random time with interrupts enabled
593                          * to prevent deadlock.
594                          */
595                         udelay(2 * nack_busy_id);
596
597                         /* Clear out the mask bits for cpus which did not
598                          * NACK us.
599                          */
600                         for (i = 0; i < cnt; i++) {
601                                 u64 check_mask, nr;
602
603                                 nr = cpu_list[i];
604                                 if (nr == 0xffff)
605                                         continue;
606
607                                 if (is_jbus)
608                                         check_mask = (0x2UL << (2*nr));
609                                 else
610                                         check_mask = (0x2UL <<
611                                                       this_busy_nack);
612                                 if ((dispatch_stat & check_mask) == 0)
613                                         cpu_list[i] = 0xffff;
614                                 this_busy_nack += 2;
615                                 if (this_busy_nack == 64)
616                                         break;
617                         }
618
619                         goto retry;
620                 }
621         }
622 }
623
624 /* Multi-cpu list version.  */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
626 {
627         int retries, this_cpu, prev_sent, i, saw_cpu_error;
628         unsigned long status;
629         u16 *cpu_list;
630
631         this_cpu = smp_processor_id();
632
633         cpu_list = __va(tb->cpu_list_pa);
634
635         saw_cpu_error = 0;
636         retries = 0;
637         prev_sent = 0;
638         do {
639                 int forward_progress, n_sent;
640
641                 status = sun4v_cpu_mondo_send(cnt,
642                                               tb->cpu_list_pa,
643                                               tb->cpu_mondo_block_pa);
644
645                 /* HV_EOK means all cpus received the xcall, we're done.  */
646                 if (likely(status == HV_EOK))
647                         break;
648
649                 /* First, see if we made any forward progress.
650                  *
651                  * The hypervisor indicates successful sends by setting
652                  * cpu list entries to the value 0xffff.
653                  */
654                 n_sent = 0;
655                 for (i = 0; i < cnt; i++) {
656                         if (likely(cpu_list[i] == 0xffff))
657                                 n_sent++;
658                 }
659
660                 forward_progress = 0;
661                 if (n_sent > prev_sent)
662                         forward_progress = 1;
663
664                 prev_sent = n_sent;
665
666                 /* If we get a HV_ECPUERROR, then one or more of the cpus
667                  * in the list are in error state.  Use the cpu_state()
668                  * hypervisor call to find out which cpus are in error state.
669                  */
670                 if (unlikely(status == HV_ECPUERROR)) {
671                         for (i = 0; i < cnt; i++) {
672                                 long err;
673                                 u16 cpu;
674
675                                 cpu = cpu_list[i];
676                                 if (cpu == 0xffff)
677                                         continue;
678
679                                 err = sun4v_cpu_state(cpu);
680                                 if (err == HV_CPU_STATE_ERROR) {
681                                         saw_cpu_error = (cpu + 1);
682                                         cpu_list[i] = 0xffff;
683                                 }
684                         }
685                 } else if (unlikely(status != HV_EWOULDBLOCK))
686                         goto fatal_mondo_error;
687
688                 /* Don't bother rewriting the CPU list, just leave the
689                  * 0xffff and non-0xffff entries in there and the
690                  * hypervisor will do the right thing.
691                  *
692                  * Only advance timeout state if we didn't make any
693                  * forward progress.
694                  */
695                 if (unlikely(!forward_progress)) {
696                         if (unlikely(++retries > 10000))
697                                 goto fatal_mondo_timeout;
698
699                         /* Delay a little bit to let other cpus catch up
700                          * on their cpu mondo queue work.
