]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
16b58ff11e659ed85b01bae53289f4b21000dd0d
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/setup.h>
51 #include <asm/irq.h>
52
53 #include "init_64.h"
54
55 unsigned long kern_linear_pte_xor[4] __read_mostly;
56
57 /* A bitmap, two bits for every 256MB of physical memory.  These two
58  * bits determine what page size we use for kernel linear
59  * translations.  They form an index into kern_linear_pte_xor[].  The
60  * value in the indexed slot is XOR'd with the TLB miss virtual
61  * address to form the resulting TTE.  The mapping is:
62  *
63  *      0       ==>     4MB
64  *      1       ==>     256MB
65  *      2       ==>     2GB
66  *      3       ==>     16GB
67  *
68  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
69  * support 2GB pages, and hopefully future cpus will support the 16GB
70  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
71  * if these larger page sizes are not supported by the cpu.
72  *
73  * It would be nice to determine this from the machine description
74  * 'cpu' properties, but we need to have this table setup before the
75  * MDESC is initialized.
76  */
77 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
78
79 #ifndef CONFIG_DEBUG_PAGEALLOC
80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
81  * Space is allocated for this right after the trap table in
82  * arch/sparc64/kernel/head.S
83  */
84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
85 #endif
86
87 static unsigned long cpu_pgsz_mask;
88
89 #define MAX_BANKS       32
90
91 static struct linux_prom64_registers pavail[MAX_BANKS];
92 static int pavail_ents;
93
94 static int cmp_p64(const void *a, const void *b)
95 {
96         const struct linux_prom64_registers *x = a, *y = b;
97
98         if (x->phys_addr > y->phys_addr)
99                 return 1;
100         if (x->phys_addr < y->phys_addr)
101                 return -1;
102         return 0;
103 }
104
105 static void __init read_obp_memory(const char *property,
106                                    struct linux_prom64_registers *regs,
107                                    int *num_ents)
108 {
109         phandle node = prom_finddevice("/memory");
110         int prop_size = prom_getproplen(node, property);
111         int ents, ret, i;
112
113         ents = prop_size / sizeof(struct linux_prom64_registers);
114         if (ents > MAX_BANKS) {
115                 prom_printf("The machine has more %s property entries than "
116                             "this kernel can support (%d).\n",
117                             property, MAX_BANKS);
118                 prom_halt();
119         }
120
121         ret = prom_getproperty(node, property, (char *) regs, prop_size);
122         if (ret == -1) {
123                 prom_printf("Couldn't get %s property from /memory.\n",
124                                 property);
125                 prom_halt();
126         }
127
128         /* Sanitize what we got from the firmware, by page aligning
129          * everything.
130          */
131         for (i = 0; i < ents; i++) {
132                 unsigned long base, size;
133
134                 base = regs[i].phys_addr;
135                 size = regs[i].reg_size;
136
137                 size &= PAGE_MASK;
138                 if (base & ~PAGE_MASK) {
139                         unsigned long new_base = PAGE_ALIGN(base);
140
141                         size -= new_base - base;
142                         if ((long) size < 0L)
143                                 size = 0UL;
144                         base = new_base;
145                 }
146                 if (size == 0UL) {
147                         /* If it is empty, simply get rid of it.
148                          * This simplifies the logic of the other
149                          * functions that process these arrays.
150                          */
151                         memmove(&regs[i], &regs[i + 1],
152                                 (ents - i - 1) * sizeof(regs[0]));
153                         i--;
154                         ents--;
155                         continue;
156                 }
157                 regs[i].phys_addr = base;
158                 regs[i].reg_size = size;
159         }
160
161         *num_ents = ents;
162
163         sort(regs, ents, sizeof(struct linux_prom64_registers),
164              cmp_p64, NULL);
165 }
166
167 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
168                                         sizeof(unsigned long)];
169 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
328 static inline bool is_hugetlb_pte(pte_t pte)
329 {
330         if ((tlb_type == hypervisor &&
331              (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
332             (tlb_type != hypervisor &&
333              (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
334                 return true;
335         return false;
336 }
337 #endif
338
339 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
340 {
341         struct mm_struct *mm;
342         unsigned long flags;
343         pte_t pte = *ptep;
344
345         if (tlb_type != hypervisor) {
346                 unsigned long pfn = pte_pfn(pte);
347
348                 if (pfn_valid(pfn))
349                         flush_dcache(pfn);
350         }
351
352         mm = vma->vm_mm;
353
354         spin_lock_irqsave(&mm->context.lock, flags);
355
356 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
357         if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
358                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
359                                         address, pte_val(pte));
360         else
361 #endif
362                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
363                                         address, pte_val(pte));
364
365         spin_unlock_irqrestore(&mm->context.lock, flags);
366 }
367
368 void flush_dcache_page(struct page *page)
369 {
370         struct address_space *mapping;
371         int this_cpu;
372
373         if (tlb_type == hypervisor)
374                 return;
375
376         /* Do not bother with the expensive D-cache flush if it
377          * is merely the zero page.  The 'bigcore' testcase in GDB
378          * causes this case to run millions of times.
379          */
380         if (page == ZERO_PAGE(0))
381                 return;
382
383         this_cpu = get_cpu();
384
385         mapping = page_mapping(page);
386         if (mapping && !mapping_mapped(mapping)) {
387                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
388                 if (dirty) {
389                         int dirty_cpu = dcache_dirty_cpu(page);
390
391                         if (dirty_cpu == this_cpu)
392                                 goto out;
393                         smp_flush_dcache_page_impl(page, dirty_cpu);
394                 }
395                 set_dcache_dirty(page, this_cpu);
396         } else {
397                 /* We could delay the flush for the !page_mapping
398                  * case too.  But that case is for exec env/arg
399                  * pages and those are %99 certainly going to get
400                  * faulted into the tlb (and thus flushed) anyways.
