1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
42 #include <asm/irq_regs.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <linux/uaccess.h>
47 #include <asm/starfire.h>
49 #include <asm/sections.h>
51 #include <asm/mdesc.h>
53 #include <asm/hypervisor.h>
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
70 EXPORT_SYMBOL(cpu_core_map);
71 EXPORT_SYMBOL(cpu_core_sib_map);
72 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74 static cpumask_t smp_commenced_mask;
76 void smp_info(struct seq_file *m)
80 seq_printf(m, "State:\n");
81 for_each_online_cpu(i)
82 seq_printf(m, "CPU%d:\t\tonline\n", i);
85 void smp_bogo(struct seq_file *m)
89 for_each_online_cpu(i)
91 "Cpu%dClkTck\t: %016lx\n",
92 i, cpu_data(i).clock_tick);
95 extern void setup_sparc64_timer(void);
97 static volatile unsigned long callin_flag = 0;
101 int cpuid = hard_smp_processor_id();
103 __local_per_cpu_offset = __per_cpu_offset(cpuid);
105 if (tlb_type == hypervisor)
106 sun4v_ktsb_register();
110 setup_sparc64_timer();
112 if (cheetah_pcache_forced_on)
113 cheetah_enable_pcache();
116 __asm__ __volatile__("membar #Sync\n\t"
117 "flush %%g6" : : : "memory");
119 /* Clear this or we will die instantly when we
120 * schedule back to this idler...
122 current_thread_info()->new_child = 0;
124 /* Attach to the address space of init_task. */
125 atomic_inc(&init_mm.mm_count);
126 current->active_mm = &init_mm;
128 /* inform the notifiers about the new cpu */
129 notify_cpu_starting(cpuid);
131 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
134 set_cpu_online(cpuid, true);
136 /* idle thread is expected to have preempt disabled */
141 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
146 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147 panic("SMP bolixed\n");
150 /* This tick register synchronization scheme is taken entirely from
151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
153 * The only change I've made is to rework it so that the master
154 * initiates the synchonization instead of the slave. -DaveM
158 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
160 #define NUM_ROUNDS 64 /* magic value */
161 #define NUM_ITERS 5 /* likewise */
163 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
166 #define DEBUG_TICK_SYNC 0
168 static inline long get_delta (long *rt, long *master)
170 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171 unsigned long tcenter, t0, t1, tm;
174 for (i = 0; i < NUM_ITERS; i++) {
175 t0 = tick_ops->get_tick();
177 membar_safe("#StoreLoad");
178 while (!(tm = go[SLAVE]))
182 t1 = tick_ops->get_tick();
184 if (t1 - t0 < best_t1 - best_t0)
185 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 *rt = best_t1 - best_t0;
189 *master = best_tm - best_t0;
191 /* average best_t0 and best_t1 without overflow: */
192 tcenter = (best_t0/2 + best_t1/2);
193 if (best_t0 % 2 + best_t1 % 2 == 2)
195 return tcenter - best_tm;
198 void smp_synchronize_tick_client(void)
200 long i, delta, adj, adjust_latency = 0, done = 0;
201 unsigned long flags, rt, master_time_stamp;
204 long rt; /* roundtrip time */
205 long master; /* master's timestamp */
206 long diff; /* difference between midpoint and master's timestamp */
207 long lat; /* estimate of itc adjustment latency */
216 local_irq_save(flags);
218 for (i = 0; i < NUM_ROUNDS; i++) {
219 delta = get_delta(&rt, &master_time_stamp);
221 done = 1; /* let's lock on to this... */
225 adjust_latency += -delta;
226 adj = -delta + adjust_latency/4;
230 tick_ops->add_tick(adj);
234 t[i].master = master_time_stamp;
236 t[i].lat = adjust_latency/4;
240 local_irq_restore(flags);
243 for (i = 0; i < NUM_ROUNDS; i++)
244 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249 "(last diff %ld cycles, maxerr %lu cycles)\n",
250 smp_processor_id(), delta, rt);
253 static void smp_start_sync_tick_client(int cpu);
255 static void smp_synchronize_one_tick(int cpu)
257 unsigned long flags, i;
261 smp_start_sync_tick_client(cpu);
263 /* wait for client to be ready */
267 /* now let the client proceed into his loop */