701                          */
702                         udelay(2 * cnt);
703                 }
704         } while (1);
705
706         if (unlikely(saw_cpu_error))
707                 goto fatal_mondo_cpu_error;
708
709         return;
710
711 fatal_mondo_cpu_error:
712         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713                "(including %d) were in error state\n",
714                this_cpu, saw_cpu_error - 1);
715         return;
716
717 fatal_mondo_timeout:
718         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719                " progress after %d retries.\n",
720                this_cpu, retries);
721         goto dump_cpu_list_and_out;
722
723 fatal_mondo_error:
724         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725                this_cpu, status);
726         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727                "mondo_block_pa(%lx)\n",
728                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729
730 dump_cpu_list_and_out:
731         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732         for (i = 0; i < cnt; i++)
733                 printk("%u ", cpu_list[i]);
734         printk("]\n");
735 }
736
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
738
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740 {
741         struct trap_per_cpu *tb;
742         int this_cpu, i, cnt;
743         unsigned long flags;
744         u16 *cpu_list;
745         u64 *mondo;
746
747         /* We have to do this whole thing with interrupts fully disabled.
748          * Otherwise if we send an xcall from interrupt context it will
749          * corrupt both our mondo block and cpu list state.
750          *
751          * One consequence of this is that we cannot use timeout mechanisms
752          * that depend upon interrupts being delivered locally.  So, for
753          * example, we cannot sample jiffies and expect it to advance.
754          *
755          * Fortunately, udelay() uses %stick/%tick so we can use that.
756          */
757         local_irq_save(flags);
758
759         this_cpu = smp_processor_id();
760         tb = &trap_block[this_cpu];
761
762         mondo = __va(tb->cpu_mondo_block_pa);
763         mondo[0] = data0;
764         mondo[1] = data1;
765         mondo[2] = data2;
766         wmb();
767
768         cpu_list = __va(tb->cpu_list_pa);
769
770         /* Setup the initial cpu list.  */
771         cnt = 0;
772         for_each_cpu(i, mask) {
773                 if (i == this_cpu || !cpu_online(i))
774                         continue;
775                 cpu_list[cnt++] = i;
776         }
777
778         if (cnt)
779                 xcall_deliver_impl(tb, cnt);
780
781         local_irq_restore(flags);
782 }
783
784 /* Send cross call to all processors mentioned in MASK_P
785  * except self.  Really, there are only two cases currently,
786  * "&cpu_online_map" and "&mm->cpu_vm_mask".
787  */
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
791
792         xcall_deliver(data0, data1, data2, mask);
793 }
794
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797 {
798         smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
799 }
800
801 extern unsigned long xcall_sync_tick;
802
803 static void smp_start_sync_tick_client(int cpu)
804 {
805         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
806                       &cpumask_of_cpu(cpu));
807 }
808
809 extern unsigned long xcall_call_function;
810
811 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
812 {
813         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
814 }
815
816 extern unsigned long xcall_call_function_single;
817
818 void arch_send_call_function_single_ipi(int cpu)
819 {
820         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
821                       &cpumask_of_cpu(cpu));
822 }
823
824 void smp_call_function_client(int irq, struct pt_regs *regs)
825 {
826         clear_softint(1 << irq);
827         generic_smp_call_function_interrupt();
828 }
829
830 void smp_call_function_single_client(int irq, struct pt_regs *regs)
831 {
832         clear_softint(1 << irq);
833         generic_smp_call_function_single_interrupt();
834 }
835
836 static void tsb_sync(void *info)
837 {
838         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839         struct mm_struct *mm = info;
840
841         /* It is not valid to test "currrent->active_mm == mm" here.
842          *
843          * The value of "current" is not changed atomically with
844          * switch_mm().  But that's OK, we just need to check the
845          * current cpu's trap block PGD physical address.