401                  */
402                 flush_dcache_page_impl(page);
403         }
404
405 out:
406         put_cpu();
407 }
408 EXPORT_SYMBOL(flush_dcache_page);
409
410 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
411 {
412         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
413         if (tlb_type == spitfire) {
414                 unsigned long kaddr;
415
416                 /* This code only runs on Spitfire cpus so this is
417                  * why we can assume _PAGE_PADDR_4U.
418                  */
419                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
420                         unsigned long paddr, mask = _PAGE_PADDR_4U;
421
422                         if (kaddr >= PAGE_OFFSET)
423                                 paddr = kaddr & mask;
424                         else {
425                                 pgd_t *pgdp = pgd_offset_k(kaddr);
426                                 pud_t *pudp = pud_offset(pgdp, kaddr);
427                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
428                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
429
430                                 paddr = pte_val(*ptep) & mask;
431                         }
432                         __flush_icache_page(paddr);
433                 }
434         }
435 }
436 EXPORT_SYMBOL(flush_icache_range);
437
438 void mmu_info(struct seq_file *m)
439 {
440         static const char *pgsz_strings[] = {
441                 "8K", "64K", "512K", "4MB", "32MB",
442                 "256MB", "2GB", "16GB",
443         };
444         int i, printed;
445
446         if (tlb_type == cheetah)
447                 seq_printf(m, "MMU Type\t: Cheetah\n");
448         else if (tlb_type == cheetah_plus)
449                 seq_printf(m, "MMU Type\t: Cheetah+\n");
450         else if (tlb_type == spitfire)
451                 seq_printf(m, "MMU Type\t: Spitfire\n");
452         else if (tlb_type == hypervisor)
453                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
454         else
455                 seq_printf(m, "MMU Type\t: ???\n");
456
457         seq_printf(m, "MMU PGSZs\t: ");
458         printed = 0;
459         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
460                 if (cpu_pgsz_mask & (1UL << i)) {
461                         seq_printf(m, "%s%s",
462                                    printed ? "," : "", pgsz_strings[i]);
463                         printed++;
464                 }
465         }
466         seq_putc(m, '\n');
467
468 #ifdef CONFIG_DEBUG_DCFLUSH
469         seq_printf(m, "DCPageFlushes\t: %d\n",
470                    atomic_read(&dcpage_flushes));
471 #ifdef CONFIG_SMP
472         seq_printf(m, "DCPageFlushesXC\t: %d\n",
473                    atomic_read(&dcpage_flushes_xcall));
474 #endif /* CONFIG_SMP */
475 #endif /* CONFIG_DEBUG_DCFLUSH */
476 }
477
478 struct linux_prom_translation prom_trans[512] __read_mostly;
479 unsigned int prom_trans_ents __read_mostly;
480
481 unsigned long kern_locked_tte_data;
482
483 /* The obp translations are saved based on 8k pagesize, since obp can
484  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
485  * HI_OBP_ADDRESS range are handled in ktlb.S.
486  */
487 static inline int in_obp_range(unsigned long vaddr)
488 {
489         return (vaddr >= LOW_OBP_ADDRESS &&
490                 vaddr < HI_OBP_ADDRESS);
491 }
492
493 static int cmp_ptrans(const void *a, const void *b)
494 {
495         const struct linux_prom_translation *x = a, *y = b;
496
497         if (x->virt > y->virt)
498                 return 1;
499         if (x->virt < y->virt)
500                 return -1;
501         return 0;
502 }
503
504 /* Read OBP translations property into 'prom_trans[]'.  */
505 static void __init read_obp_translations(void)
506 {
507         int n, node, ents, first, last, i;
508
509         node = prom_finddevice("/virtual-memory");
510         n = prom_getproplen(node, "translations");
511         if (unlikely(n == 0 || n == -1)) {
512                 prom_printf("prom_mappings: Couldn't get size.\n");
513                 prom_halt();
514         }
515         if (unlikely(n > sizeof(prom_trans))) {
516                 prom_printf("prom_mappings: Size %d is too big.\n", n);
517                 prom_halt();
518         }
519
520         if ((n = prom_getproperty(node, "translations",
521                                   (char *)&prom_trans[0],
522                                   sizeof(prom_trans))) == -1) {
523                 prom_printf("prom_mappings: Couldn't get property.\n");
524                 prom_halt();
525         }
526
527         n = n / sizeof(struct linux_prom_translation);
528
529         ents = n;
530
531         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
532              cmp_ptrans, NULL);
533
534         /* Now kick out all the non-OBP entries.  */
535         for (i = 0; i < ents; i++) {
536                 if (in_obp_range(prom_trans[i].virt))
537                         break;
538         }
539         first = i;
540         for (; i < ents; i++) {
541                 if (!in_obp_range(prom_trans[i].virt))
542                         break;
543         }
544         last = i;
545
546         for (i = 0; i < (last - first); i++) {
547                 struct linux_prom_translation *src = &prom_trans[i + first];
548                 struct linux_prom_translation *dest = &prom_trans[i];
549
550                 *dest = *src;
551         }
552         for (; i < ents; i++) {
553                 struct linux_prom_translation *dest = &prom_trans[i];
554                 dest->virt = dest->size = dest->data = 0x0UL;
555         }
556
557         prom_trans_ents = last - first;
558
559         if (tlb_type == spitfire) {
560                 /* Clear diag TTE bits. */
561                 for (i = 0; i < prom_trans_ents; i++)
562                         prom_trans[i].data &= ~0x0003fe0000000000UL;
563         }
564
565         /* Force execute bit on.  */
566         for (i = 0; i < prom_trans_ents; i++)
567                 prom_trans[i].data |= (tlb_type == hypervisor ?