269 membar_safe("#StoreLoad");
271 raw_spin_lock_irqsave(&itc_sync_lock, flags);
273 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
278 go[SLAVE] = tick_ops->get_tick();
279 membar_safe("#StoreLoad");
282 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
286 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 extern unsigned long sparc64_ttable_tl0;
290 extern unsigned long kern_locked_tte_data;
291 struct hvtramp_descr *hdesc;
292 unsigned long trampoline_ra;
293 struct trap_per_cpu *tb;
294 u64 tte_vaddr, tte_data;
295 unsigned long hv_err;
298 hdesc = kzalloc(sizeof(*hdesc) +
299 (sizeof(struct hvtramp_mapping) *
300 num_kernel_image_mappings - 1),
303 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
310 hdesc->num_mappings = num_kernel_image_mappings;
312 tb = &trap_block[cpu];
314 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
317 hdesc->thread_reg = thread_reg;
319 tte_vaddr = (unsigned long) KERNBASE;
320 tte_data = kern_locked_tte_data;
322 for (i = 0; i < hdesc->num_mappings; i++) {
323 hdesc->maps[i].vaddr = tte_vaddr;
324 hdesc->maps[i].tte = tte_data;
325 tte_vaddr += 0x400000;
326 tte_data += 0x400000;
329 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
331 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 kimage_addr_to_ra(&sparc64_ttable_tl0),
335 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 "gives error %lu\n", hv_err);
340 extern unsigned long sparc64_cpu_startup;
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343 * 32-bits (I think) so to be safe we have it read the pointer
344 * contained here so we work on >4GB machines. -DaveM
346 static struct thread_info *cpu_new_thread = NULL;
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
350 unsigned long entry =
351 (unsigned long)(&sparc64_cpu_startup);
352 unsigned long cookie =
353 (unsigned long)(&cpu_new_thread);
358 cpu_new_thread = task_thread_info(idle);
360 if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread,
368 prom_startcpu_cpuid(cpu, entry, cookie);
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
372 prom_startcpu(dp->phandle, entry, cookie);
375 for (timeout = 0; timeout < 50000; timeout++) {
384 printk("Processor %d is stuck.\n", cpu);
387 cpu_new_thread = NULL;
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 if (this_is_starfire) {
400 /* map to real upaid */
401 cpu = (((cpu & 0x3c) << 1) |
402 ((cpu & 0x40) >> 4) |
406 target = (cpu << 14) | 0x70;
408 /* Ok, this is the real Spitfire Errata #54.
409 * One must read back from a UDB internal register
410 * after writes to the UDB interrupt dispatch, but
411 * before the membar Sync for that write.
412 * So we use the high UDB control register (ASI 0x7f,
413 * ADDR 0x20) for the dummy read. -DaveM
416 __asm__ __volatile__(
417 "wrpr %1, %2, %%pstate\n\t"
418 "stxa %4, [%0] %3\n\t"
419 "stxa %5, [%0+%8] %3\n\t"
421 "stxa %6, [%0+%8] %3\n\t"
423 "stxa %%g0, [%7] %3\n\t"
426 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 "r" (0x10), "0" (tmp)
434 /* NOTE: PSTATE_IE is still clear. */
437 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "i" (ASI_INTR_DISPATCH_STAT));
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
448 } while (result & 0x1);
449 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 smp_processor_id(), result);
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
462 u64 *mondo, data0, data1, data2;
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 cpu_list = __va(tb->cpu_list_pa);
469 mondo = __va(tb->cpu_mondo_block_pa);
473 for (i = 0; i < cnt; i++)
474 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478 * packet, but we have no use for that. However we do take advantage of
479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
483 int nack_busy_id, is_jbus, need_more;
484 u64 *mondo, pstate, ver, busy_mask;
487 cpu_list = __va(tb->cpu_list_pa);
488 mondo = __va(tb->cpu_mondo_block_pa);
490 /* Unfortunately, someone at Sun had the brilliant idea to make the
491 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 * derivative processor.