846          */
847         if (tp->pgd_paddr == __pa(mm->pgd))
848                 tsb_context_switch(mm);
849 }
850
851 void smp_tsb_sync(struct mm_struct *mm)
852 {
853         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854 }
855
856 extern unsigned long xcall_flush_tlb_mm;
857 extern unsigned long xcall_flush_tlb_pending;
858 extern unsigned long xcall_flush_tlb_kernel_range;
859 extern unsigned long xcall_fetch_glob_regs;
860 extern unsigned long xcall_receive_signal;
861 extern unsigned long xcall_new_mmu_context_version;
862 #ifdef CONFIG_KGDB
863 extern unsigned long xcall_kgdb_capture;
864 #endif
865
866 #ifdef DCACHE_ALIASING_POSSIBLE
867 extern unsigned long xcall_flush_dcache_page_cheetah;
868 #endif
869 extern unsigned long xcall_flush_dcache_page_spitfire;
870
871 #ifdef CONFIG_DEBUG_DCFLUSH
872 extern atomic_t dcpage_flushes;
873 extern atomic_t dcpage_flushes_xcall;
874 #endif
875
876 static inline void __local_flush_dcache_page(struct page *page)
877 {
878 #ifdef DCACHE_ALIASING_POSSIBLE
879         __flush_dcache_page(page_address(page),
880                             ((tlb_type == spitfire) &&
881                              page_mapping(page) != NULL));
882 #else
883         if (page_mapping(page) != NULL &&
884             tlb_type == spitfire)
885                 __flush_icache_page(__pa(page_address(page)));
886 #endif
887 }
888
889 void smp_flush_dcache_page_impl(struct page *page, int cpu)
890 {
891         int this_cpu;
892
893         if (tlb_type == hypervisor)
894                 return;
895
896 #ifdef CONFIG_DEBUG_DCFLUSH
897         atomic_inc(&dcpage_flushes);
898 #endif
899
900         this_cpu = get_cpu();
901
902         if (cpu == this_cpu) {
903                 __local_flush_dcache_page(page);
904         } else if (cpu_online(cpu)) {
905                 void *pg_addr = page_address(page);
906                 u64 data0 = 0;
907
908                 if (tlb_type == spitfire) {
909                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
910                         if (page_mapping(page) != NULL)
911                                 data0 |= ((u64)1 << 32);
912                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
913 #ifdef DCACHE_ALIASING_POSSIBLE
914                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
915 #endif
916                 }
917                 if (data0) {
918                         xcall_deliver(data0, __pa(pg_addr),
919                                       (u64) pg_addr, &cpumask_of_cpu(cpu));
920 #ifdef CONFIG_DEBUG_DCFLUSH
921                         atomic_inc(&dcpage_flushes_xcall);
922 #endif
923                 }
924         }
925
926         put_cpu();
927 }
928
929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
930 {
931         void *pg_addr;
932         int this_cpu;
933         u64 data0;
934
935         if (tlb_type == hypervisor)
936                 return;
937
938         this_cpu = get_cpu();
939
940 #ifdef CONFIG_DEBUG_DCFLUSH
941         atomic_inc(&dcpage_flushes);
942 #endif
943         data0 = 0;
944         pg_addr = page_address(page);
945         if (tlb_type == spitfire) {
946                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947                 if (page_mapping(page) != NULL)
948                         data0 |= ((u64)1 << 32);
949         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953         }
954         if (data0) {
955                 xcall_deliver(data0, __pa(pg_addr),
956                               (u64) pg_addr, &cpu_online_map);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958                 atomic_inc(&dcpage_flushes_xcall);
959 #endif
960         }
961         __local_flush_dcache_page(page);
962
963         put_cpu();
964 }
965
966 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968         struct mm_struct *mm;
969         unsigned long flags;
970
971         clear_softint(1 << irq);
972
973         /* See if we need to allocate a new TLB context because
974          * the version of the one we are using is now out of date.
975          */
976         mm = current->active_mm;
977         if (unlikely(!mm || (mm == &init_mm)))
978                 return;
979
980         spin_lock_irqsave(&mm->context.lock, flags);
981
982         if (unlikely(!CTX_VALID(mm->context)))
983                 get_new_mmu_context(mm);
984
985         spin_unlock_irqrestore(&mm->context.lock, flags);
986
987         load_secondary_context(mm);
988         __flush_tlb_mm(CTX_HWBITS(mm->context),
989                        SECONDARY_CONTEXT);
990 }
991
992 void smp_new_mmu_context_version(void)
993 {
994         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003
1004 void smp_fetch_global_regs(void)
1005 {
1006         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008
1009 /* We know that the window frames of the user have been flushed
1010  * to the stack before we get here because all callers of us
1011  * are flush_tlb_*() routines, and these run after flush_cache_*()
1012  * which performs the flushw.