568                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
569 }
570
571 static void __init hypervisor_tlb_lock(unsigned long vaddr,
572                                        unsigned long pte,
573                                        unsigned long mmu)
574 {
575         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
576
577         if (ret != 0) {
578                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
579                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
580                 prom_halt();
581         }
582 }
583
584 static unsigned long kern_large_tte(unsigned long paddr);
585
586 static void __init remap_kernel(void)
587 {
588         unsigned long phys_page, tte_vaddr, tte_data;
589         int i, tlb_ent = sparc64_highest_locked_tlbent();
590
591         tte_vaddr = (unsigned long) KERNBASE;
592         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
593         tte_data = kern_large_tte(phys_page);
594
595         kern_locked_tte_data = tte_data;
596
597         /* Now lock us into the TLBs via Hypervisor or OBP. */
598         if (tlb_type == hypervisor) {
599                 for (i = 0; i < num_kernel_image_mappings; i++) {
600                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
601                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
602                         tte_vaddr += 0x400000;
603                         tte_data += 0x400000;
604                 }
605         } else {
606                 for (i = 0; i < num_kernel_image_mappings; i++) {
607                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
608                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
609                         tte_vaddr += 0x400000;
610                         tte_data += 0x400000;
611                 }
612                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
613         }
614         if (tlb_type == cheetah_plus) {
615                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
616                                             CTX_CHEETAH_PLUS_NUC);
617                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
618                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
619         }
620 }
621
622
623 static void __init inherit_prom_mappings(void)
624 {
625         /* Now fixup OBP's idea about where we really are mapped. */
626         printk("Remapping the kernel... ");
627         remap_kernel();
628         printk("done.\n");
629 }
630
631 void prom_world(int enter)
632 {
633         if (!enter)
634                 set_fs(get_fs());
635
636         __asm__ __volatile__("flushw");
637 }
638
639 void __flush_dcache_range(unsigned long start, unsigned long end)
640 {
641         unsigned long va;
642
643         if (tlb_type == spitfire) {
644                 int n = 0;
645
646                 for (va = start; va < end; va += 32) {
647                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
648                         if (++n >= 512)
649                                 break;
650                 }
651         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
652                 start = __pa(start);
653                 end = __pa(end);
654                 for (va = start; va < end; va += 32)
655                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
656                                              "membar #Sync"
657                                              : /* no outputs */
658                                              : "r" (va),
659                                                "i" (ASI_DCACHE_INVALIDATE));
660         }
661 }
662 EXPORT_SYMBOL(__flush_dcache_range);
663
664 /* get_new_mmu_context() uses "cache + 1".  */
665 DEFINE_SPINLOCK(ctx_alloc_lock);
666 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
667 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
668 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
669 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
670
671 /* Caller does TLB context flushing on local CPU if necessary.
672  * The caller also ensures that CTX_VALID(mm->context) is false.
673  *
674  * We must be careful about boundary cases so that we never
675  * let the user have CTX 0 (nucleus) or we ever use a CTX
676  * version of zero (and thus NO_CONTEXT would not be caught
677  * by version mis-match tests in mmu_context.h).
678  *
679  * Always invoked with interrupts disabled.
680  */
681 void get_new_mmu_context(struct mm_struct *mm)
682 {
683         unsigned long ctx, new_ctx;
684         unsigned long orig_pgsz_bits;
685         int new_version;
686
687         spin_lock(&ctx_alloc_lock);
688         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
689         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
690         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
691         new_version = 0;
692         if (new_ctx >= (1 << CTX_NR_BITS)) {
693                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
694                 if (new_ctx >= ctx) {
695                         int i;
696                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
697                                 CTX_FIRST_VERSION;
698                         if (new_ctx == 1)
699                                 new_ctx = CTX_FIRST_VERSION;
700
701                         /* Don't call memset, for 16 entries that's just
702                          * plain silly...
703                          */
704                         mmu_context_bmap[0] = 3;
705                         mmu_context_bmap[1] = 0;
706                         mmu_context_bmap[2] = 0;
707                         mmu_context_bmap[3] = 0;
708                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
709                                 mmu_context_bmap[i + 0] = 0;
710                                 mmu_context_bmap[i + 1] = 0;
711                                 mmu_context_bmap[i + 2] = 0;
712                                 mmu_context_bmap[i + 3] = 0;
713                         }
714                         new_version = 1;
715                         goto out;
716                 }
717         }
718         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
719         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
720 out:
721         tlb_context_cache = new_ctx;
722         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
723         spin_unlock(&ctx_alloc_lock);
724
725         if (unlikely(new_version))
726                 smp_new_mmu_context_version();
727 }
728
729 static int numa_enabled = 1;
730 static int numa_debug;
731
732 static int __init early_numa(char *p)
733 {
734         if (!p)
735                 return 0;
736
737         if (strstr(p, "off"))
738                 numa_enabled = 0;
739
740         if (strstr(p, "debug"))
741                 numa_debug = 1;
742
743         return 0;
744 }
745 early_param("numa", early_numa);
746
747 #define numadbg(f, a...) \
748 do {    if (numa_debug) \
749                 printk(KERN_INFO f, ## a); \
750 } while (0)
751
752 static void __init find_ramdisk(unsigned long phys_base)
753 {
754 #ifdef CONFIG_BLK_DEV_INITRD
755         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
756                 unsigned long ramdisk_image;
757
758                 /* Older versions of the bootloader only supported a
759                  * 32-bit physical address for the ramdisk image
760                  * location, stored at sparc_ramdisk_image.  Newer
761                  * SILO versions set sparc_ramdisk_image to zero and
762                  * provide a full 64-bit physical address at
763                  * sparc_ramdisk_image64.
764                  */
765                 ramdisk_image = sparc_ramdisk_image;
766                 if (!ramdisk_image)
767                         ramdisk_image = sparc_ramdisk_image64;
768
769                 /* Another bootloader quirk.  The bootloader normalizes
770                  * the physical address to KERNBASE, so we have to
771                  * factor that back out and add in the lowest valid
772                  * physical page address to get the true physical address.