494 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 (ver >> 32) == __SERRANO_ID);
498 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
502 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 : : "r" (pstate), "i" (PSTATE_IE));
505 /* Setup the dispatch data registers. */
506 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
507 "stxa %1, [%4] %6\n\t"
508 "stxa %2, [%5] %6\n\t"
511 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 "r" (0x40), "r" (0x50), "r" (0x60),
520 for (i = 0; i < cnt; i++) {
527 target = (nr << 14) | 0x70;
529 busy_mask |= (0x1UL << (nr * 2));
531 target |= (nack_busy_id << 24);
532 busy_mask |= (0x1UL <<
535 __asm__ __volatile__(
536 "stxa %%g0, [%0] %1\n\t"
539 : "r" (target), "i" (ASI_INTR_W));
541 if (nack_busy_id == 32) {
548 /* Now, poll for completion. */
550 u64 dispatch_stat, nack_mask;
553 stuck = 100000 * nack_busy_id;
554 nack_mask = busy_mask << 1;
556 __asm__ __volatile__("ldxa [%%g0] %1, %0"
557 : "=r" (dispatch_stat)
558 : "i" (ASI_INTR_DISPATCH_STAT));
559 if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562 if (unlikely(need_more)) {
564 for (i = 0; i < cnt; i++) {
565 if (cpu_list[i] == 0xffff)
567 cpu_list[i] = 0xffff;
578 } while (dispatch_stat & busy_mask);
580 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 if (dispatch_stat & busy_mask) {
584 /* Busy bits will not clear, continue instead
585 * of freezing up on this cpu.
587 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 smp_processor_id(), dispatch_stat);
590 int i, this_busy_nack = 0;
592 /* Delay some random time with interrupts enabled
593 * to prevent deadlock.
595 udelay(2 * nack_busy_id);
597 /* Clear out the mask bits for cpus which did not
600 for (i = 0; i < cnt; i++) {
608 check_mask = (0x2UL << (2*nr));
610 check_mask = (0x2UL <<
612 if ((dispatch_stat & check_mask) == 0)
613 cpu_list[i] = 0xffff;
615 if (this_busy_nack == 64)
624 /* Multi-cpu list version. */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
627 int retries, this_cpu, prev_sent, i, saw_cpu_error;
628 unsigned long status;
631 this_cpu = smp_processor_id();
633 cpu_list = __va(tb->cpu_list_pa);
639 int forward_progress, n_sent;
641 status = sun4v_cpu_mondo_send(cnt,
643 tb->cpu_mondo_block_pa);
645 /* HV_EOK means all cpus received the xcall, we're done. */
646 if (likely(status == HV_EOK))
649 /* First, see if we made any forward progress.
651 * The hypervisor indicates successful sends by setting
652 * cpu list entries to the value 0xffff.
655 for (i = 0; i < cnt; i++) {
656 if (likely(cpu_list[i] == 0xffff))
660 forward_progress = 0;
661 if (n_sent > prev_sent)
662 forward_progress = 1;
666 /* If we get a HV_ECPUERROR, then one or more of the cpus
667 * in the list are in error state. Use the cpu_state()
668 * hypervisor call to find out which cpus are in error state.
670 if (unlikely(status == HV_ECPUERROR)) {
671 for (i = 0; i < cnt; i++) {
679 err = sun4v_cpu_state(cpu);
680 if (err == HV_CPU_STATE_ERROR) {
681 saw_cpu_error = (cpu + 1);
682 cpu_list[i] = 0xffff;
685 } else if (unlikely(status != HV_EWOULDBLOCK))
686 goto fatal_mondo_error;
688 /* Don't bother rewriting the CPU list, just leave the
689 * 0xffff and non-0xffff entries in there and the
690 * hypervisor will do the right thing.