1013  *
1014  * The SMP TLB coherency scheme we use works as follows:
1015  *
1016  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1017  *    space has (potentially) executed on, this is the heuristic
1018  *    we use to avoid doing cross calls.
1019  *
1020  *    Also, for flushing from kswapd and also for clones, we
1021  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1022  *
1023  * 2) TLB context numbers are shared globally across all processors
1024  *    in the system, this allows us to play several games to avoid
1025  *    cross calls.
1026  *
1027  *    One invariant is that when a cpu switches to a process, and
1028  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1029  *    current cpu's bit set, that tlb context is flushed locally.
1030  *
1031  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1032  *    cross calls when we want to flush the currently running process's
1033  *    tlb state.  This is done by clearing all cpu bits except the current
1034  *    processor's in current->mm->cpu_vm_mask and performing the
1035  *    flush locally only.  This will force any subsequent cpus which run
1036  *    this task to flush the context from the local tlb if the process
1037  *    migrates to another cpu (again).
1038  *
1039  * 3) For shared address spaces (threads) and swapping we bite the
1040  *    bullet for most cases and perform the cross call (but only to
1041  *    the cpus listed in cpu_vm_mask).
1042  *
1043  *    The performance gain from "optimizing" away the cross call for threads is
1044  *    questionable (in theory the big win for threads is the massive sharing of
1045  *    address space state across processors).
1046  */
1047
1048 /* This currently is only used by the hugetlb arch pre-fault
1049  * hook on UltraSPARC-III+ and later when changing the pagesize
1050  * bits of the context register for an address space.
1051  */
1052 void smp_flush_tlb_mm(struct mm_struct *mm)
1053 {
1054         u32 ctx = CTX_HWBITS(mm->context);
1055         int cpu = get_cpu();
1056
1057         if (atomic_read(&mm->mm_users) == 1) {
1058                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1059                 goto local_flush_and_out;
1060         }
1061
1062         smp_cross_call_masked(&xcall_flush_tlb_mm,
1063                               ctx, 0, 0,
1064                               mm_cpumask(mm));
1065
1066 local_flush_and_out:
1067         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1068
1069         put_cpu();
1070 }
1071
1072 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1073 {
1074         u32 ctx = CTX_HWBITS(mm->context);
1075         int cpu = get_cpu();
1076
1077         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1078                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1079         else
1080                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1081                                       ctx, nr, (unsigned long) vaddrs,
1082                                       mm_cpumask(mm));
1083
1084         __flush_tlb_pending(ctx, nr, vaddrs);
1085
1086         put_cpu();
1087 }
1088
1089 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1090 {
1091         start &= PAGE_MASK;
1092         end    = PAGE_ALIGN(end);
1093         if (start != end) {
1094                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1095                                0, start, end);
1096
1097                 __flush_tlb_kernel_range(start, end);
1098         }
1099 }
1100
1101 /* CPU capture. */
1102 /* #define CAPTURE_DEBUG */
1103 extern unsigned long xcall_capture;
1104
1105 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1106 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1107 static unsigned long penguins_are_doing_time;
1108
1109 void smp_capture(void)
1110 {
1111         int result = atomic_add_ret(1, &smp_capture_depth);
1112
1113         if (result == 1) {
1114                 int ncpus = num_online_cpus();
1115
1116 #ifdef CAPTURE_DEBUG
1117                 printk("CPU[%d]: Sending penguins to jail...",
1118                        smp_processor_id());
1119 #endif
1120                 penguins_are_doing_time = 1;
1121                 atomic_inc(&smp_capture_registry);
1122                 smp_cross_call(&xcall_capture, 0, 0, 0);
1123                 while (atomic_read(&smp_capture_registry) != ncpus)
1124                         rmb();
1125 #ifdef CAPTURE_DEBUG
1126                 printk("done\n");
1127 #endif
1128         }
1129 }
1130
1131 void smp_release(void)
1132 {
1133         if (atomic_dec_and_test(&smp_capture_depth)) {
1134 #ifdef CAPTURE_DEBUG
1135                 printk("CPU[%d]: Giving pardon to "
1136                        "imprisoned penguins\n",
1137                        smp_processor_id());
1138 #endif
1139                 penguins_are_doing_time = 0;
1140                 membar_safe("#StoreLoad");
1141                 atomic_dec(&smp_capture_registry);
1142         }
1143 }
1144
1145 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1146  * set, so they can service tlb flush xcalls...