773                  */
774                 ramdisk_image -= KERNBASE;
775                 ramdisk_image += phys_base;
776
777                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
778                         ramdisk_image, sparc_ramdisk_size);
779
780                 initrd_start = ramdisk_image;
781                 initrd_end = ramdisk_image + sparc_ramdisk_size;
782
783                 memblock_reserve(initrd_start, sparc_ramdisk_size);
784
785                 initrd_start += PAGE_OFFSET;
786                 initrd_end += PAGE_OFFSET;
787         }
788 #endif
789 }
790
791 struct node_mem_mask {
792         unsigned long mask;
793         unsigned long val;
794 };
795 static struct node_mem_mask node_masks[MAX_NUMNODES];
796 static int num_node_masks;
797
798 #ifdef CONFIG_NEED_MULTIPLE_NODES
799
800 int numa_cpu_lookup_table[NR_CPUS];
801 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
802
803 struct mdesc_mblock {
804         u64     base;
805         u64     size;
806         u64     offset; /* RA-to-PA */
807 };
808 static struct mdesc_mblock *mblocks;
809 static int num_mblocks;
810
811 static unsigned long ra_to_pa(unsigned long addr)
812 {
813         int i;
814
815         for (i = 0; i < num_mblocks; i++) {
816                 struct mdesc_mblock *m = &mblocks[i];
817
818                 if (addr >= m->base &&
819                     addr < (m->base + m->size)) {
820                         addr += m->offset;
821                         break;
822                 }
823         }
824         return addr;
825 }
826
827 static int find_node(unsigned long addr)
828 {
829         int i;
830
831         addr = ra_to_pa(addr);
832         for (i = 0; i < num_node_masks; i++) {
833                 struct node_mem_mask *p = &node_masks[i];
834
835                 if ((addr & p->mask) == p->val)
836                         return i;
837         }
838         return -1;
839 }
840
841 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
842 {
843         *nid = find_node(start);
844         start += PAGE_SIZE;
845         while (start < end) {
846                 int n = find_node(start);
847
848                 if (n != *nid)
849                         break;
850                 start += PAGE_SIZE;
851         }
852
853         if (start > end)
854                 start = end;
855
856         return start;
857 }
858 #endif
859
860 /* This must be invoked after performing all of the necessary
861  * memblock_set_node() calls for 'nid'.  We need to be able to get
862  * correct data from get_pfn_range_for_nid().
863  */
864 static void __init allocate_node_data(int nid)
865 {
866         struct pglist_data *p;
867         unsigned long start_pfn, end_pfn;
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869         unsigned long paddr;
870
871         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
872         if (!paddr) {
873                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
874                 prom_halt();
875         }
876         NODE_DATA(nid) = __va(paddr);
877         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
878
879         NODE_DATA(nid)->node_id = nid;
880 #endif
881
882         p = NODE_DATA(nid);
883
884         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
885         p->node_start_pfn = start_pfn;
886         p->node_spanned_pages = end_pfn - start_pfn;
887 }
888
889 static void init_node_masks_nonnuma(void)
890 {
891 #ifdef CONFIG_NEED_MULTIPLE_NODES
892         int i;
893 #endif
894
895         numadbg("Initializing tables for non-numa.\n");
896
897         node_masks[0].mask = node_masks[0].val = 0;
898         num_node_masks = 1;
899
900 #ifdef CONFIG_NEED_MULTIPLE_NODES
901         for (i = 0; i < NR_CPUS; i++)
902                 numa_cpu_lookup_table[i] = 0;
903
904         cpumask_setall(&numa_cpumask_lookup_table[0]);
905 #endif
906 }
907
908 #ifdef CONFIG_NEED_MULTIPLE_NODES
909 struct pglist_data *node_data[MAX_NUMNODES];
910
911 EXPORT_SYMBOL(numa_cpu_lookup_table);
912 EXPORT_SYMBOL(numa_cpumask_lookup_table);
913 EXPORT_SYMBOL(node_data);
914
915 struct mdesc_mlgroup {
916         u64     node;
917         u64     latency;
918         u64     match;
919         u64     mask;
920 };
921 static struct mdesc_mlgroup *mlgroups;
922 static int num_mlgroups;
923
924 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
925                                    u32 cfg_handle)
926 {
927         u64 arc;
928
929         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
930                 u64 target = mdesc_arc_target(md, arc);
931                 const u64 *val;
932
933                 val = mdesc_get_property(md, target,
934                                          "cfg-handle", NULL);
935                 if (val && *val == cfg_handle)
936                         return 0;
937         }
938         return -ENODEV;
939 }
940
941 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
942                                     u32 cfg_handle)
943 {
944         u64 arc, candidate, best_latency = ~(u64)0;
945
946         candidate = MDESC_NODE_NULL;
947         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
948                 u64 target = mdesc_arc_target(md, arc);
949                 const char *name = mdesc_node_name(md, target);
950                 const u64 *val;
951
952                 if (strcmp(name, "pio-latency-group"))
953                         continue;
954
955                 val = mdesc_get_property(md, target, "latency", NULL);
956                 if (!val)
957                         continue;
958
959                 if (*val < best_latency) {
960                         candidate = target;
961                         best_latency = *val;
962                 }
963         }
964
965         if (candidate == MDESC_NODE_NULL)
966                 return -ENODEV;
967
968         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
969 }
970
971 int of_node_to_nid(struct device_node *dp)
972 {
973         const struct linux_prom64_registers *regs;
974         struct mdesc_handle *md;
975         u32 cfg_handle;
976         int count, nid;
977         u64 grp;
978
979         /* This is the right thing to do on currently supported
980          * SUN4U NUMA platforms as well, as the PCI controller does
981          * not sit behind any particular memory controller.