692 * Only advance timeout state if we didn't make any
695 if (unlikely(!forward_progress)) {
696 if (unlikely(++retries > 10000))
697 goto fatal_mondo_timeout;
699 /* Delay a little bit to let other cpus catch up
700 * on their cpu mondo queue work.
706 if (unlikely(saw_cpu_error))
707 goto fatal_mondo_cpu_error;
711 fatal_mondo_cpu_error:
712 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713 "(including %d) were in error state\n",
714 this_cpu, saw_cpu_error - 1);
718 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719 " progress after %d retries.\n",
721 goto dump_cpu_list_and_out;
724 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
726 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727 "mondo_block_pa(%lx)\n",
728 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
730 dump_cpu_list_and_out:
731 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732 for (i = 0; i < cnt; i++)
733 printk("%u ", cpu_list[i]);
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
741 struct trap_per_cpu *tb;
742 int this_cpu, i, cnt;
747 /* We have to do this whole thing with interrupts fully disabled.
748 * Otherwise if we send an xcall from interrupt context it will
749 * corrupt both our mondo block and cpu list state.
751 * One consequence of this is that we cannot use timeout mechanisms
752 * that depend upon interrupts being delivered locally. So, for
753 * example, we cannot sample jiffies and expect it to advance.
755 * Fortunately, udelay() uses %stick/%tick so we can use that.
757 local_irq_save(flags);
759 this_cpu = smp_processor_id();
760 tb = &trap_block[this_cpu];
762 mondo = __va(tb->cpu_mondo_block_pa);
768 cpu_list = __va(tb->cpu_list_pa);
770 /* Setup the initial cpu list. */
772 for_each_cpu(i, mask) {
773 if (i == this_cpu || !cpu_online(i))
779 xcall_deliver_impl(tb, cnt);
781 local_irq_restore(flags);
784 /* Send cross call to all processors mentioned in MASK_P
785 * except self. Really, there are only two cases currently,
786 * "cpu_online_mask" and "mm_cpumask(mm)".
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
790 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
792 xcall_deliver(data0, data1, data2, mask);
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
798 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
801 extern unsigned long xcall_sync_tick;
803 static void smp_start_sync_tick_client(int cpu)
805 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
809 extern unsigned long xcall_call_function;
811 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
813 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
816 extern unsigned long xcall_call_function_single;
818 void arch_send_call_function_single_ipi(int cpu)
820 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
824 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
826 clear_softint(1 << irq);
828 generic_smp_call_function_interrupt();
832 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
834 clear_softint(1 << irq);
836 generic_smp_call_function_single_interrupt();
840 static void tsb_sync(void *info)
842 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
843 struct mm_struct *mm = info;
845 /* It is not valid to test "current->active_mm == mm" here.
847 * The value of "current" is not changed atomically with
848 * switch_mm(). But that's OK, we just need to check the
849 * current cpu's trap block PGD physical address.