1147  */
1148 extern void prom_world(int);
1149
1150 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1151 {
1152         clear_softint(1 << irq);
1153
1154         preempt_disable();
1155
1156         __asm__ __volatile__("flushw");
1157         prom_world(1);
1158         atomic_inc(&smp_capture_registry);
1159         membar_safe("#StoreLoad");
1160         while (penguins_are_doing_time)
1161                 rmb();
1162         atomic_dec(&smp_capture_registry);
1163         prom_world(0);
1164
1165         preempt_enable();
1166 }
1167
1168 /* /proc/profile writes can call this, don't __init it please. */
1169 int setup_profiling_timer(unsigned int multiplier)
1170 {
1171         return -EINVAL;
1172 }
1173
1174 void __init smp_prepare_cpus(unsigned int max_cpus)
1175 {
1176 }
1177
1178 void __devinit smp_prepare_boot_cpu(void)
1179 {
1180 }
1181
1182 void __init smp_setup_processor_id(void)
1183 {
1184         if (tlb_type == spitfire)
1185                 xcall_deliver_impl = spitfire_xcall_deliver;
1186         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1187                 xcall_deliver_impl = cheetah_xcall_deliver;
1188         else
1189                 xcall_deliver_impl = hypervisor_xcall_deliver;
1190 }
1191
1192 void __devinit smp_fill_in_sib_core_maps(void)
1193 {
1194         unsigned int i;
1195
1196         for_each_present_cpu(i) {
1197                 unsigned int j;
1198
1199                 cpus_clear(cpu_core_map[i]);
1200                 if (cpu_data(i).core_id == 0) {
1201                         cpu_set(i, cpu_core_map[i]);
1202                         continue;
1203                 }
1204
1205                 for_each_present_cpu(j) {
1206                         if (cpu_data(i).core_id ==
1207                             cpu_data(j).core_id)
1208                                 cpu_set(j, cpu_core_map[i]);
1209                 }
1210         }
1211
1212         for_each_present_cpu(i) {
1213                 unsigned int j;
1214
1215                 cpus_clear(per_cpu(cpu_sibling_map, i));
1216                 if (cpu_data(i).proc_id == -1) {
1217                         cpu_set(i, per_cpu(cpu_sibling_map, i));
1218                         continue;
1219                 }
1220
1221                 for_each_present_cpu(j) {
1222                         if (cpu_data(i).proc_id ==
1223                             cpu_data(j).proc_id)
1224                                 cpu_set(j, per_cpu(cpu_sibling_map, i));
1225                 }
1226         }
1227 }
1228
1229 int __cpuinit __cpu_up(unsigned int cpu)
1230 {
1231         int ret = smp_boot_one_cpu(cpu);
1232
1233         if (!ret) {
1234                 cpu_set(cpu, smp_commenced_mask);
1235                 while (!cpu_isset(cpu, cpu_online_map))
1236                         mb();
1237                 if (!cpu_isset(cpu, cpu_online_map)) {
1238                         ret = -ENODEV;
1239                 } else {
1240                         /* On SUN4V, writes to %tick and %stick are
1241                          * not allowed.