982          */
983         if (!mlgroups)
984                 return -1;
985
986         regs = of_get_property(dp, "reg", NULL);
987         if (!regs)
988                 return -1;
989
990         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
991
992         md = mdesc_grab();
993
994         count = 0;
995         nid = -1;
996         mdesc_for_each_node_by_name(md, grp, "group") {
997                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
998                         nid = count;
999                         break;
1000                 }
1001                 count++;
1002         }
1003
1004         mdesc_release(md);
1005
1006         return nid;
1007 }
1008
1009 static void __init add_node_ranges(void)
1010 {
1011         struct memblock_region *reg;
1012
1013         for_each_memblock(memory, reg) {
1014                 unsigned long size = reg->size;
1015                 unsigned long start, end;
1016
1017                 start = reg->base;
1018                 end = start + size;
1019                 while (start < end) {
1020                         unsigned long this_end;
1021                         int nid;
1022
1023                         this_end = memblock_nid_range(start, end, &nid);
1024
1025                         numadbg("Setting memblock NUMA node nid[%d] "
1026                                 "start[%lx] end[%lx]\n",
1027                                 nid, start, this_end);
1028
1029                         memblock_set_node(start, this_end - start,
1030                                           &memblock.memory, nid);
1031                         start = this_end;
1032                 }
1033         }
1034 }
1035
1036 static int __init grab_mlgroups(struct mdesc_handle *md)
1037 {
1038         unsigned long paddr;
1039         int count = 0;
1040         u64 node;
1041
1042         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1043                 count++;
1044         if (!count)
1045                 return -ENOENT;
1046
1047         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1048                           SMP_CACHE_BYTES);
1049         if (!paddr)
1050                 return -ENOMEM;
1051
1052         mlgroups = __va(paddr);
1053         num_mlgroups = count;
1054
1055         count = 0;
1056         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1057                 struct mdesc_mlgroup *m = &mlgroups[count++];
1058                 const u64 *val;
1059
1060                 m->node = node;
1061
1062                 val = mdesc_get_property(md, node, "latency", NULL);
1063                 m->latency = *val;
1064                 val = mdesc_get_property(md, node, "address-match", NULL);
1065                 m->match = *val;
1066                 val = mdesc_get_property(md, node, "address-mask", NULL);
1067                 m->mask = *val;
1068
1069                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1070                         "match[%llx] mask[%llx]\n",
1071                         count - 1, m->node, m->latency, m->match, m->mask);
1072         }
1073
1074         return 0;
1075 }
1076
1077 static int __init grab_mblocks(struct mdesc_handle *md)
1078 {
1079         unsigned long paddr;
1080         int count = 0;
1081         u64 node;
1082
1083         mdesc_for_each_node_by_name(md, node, "mblock")
1084                 count++;
1085         if (!count)
1086                 return -ENOENT;
1087
1088         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1089                           SMP_CACHE_BYTES);
1090         if (!paddr)
1091                 return -ENOMEM;
1092
1093         mblocks = __va(paddr);
1094         num_mblocks = count;
1095
1096         count = 0;
1097         mdesc_for_each_node_by_name(md, node, "mblock") {
1098                 struct mdesc_mblock *m = &mblocks[count++];
1099                 const u64 *val;
1100
1101                 val = mdesc_get_property(md, node, "base", NULL);
1102                 m->base = *val;
1103                 val = mdesc_get_property(md, node, "size", NULL);
1104                 m->size = *val;
1105                 val = mdesc_get_property(md, node,
1106                                          "address-congruence-offset", NULL);
1107
1108                 /* The address-congruence-offset property is optional.
1109                  * Explicity zero it be identifty this.
1110                  */
1111                 if (val)
1112                         m->offset = *val;
1113                 else
1114                         m->offset = 0UL;
1115
1116                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1117                         count - 1, m->base, m->size, m->offset);
1118         }
1119
1120         return 0;
1121 }
1122
1123 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1124                                                u64 grp, cpumask_t *mask)
1125 {
1126         u64 arc;
1127
1128         cpumask_clear(mask);
1129
1130         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1131                 u64 target = mdesc_arc_target(md, arc);
1132                 const char *name = mdesc_node_name(md, target);
1133                 const u64 *id;
1134
1135                 if (strcmp(name, "cpu"))
1136                         continue;
1137                 id = mdesc_get_property(md, target, "id", NULL);
1138                 if (*id < nr_cpu_ids)
1139                         cpumask_set_cpu(*id, mask);
1140         }
1141 }
1142
1143 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1144 {
1145         int i;
1146
1147         for (i = 0; i < num_mlgroups; i++) {
1148                 struct mdesc_mlgroup *m = &mlgroups[i];
1149                 if (m->node == node)
1150                         return m;
1151         }
1152         return NULL;
1153 }
1154
1155 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1156                                       int index)
1157 {
1158         struct mdesc_mlgroup *candidate = NULL;
1159         u64 arc, best_latency = ~(u64)0;
1160         struct node_mem_mask *n;
1161
1162         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1163                 u64 target = mdesc_arc_target(md, arc);
1164                 struct mdesc_mlgroup *m = find_mlgroup(target);
1165                 if (!m)
1166                         continue;
1167                 if (m->latency < best_latency) {
1168                         candidate = m;
1169                         best_latency = m->latency;
1170                 }
1171         }
1172         if (!candidate)
1173                 return -ENOENT;
1174
1175         if (num_node_masks != index) {
1176                 printk(KERN_ERR "Inconsistent NUMA state, "
1177                        "index[%d] != num_node_masks[%d]\n",