851 if (tp->pgd_paddr == __pa(mm->pgd))
852 tsb_context_switch(mm);
855 void smp_tsb_sync(struct mm_struct *mm)
857 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
860 extern unsigned long xcall_flush_tlb_mm;
861 extern unsigned long xcall_flush_tlb_page;
862 extern unsigned long xcall_flush_tlb_kernel_range;
863 extern unsigned long xcall_fetch_glob_regs;
864 extern unsigned long xcall_fetch_glob_pmu;
865 extern unsigned long xcall_fetch_glob_pmu_n4;
866 extern unsigned long xcall_receive_signal;
867 extern unsigned long xcall_new_mmu_context_version;
869 extern unsigned long xcall_kgdb_capture;
872 #ifdef DCACHE_ALIASING_POSSIBLE
873 extern unsigned long xcall_flush_dcache_page_cheetah;
875 extern unsigned long xcall_flush_dcache_page_spitfire;
877 static inline void __local_flush_dcache_page(struct page *page)
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 __flush_dcache_page(page_address(page),
881 ((tlb_type == spitfire) &&
882 page_mapping(page) != NULL));
884 if (page_mapping(page) != NULL &&
885 tlb_type == spitfire)
886 __flush_icache_page(__pa(page_address(page)));
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
894 if (tlb_type == hypervisor)
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 atomic_inc(&dcpage_flushes);
901 this_cpu = get_cpu();
903 if (cpu == this_cpu) {
904 __local_flush_dcache_page(page);
905 } else if (cpu_online(cpu)) {
906 void *pg_addr = page_address(page);
909 if (tlb_type == spitfire) {
910 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911 if (page_mapping(page) != NULL)
912 data0 |= ((u64)1 << 32);
913 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
919 xcall_deliver(data0, __pa(pg_addr),
920 (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 atomic_inc(&dcpage_flushes_xcall);
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
935 if (tlb_type == hypervisor)
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes);
944 pg_addr = page_address(page);
945 if (tlb_type == spitfire) {
946 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 if (page_mapping(page) != NULL)
948 data0 |= ((u64)1 << 32);
949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
955 xcall_deliver(data0, __pa(pg_addr),
956 (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 atomic_inc(&dcpage_flushes_xcall);
961 __local_flush_dcache_page(page);
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968 struct mm_struct *mm;
971 clear_softint(1 << irq);
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
976 mm = current->active_mm;
977 if (unlikely(!mm || (mm == &init_mm)))
980 spin_lock_irqsave(&mm->context.lock, flags);
982 if (unlikely(!CTX_VALID(mm->context)))
983 get_new_mmu_context(mm);
985 spin_unlock_irqrestore(&mm->context.lock, flags);
987 load_secondary_context(mm);
988 __flush_tlb_mm(CTX_HWBITS(mm->context),
992 void smp_new_mmu_context_version(void)
994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
998 void kgdb_roundup_cpus(unsigned long flags)
1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1004 void smp_fetch_global_regs(void)
1006 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1009 void smp_fetch_global_pmu(void)
1011 if (tlb_type == hypervisor &&
1012 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1015 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1018 /* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1023 * The SMP TLB coherency scheme we use works as follows:
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
1043 * processor's in current->mm->cpu_vm_mask and performing the
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1057 /* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1063 u32 ctx = CTX_HWBITS(mm->context);
1064 int cpu = get_cpu();
1066 if (atomic_read(&mm->mm_users) == 1) {
1067 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068 goto local_flush_and_out;
1071 smp_cross_call_masked(&xcall_flush_tlb_mm,
1075 local_flush_and_out:
1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1081 struct tlb_pending_info {
1084 unsigned long *vaddrs;
1087 static void tlb_pending_func(void *info)
1089 struct tlb_pending_info *t = info;
1091 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1096 u32 ctx = CTX_HWBITS(mm->context);
1097 struct tlb_pending_info info;
1098 int cpu = get_cpu();
1102 info.vaddrs = vaddrs;