1242                          */
1243                         if (tlb_type != hypervisor)
1244                                 smp_synchronize_one_tick(cpu);
1245                 }
1246         }
1247         return ret;
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 void cpu_play_dead(void)
1252 {
1253         int cpu = smp_processor_id();
1254         unsigned long pstate;
1255
1256         idle_task_exit();
1257
1258         if (tlb_type == hypervisor) {
1259                 struct trap_per_cpu *tb = &trap_block[cpu];
1260
1261                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1262                                 tb->cpu_mondo_pa, 0);
1263                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1264                                 tb->dev_mondo_pa, 0);
1265                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1266                                 tb->resum_mondo_pa, 0);
1267                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1268                                 tb->nonresum_mondo_pa, 0);
1269         }
1270
1271         cpu_clear(cpu, smp_commenced_mask);
1272         membar_safe("#Sync");
1273
1274         local_irq_disable();
1275
1276         __asm__ __volatile__(
1277                 "rdpr   %%pstate, %0\n\t"
1278                 "wrpr   %0, %1, %%pstate"
1279                 : "=r" (pstate)
1280                 : "i" (PSTATE_IE));
1281
1282         while (1)
1283                 barrier();
1284 }
1285
1286 int __cpu_disable(void)
1287 {
1288         int cpu = smp_processor_id();
1289         cpuinfo_sparc *c;
1290         int i;
1291
1292         for_each_cpu_mask(i, cpu_core_map[cpu])
1293                 cpu_clear(cpu, cpu_core_map[i]);
1294         cpus_clear(cpu_core_map[cpu]);
1295
1296         for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1297                 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1298         cpus_clear(per_cpu(cpu_sibling_map, cpu));
1299
1300         c = &cpu_data(cpu);
1301
1302         c->core_id = 0;
1303         c->proc_id = -1;
1304
1305         smp_wmb();
1306
1307         /* Make sure no interrupts point to this cpu.  */
1308         fixup_irqs();
1309
1310         local_irq_enable();
1311         mdelay(1);
1312         local_irq_disable();
1313
1314         ipi_call_lock();
1315         cpu_clear(cpu, cpu_online_map);
1316         ipi_call_unlock();
1317
1318         return 0;
1319 }
1320
1321 void __cpu_die(unsigned int cpu)
1322 {
1323         int i;
1324
1325         for (i = 0; i < 100; i++) {
1326                 smp_rmb();
1327                 if (!cpu_isset(cpu, smp_commenced_mask))
1328                         break;
1329                 msleep(100);
1330         }
1331         if (cpu_isset(cpu, smp_commenced_mask)) {
1332                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1333         } else {
1334 #if defined(CONFIG_SUN_LDOMS)
1335                 unsigned long hv_err;
1336                 int limit = 100;
1337
1338                 do {
1339                         hv_err = sun4v_cpu_stop(cpu);
1340                         if (hv_err == HV_EOK) {
1341                                 cpu_clear(cpu, cpu_present_map);
1342                                 break;
1343                         }
1344                 } while (--limit > 0);
1345                 if (limit <= 0) {
1346                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1347                                hv_err);
1348                 }
1349 #endif
1350         }
1351 }
1352 #endif
1353
1354 void __init smp_cpus_done(unsigned int max_cpus)
1355 {
1356 }
1357
1358 void smp_send_reschedule(int cpu)
1359 {
1360         xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361                       &cpumask_of_cpu(cpu));
1362 }
1363
1364 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1365 {
1366         clear_softint(1 << irq);
1367 }
1368
1369 /* This is a nop because we capture all other cpus
1370  * anyways when making the PROM active.
1371  */
1372 void smp_send_stop(void)
1373 {
1374 }
1375
1376 unsigned long __per_cpu_base __read_mostly;
1377 unsigned long __per_cpu_shift __read_mostly;
1378
1379 EXPORT_SYMBOL(__per_cpu_base);
1380 EXPORT_SYMBOL(__per_cpu_shift);
1381
1382 void __init real_setup_per_cpu_areas(void)
1383 {
1384         unsigned long paddr, goal, size, i;
1385         char *ptr;
1386
1387         /* Copy section for each CPU (we discard the original) */
1388         goal = PERCPU_ENOUGH_ROOM;
1389
1390         __per_cpu_shift = PAGE_SHIFT;
1391         for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1392                 __per_cpu_shift++;
1393
1394         paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1395         if (!paddr) {
1396                 prom_printf("Cannot allocate per-cpu memory.\n");
1397                 prom_halt();
1398         }
1399
1400         ptr = __va(paddr);
1401         __per_cpu_base = ptr - __per_cpu_start;
1402
1403         for (i = 0; i < NR_CPUS; i++, ptr += size)
1404                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1405
1406         /* Setup %g5 for the boot cpu.  */
1407         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1408 }