1178                        index, num_node_masks);
1179                 return -EINVAL;
1180         }
1181
1182         n = &node_masks[num_node_masks++];
1183
1184         n->mask = candidate->mask;
1185         n->val = candidate->match;
1186
1187         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1188                 index, n->mask, n->val, candidate->latency);
1189
1190         return 0;
1191 }
1192
1193 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1194                                          int index)
1195 {
1196         cpumask_t mask;
1197         int cpu;
1198
1199         numa_parse_mdesc_group_cpus(md, grp, &mask);
1200
1201         for_each_cpu(cpu, &mask)
1202                 numa_cpu_lookup_table[cpu] = index;
1203         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1204
1205         if (numa_debug) {
1206                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1207                 for_each_cpu(cpu, &mask)
1208                         printk("%d ", cpu);
1209                 printk("]\n");
1210         }
1211
1212         return numa_attach_mlgroup(md, grp, index);
1213 }
1214
1215 static int __init numa_parse_mdesc(void)
1216 {
1217         struct mdesc_handle *md = mdesc_grab();
1218         int i, err, count;
1219         u64 node;
1220
1221         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1222         if (node == MDESC_NODE_NULL) {
1223                 mdesc_release(md);
1224                 return -ENOENT;
1225         }
1226
1227         err = grab_mblocks(md);
1228         if (err < 0)
1229                 goto out;
1230
1231         err = grab_mlgroups(md);
1232         if (err < 0)
1233                 goto out;
1234
1235         count = 0;
1236         mdesc_for_each_node_by_name(md, node, "group") {
1237                 err = numa_parse_mdesc_group(md, node, count);
1238                 if (err < 0)
1239                         break;
1240                 count++;
1241         }
1242
1243         add_node_ranges();
1244
1245         for (i = 0; i < num_node_masks; i++) {
1246                 allocate_node_data(i);
1247                 node_set_online(i);
1248         }
1249
1250         err = 0;
1251 out:
1252         mdesc_release(md);
1253         return err;
1254 }
1255
1256 static int __init numa_parse_jbus(void)
1257 {
1258         unsigned long cpu, index;
1259
1260         /* NUMA node id is encoded in bits 36 and higher, and there is
1261          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1262          */
1263         index = 0;
1264         for_each_present_cpu(cpu) {
1265                 numa_cpu_lookup_table[cpu] = index;
1266                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1267                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1268                 node_masks[index].val = cpu << 36UL;
1269
1270                 index++;
1271         }
1272         num_node_masks = index;
1273
1274         add_node_ranges();
1275
1276         for (index = 0; index < num_node_masks; index++) {
1277                 allocate_node_data(index);
1278                 node_set_online(index);
1279         }
1280
1281         return 0;
1282 }
1283
1284 static int __init numa_parse_sun4u(void)
1285 {
1286         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1287                 unsigned long ver;
1288
1289                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1290                 if ((ver >> 32UL) == __JALAPENO_ID ||
1291                     (ver >> 32UL) == __SERRANO_ID)
1292                         return numa_parse_jbus();
1293         }
1294         return -1;
1295 }
1296
1297 static int __init bootmem_init_numa(void)
1298 {
1299         int err = -1;
1300
1301         numadbg("bootmem_init_numa()\n");
1302
1303         if (numa_enabled) {
1304                 if (tlb_type == hypervisor)
1305                         err = numa_parse_mdesc();
1306                 else
1307                         err = numa_parse_sun4u();
1308         }
1309         return err;
1310 }
1311
1312 #else
1313
1314 static int bootmem_init_numa(void)
1315 {
1316         return -1;
1317 }
1318
1319 #endif
1320
1321 static void __init bootmem_init_nonnuma(void)
1322 {
1323         unsigned long top_of_ram = memblock_end_of_DRAM();
1324         unsigned long total_ram = memblock_phys_mem_size();
1325
1326         numadbg("bootmem_init_nonnuma()\n");
1327
1328         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1329                top_of_ram, total_ram);
1330         printk(KERN_INFO "Memory hole size: %ldMB\n",
1331                (top_of_ram - total_ram) >> 20);
1332
1333         init_node_masks_nonnuma();
1334         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1335         allocate_node_data(0);
1336         node_set_online(0);
1337 }
1338
1339 static unsigned long __init bootmem_init(unsigned long phys_base)
1340 {
1341         unsigned long end_pfn;
1342
1343         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1344         max_pfn = max_low_pfn = end_pfn;
1345         min_low_pfn = (phys_base >> PAGE_SHIFT);
1346
1347         if (bootmem_init_numa() < 0)
1348                 bootmem_init_nonnuma();
1349
1350         /* Dump memblock with node info. */
1351         memblock_dump_all();
1352
1353         /* XXX cpu notifier XXX */
1354
1355         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1356         sparse_init();
1357
1358         return end_pfn;
1359 }
1360
1361 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1362 static int pall_ents __initdata;
1363
1364 #ifdef CONFIG_DEBUG_PAGEALLOC
1365 static unsigned long __ref kernel_map_range(unsigned long pstart,
1366                                             unsigned long pend, pgprot_t prot)
1367 {
1368         unsigned long vstart = PAGE_OFFSET + pstart;
1369         unsigned long vend = PAGE_OFFSET + pend;
1370         unsigned long alloc_bytes = 0UL;
1371
1372         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1373                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1374                             vstart, vend);
1375                 prom_halt();
1376         }
1377
1378         while (vstart < vend) {
1379                 unsigned long this_end, paddr = __pa(vstart);
1380                 pgd_t *pgd = pgd_offset_k(vstart);
1381                 pud_t *pud;
1382                 pmd_t *pmd;
1383                 pte_t *pte;
1384
1385                 pud = pud_offset(pgd, vstart);
1386                 if (pud_none(*pud)) {
1387                         pmd_t *new;
1388
1389                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1390                         alloc_bytes += PAGE_SIZE;