1104 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1107 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1110 __flush_tlb_pending(ctx, nr, vaddrs);
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1117 unsigned long context = CTX_HWBITS(mm->context);
1118 int cpu = get_cpu();
1120 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1123 smp_cross_call_masked(&xcall_flush_tlb_page,
1126 __flush_tlb_page(context, vaddr);
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1134 end = PAGE_ALIGN(end);
1136 smp_cross_call(&xcall_flush_tlb_kernel_range,
1139 __flush_tlb_kernel_range(start, end);
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1151 void smp_capture(void)
1153 int result = atomic_add_return(1, &smp_capture_depth);
1156 int ncpus = num_online_cpus();
1158 #ifdef CAPTURE_DEBUG
1159 printk("CPU[%d]: Sending penguins to jail...",
1160 smp_processor_id());
1162 penguins_are_doing_time = 1;
1163 atomic_inc(&smp_capture_registry);
1164 smp_cross_call(&xcall_capture, 0, 0, 0);
1165 while (atomic_read(&smp_capture_registry) != ncpus)
1167 #ifdef CAPTURE_DEBUG
1173 void smp_release(void)
1175 if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177 printk("CPU[%d]: Giving pardon to "
1178 "imprisoned penguins\n",
1179 smp_processor_id());
1181 penguins_are_doing_time = 0;
1182 membar_safe("#StoreLoad");
1183 atomic_dec(&smp_capture_registry);
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1190 extern void prom_world(int);
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1194 clear_softint(1 << irq);
1198 __asm__ __volatile__("flushw");
1200 atomic_inc(&smp_capture_registry);
1201 membar_safe("#StoreLoad");
1202 while (penguins_are_doing_time)
1204 atomic_dec(&smp_capture_registry);
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1220 void smp_prepare_boot_cpu(void)
1224 void __init smp_setup_processor_id(void)
1226 if (tlb_type == spitfire)
1227 xcall_deliver_impl = spitfire_xcall_deliver;
1228 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229 xcall_deliver_impl = cheetah_xcall_deliver;
1231 xcall_deliver_impl = hypervisor_xcall_deliver;
1234 void __init smp_fill_in_cpu_possible_map(void)
1236 int possible_cpus = num_possible_cpus();
1239 if (possible_cpus > nr_cpu_ids)
1240 possible_cpus = nr_cpu_ids;
1242 for (i = 0; i < possible_cpus; i++)
1243 set_cpu_possible(i, true);
1244 for (; i < NR_CPUS; i++)
1245 set_cpu_possible(i, false);
1248 void smp_fill_in_sib_core_maps(void)
1252 for_each_present_cpu(i) {
1255 cpumask_clear(&cpu_core_map[i]);
1256 if (cpu_data(i).core_id == 0) {
1257 cpumask_set_cpu(i, &cpu_core_map[i]);
1261 for_each_present_cpu(j) {
1262 if (cpu_data(i).core_id ==
1263 cpu_data(j).core_id)
1264 cpumask_set_cpu(j, &cpu_core_map[i]);
1268 for_each_present_cpu(i) {
1271 for_each_present_cpu(j) {
1272 if (cpu_data(i).max_cache_id ==
1273 cpu_data(j).max_cache_id)
1274 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1276 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1281 for_each_present_cpu(i) {
1284 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285 if (cpu_data(i).proc_id == -1) {
1286 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1290 for_each_present_cpu(j) {
1291 if (cpu_data(i).proc_id ==
1292 cpu_data(j).proc_id)
1293 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1298 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1300 int ret = smp_boot_one_cpu(cpu, tidle);
1303 cpumask_set_cpu(cpu, &smp_commenced_mask);
1304 while (!cpu_online(cpu))
1306 if (!cpu_online(cpu)) {
1309 /* On SUN4V, writes to %tick and %stick are
1312 if (tlb_type != hypervisor)
1313 smp_synchronize_one_tick(cpu);
1319 #ifdef CONFIG_HOTPLUG_CPU
1320 void cpu_play_dead(void)
1322 int cpu = smp_processor_id();
1323 unsigned long pstate;
1327 if (tlb_type == hypervisor) {
1328 struct trap_per_cpu *tb = &trap_block[cpu];
1330 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331 tb->cpu_mondo_pa, 0);
1332 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333 tb->dev_mondo_pa, 0);
1334 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335 tb->resum_mondo_pa, 0);
1336 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337 tb->nonresum_mondo_pa, 0);
1340 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341 membar_safe("#Sync");
1343 local_irq_disable();
1345 __asm__ __volatile__(
1346 "rdpr %%pstate, %0\n\t"
1347 "wrpr %0, %1, %%pstate"
1355 int __cpu_disable(void)
1357 int cpu = smp_processor_id();