1391                         pud_populate(&init_mm, pud, new);
1392                 }
1393
1394                 pmd = pmd_offset(pud, vstart);
1395                 if (!pmd_present(*pmd)) {
1396                         pte_t *new;
1397
1398                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1399                         alloc_bytes += PAGE_SIZE;
1400                         pmd_populate_kernel(&init_mm, pmd, new);
1401                 }
1402
1403                 pte = pte_offset_kernel(pmd, vstart);
1404                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1405                 if (this_end > vend)
1406                         this_end = vend;
1407
1408                 while (vstart < this_end) {
1409                         pte_val(*pte) = (paddr | pgprot_val(prot));
1410
1411                         vstart += PAGE_SIZE;
1412                         paddr += PAGE_SIZE;
1413                         pte++;
1414                 }
1415         }
1416
1417         return alloc_bytes;
1418 }
1419
1420 extern unsigned int kvmap_linear_patch[1];
1421 #endif /* CONFIG_DEBUG_PAGEALLOC */
1422
1423 static void __init kpte_set_val(unsigned long index, unsigned long val)
1424 {
1425         unsigned long *ptr = kpte_linear_bitmap;
1426
1427         val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1428         ptr += (index / (BITS_PER_LONG / 2));
1429
1430         *ptr |= val;
1431 }
1432
1433 static const unsigned long kpte_shift_min = 28; /* 256MB */
1434 static const unsigned long kpte_shift_max = 34; /* 16GB */
1435 static const unsigned long kpte_shift_incr = 3;
1436
1437 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1438                                            unsigned long shift)
1439 {
1440         unsigned long size = (1UL << shift);
1441         unsigned long mask = (size - 1UL);
1442         unsigned long remains = end - start;
1443         unsigned long val;
1444
1445         if (remains < size || (start & mask))
1446                 return start;
1447
1448         /* VAL maps:
1449          *
1450          *      shift 28 --> kern_linear_pte_xor index 1
1451          *      shift 31 --> kern_linear_pte_xor index 2
1452          *      shift 34 --> kern_linear_pte_xor index 3
1453          */
1454         val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1455
1456         remains &= ~mask;
1457         if (shift != kpte_shift_max)
1458                 remains = size;
1459
1460         while (remains) {
1461                 unsigned long index = start >> kpte_shift_min;
1462
1463                 kpte_set_val(index, val);
1464
1465                 start += 1UL << kpte_shift_min;
1466                 remains -= 1UL << kpte_shift_min;
1467         }
1468
1469         return start;
1470 }
1471
1472 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1473 {
1474         unsigned long smallest_size, smallest_mask;
1475         unsigned long s;
1476
1477         smallest_size = (1UL << kpte_shift_min);
1478         smallest_mask = (smallest_size - 1UL);
1479
1480         while (start < end) {
1481                 unsigned long orig_start = start;
1482
1483                 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1484                         start = kpte_mark_using_shift(start, end, s);
1485
1486                         if (start != orig_start)
1487                                 break;
1488                 }
1489
1490                 if (start == orig_start)
1491                         start = (start + smallest_size) & ~smallest_mask;
1492         }
1493 }
1494
1495 static void __init init_kpte_bitmap(void)
1496 {
1497         unsigned long i;
1498
1499         for (i = 0; i < pall_ents; i++) {
1500                 unsigned long phys_start, phys_end;
1501
1502                 phys_start = pall[i].phys_addr;
1503                 phys_end = phys_start + pall[i].reg_size;
1504
1505                 mark_kpte_bitmap(phys_start, phys_end);
1506         }
1507 }
1508
1509 static void __init kernel_physical_mapping_init(void)
1510 {
1511 #ifdef CONFIG_DEBUG_PAGEALLOC
1512         unsigned long i, mem_alloced = 0UL;
1513
1514         for (i = 0; i < pall_ents; i++) {
1515                 unsigned long phys_start, phys_end;
1516
1517                 phys_start = pall[i].phys_addr;
1518                 phys_end = phys_start + pall[i].reg_size;
1519
1520                 mem_alloced += kernel_map_range(phys_start, phys_end,
1521                                                 PAGE_KERNEL);
1522         }
1523
1524         printk("Allocated %ld bytes for kernel page tables.\n",
1525                mem_alloced);
1526
1527         kvmap_linear_patch[0] = 0x01000000; /* nop */
1528         flushi(&kvmap_linear_patch[0]);
1529
1530         __flush_tlb_all();
1531 #endif
1532 }
1533
1534 #ifdef CONFIG_DEBUG_PAGEALLOC
1535 void kernel_map_pages(struct page *page, int numpages, int enable)
1536 {
1537         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1538         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1539
1540         kernel_map_range(phys_start, phys_end,
1541                          (enable ? PAGE_KERNEL : __pgprot(0)));
1542
1543         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1544                                PAGE_OFFSET + phys_end);
1545
1546         /* we should perform an IPI and flush all tlbs,
1547          * but that can deadlock->flush only current cpu.
1548          */
1549         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1550                                  PAGE_OFFSET + phys_end);
1551 }
1552 #endif
1553
1554 unsigned long __init find_ecache_flush_span(unsigned long size)
1555 {
1556         int i;
1557
1558         for (i = 0; i < pavail_ents; i++) {
1559                 if (pavail[i].reg_size >= size)
1560                         return pavail[i].phys_addr;
1561         }
1562
1563         return ~0UL;
1564 }
1565
1566 unsigned long PAGE_OFFSET;
1567 EXPORT_SYMBOL(PAGE_OFFSET);
1568
1569 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1570 {
1571         unsigned long final_shift;
1572         unsigned int val = *insn;
1573         unsigned int cnt;
1574
1575         /* We are patching in ilog2(max_supported_phys_address), and
1576          * we are doing so in a manner similar to a relocation addend.
1577          * That is, we are adding the shift value to whatever value
1578          * is in the shift instruction count field already.
1579          */
1580         cnt = (val & 0x3f);
1581         val &= ~0x3f;
1582
1583         /* If we are trying to shift >= 64 bits, clear the destination
1584          * register.  This can happen when phys_bits ends up being equal
1585          * to MAX_PHYS_ADDRESS_BITS.