1361 for_each_cpu(i, &cpu_core_map[cpu])
1362 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363 cpumask_clear(&cpu_core_map[cpu]);
1365 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1376 /* Make sure no interrupts point to this cpu. */
1381 local_irq_disable();
1383 set_cpu_online(cpu, false);
1390 void __cpu_die(unsigned int cpu)
1394 for (i = 0; i < 100; i++) {
1396 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1400 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1403 #if defined(CONFIG_SUN_LDOMS)
1404 unsigned long hv_err;
1408 hv_err = sun4v_cpu_stop(cpu);
1409 if (hv_err == HV_EOK) {
1410 set_cpu_present(cpu, false);
1413 } while (--limit > 0);
1415 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1423 void __init smp_cpus_done(unsigned int max_cpus)
1427 void smp_send_reschedule(int cpu)
1429 if (cpu == smp_processor_id()) {
1430 WARN_ON_ONCE(preemptible());
1431 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1433 xcall_deliver((u64) &xcall_receive_signal,
1434 0, 0, cpumask_of(cpu));
1438 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1440 clear_softint(1 << irq);
1444 static void stop_this_cpu(void *dummy)
1446 set_cpu_online(smp_processor_id(), false);
1450 void smp_send_stop(void)
1454 if (tlb_type == hypervisor) {
1455 int this_cpu = smp_processor_id();
1456 #ifdef CONFIG_SERIAL_SUNHV
1457 sunhv_migrate_hvcons_irq(this_cpu);
1459 for_each_online_cpu(cpu) {
1460 if (cpu == this_cpu)
1463 set_cpu_online(cpu, false);
1464 #ifdef CONFIG_SUN_LDOMS
1465 if (ldom_domaining_enabled) {
1466 unsigned long hv_err;
1467 hv_err = sun4v_cpu_stop(cpu);
1469 printk(KERN_ERR "sun4v_cpu_stop() "
1470 "failed err=%lu\n", hv_err);
1473 prom_stopcpu_cpuid(cpu);
1476 smp_call_function(stop_this_cpu, NULL, 0);
1480 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1481 * @cpu: cpu to allocate for
1482 * @size: size allocation in bytes
1485 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1486 * does the right thing for NUMA regardless of the current
1490 * Pointer to the allocated area on success, NULL on failure.
1492 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1495 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1496 #ifdef CONFIG_NEED_MULTIPLE_NODES
1497 int node = cpu_to_node(cpu);
1500 if (!node_online(node) || !NODE_DATA(node)) {
1501 ptr = __alloc_bootmem(size, align, goal);
1502 pr_info("cpu %d has no node %d or node-local memory\n",
1504 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1505 cpu, size, __pa(ptr));
1507 ptr = __alloc_bootmem_node(NODE_DATA(node),
1509 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1510 "%016lx\n", cpu, size, node, __pa(ptr));
1514 return __alloc_bootmem(size, align, goal);
1518 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1520 free_bootmem(__pa(ptr), size);
1523 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1525 if (cpu_to_node(from) == cpu_to_node(to))
1526 return LOCAL_DISTANCE;
1528 return REMOTE_DISTANCE;
1531 static void __init pcpu_populate_pte(unsigned long addr)
1533 pgd_t *pgd = pgd_offset_k(addr);
1537 if (pgd_none(*pgd)) {
1540 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1541 pgd_populate(&init_mm, pgd, new);
1544 pud = pud_offset(pgd, addr);
1545 if (pud_none(*pud)) {
1548 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1549 pud_populate(&init_mm, pud, new);
1552 pmd = pmd_offset(pud, addr);
1553 if (!pmd_present(*pmd)) {
1556 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1557 pmd_populate_kernel(&init_mm, pmd, new);
1561 void __init setup_per_cpu_areas(void)
1563 unsigned long delta;
1567 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1568 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1569 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1574 pr_warning("PERCPU: %s allocator failed (%d), "
1575 "falling back to page size\n",
1576 pcpu_fc_names[pcpu_chosen_fc], rc);
1579 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1584 panic("cannot initialize percpu area (err=%d)", rc);
1586 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1587 for_each_possible_cpu(cpu)
1588 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1590 /* Setup %g5 for the boot cpu. */
1591 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1593 of_fill_in_cpu_data();
1594 if (tlb_type == hypervisor)
1595 mdesc_fill_in_cpu_data(cpu_all_mask);