1586          */
1587         final_shift = (cnt + (64 - phys_bits));
1588         if (final_shift >= 64) {
1589                 unsigned int rd = (val >> 25) & 0x1f;
1590
1591                 val = 0x80100000 | (rd << 25);
1592         } else {
1593                 val |= final_shift;
1594         }
1595         *insn = val;
1596
1597         __asm__ __volatile__("flush     %0"
1598                              : /* no outputs */
1599                              : "r" (insn));
1600 }
1601
1602 static void __init page_offset_shift_patch(unsigned long phys_bits)
1603 {
1604         extern unsigned int __page_offset_shift_patch;
1605         extern unsigned int __page_offset_shift_patch_end;
1606         unsigned int *p;
1607
1608         p = &__page_offset_shift_patch;
1609         while (p < &__page_offset_shift_patch_end) {
1610                 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1611
1612                 page_offset_shift_patch_one(insn, phys_bits);
1613
1614                 p++;
1615         }
1616 }
1617
1618 static void __init setup_page_offset(void)
1619 {
1620         unsigned long max_phys_bits = 40;
1621
1622         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1623                 max_phys_bits = 42;
1624         } else if (tlb_type == hypervisor) {
1625                 switch (sun4v_chip_type) {
1626                 case SUN4V_CHIP_NIAGARA1:
1627                 case SUN4V_CHIP_NIAGARA2:
1628                         max_phys_bits = 39;
1629                         break;
1630                 case SUN4V_CHIP_NIAGARA3:
1631                         max_phys_bits = 43;
1632                         break;
1633                 case SUN4V_CHIP_NIAGARA4:
1634                 case SUN4V_CHIP_NIAGARA5:
1635                 case SUN4V_CHIP_SPARC64X:
1636                 default:
1637                         max_phys_bits = 47;
1638                         break;
1639                 }
1640         }
1641
1642         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1643                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1644                             max_phys_bits);
1645                 prom_halt();
1646         }
1647
1648         PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1649
1650         pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1651                 PAGE_OFFSET, max_phys_bits);
1652
1653         page_offset_shift_patch(max_phys_bits);
1654 }
1655
1656 static void __init tsb_phys_patch(void)
1657 {
1658         struct tsb_ldquad_phys_patch_entry *pquad;
1659         struct tsb_phys_patch_entry *p;
1660
1661         pquad = &__tsb_ldquad_phys_patch;
1662         while (pquad < &__tsb_ldquad_phys_patch_end) {
1663                 unsigned long addr = pquad->addr;
1664
1665                 if (tlb_type == hypervisor)
1666                         *(unsigned int *) addr = pquad->sun4v_insn;
1667                 else
1668                         *(unsigned int *) addr = pquad->sun4u_insn;
1669                 wmb();
1670                 __asm__ __volatile__("flush     %0"
1671                                      : /* no outputs */
1672                                      : "r" (addr));
1673
1674                 pquad++;
1675         }
1676
1677         p = &__tsb_phys_patch;
1678         while (p < &__tsb_phys_patch_end) {
1679                 unsigned long addr = p->addr;
1680
1681                 *(unsigned int *) addr = p->insn;
1682                 wmb();
1683                 __asm__ __volatile__("flush     %0"
1684                                      : /* no outputs */
1685                                      : "r" (addr));
1686
1687                 p++;
1688         }
1689 }
1690
1691 /* Don't mark as init, we give this to the Hypervisor.  */
1692 #ifndef CONFIG_DEBUG_PAGEALLOC
1693 #define NUM_KTSB_DESCR  2
1694 #else
1695 #define NUM_KTSB_DESCR  1
1696 #endif
1697 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1698 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1699
1700 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1701 {
1702         pa >>= KTSB_PHYS_SHIFT;
1703
1704         while (start < end) {
1705                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1706
1707                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1708                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1709
1710                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1711                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1712
1713                 start++;
1714         }
1715 }
1716
1717 static void ktsb_phys_patch(void)
1718 {
1719         extern unsigned int __swapper_tsb_phys_patch;
1720         extern unsigned int __swapper_tsb_phys_patch_end;
1721         unsigned long ktsb_pa;
1722
1723         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1724         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1725                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1726 #ifndef CONFIG_DEBUG_PAGEALLOC
1727         {
1728         extern unsigned int __swapper_4m_tsb_phys_patch;
1729         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1730         ktsb_pa = (kern_base +
1731                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1732         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1733                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1734         }
1735 #endif
1736 }
1737
1738 static void __init sun4v_ktsb_init(void)
1739 {
1740         unsigned long ktsb_pa;
1741
1742         /* First KTSB for PAGE_SIZE mappings.  */
1743         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1744
1745         switch (PAGE_SIZE) {
1746         case 8 * 1024:
1747         default:
1748                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1749                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1750                 break;
1751
1752         case 64 * 1024:
1753                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1754                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1755                 break;
1756
1757         case 512 * 1024:
1758                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1759                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1760                 break;
1761
1762         case 4 * 1024 * 1024:
1763                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1764                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1765                 break;
1766         }
1767
1768         ktsb_descr[0].assoc = 1;
1769         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1770         ktsb_descr[0].ctx_idx = 0;
1771         ktsb_descr[0].tsb_base = ktsb_pa;
1772         ktsb_descr[0].resv = 0;
1773
1774 #ifndef CONFIG_DEBUG_PAGEALLOC
1775         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1776         ktsb_pa = (kern_base +
1777                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1778
1779         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1780         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1781                                     HV_PGSZ_MASK_256MB |
1782                                     HV_PGSZ_MASK_2GB |
1783                                     HV_PGSZ_MASK_16GB) &
1784                                    cpu_pgsz_mask);
1785         ktsb_descr[1].assoc = 1;
1786         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1787         ktsb_descr[1].ctx_idx = 0;
1788         ktsb_descr[1].tsb_base = ktsb_pa;
1789         ktsb_descr[1].resv = 0;
1790 #endif
1791 }
1792
1793 void sun4v_ktsb_register(void)
1794 {
1795         unsigned long pa, ret;
1796
1797         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1798
1799         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1800         if (ret != 0) {
1801                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1802                             "errors with %lx\n", pa, ret);
1803                 prom_halt();
1804         }
1805 }
1806
1807 static void __init sun4u_linear_pte_xor_finalize(void)
1808 {
1809 #ifndef CONFIG_DEBUG_PAGEALLOC
1810         /* This is where we would add Panther support for
1811          * 32MB and 256MB pages.
1812          */
1813 #endif
1814 }
1815
1816 static void __init sun4v_linear_pte_xor_finalize(void)
1817 {
1818 #ifndef CONFIG_DEBUG_PAGEALLOC
1819         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1820                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1821                         PAGE_OFFSET;
1822                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1823                                            _PAGE_P_4V | _PAGE_W_4V);
1824         } else {
1825                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1826         }
1827
1828         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1829                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1830                         PAGE_OFFSET;
1831                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1832                                            _PAGE_P_4V | _PAGE_W_4V);
1833         } else {
1834                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1835         }
1836
1837         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1838                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1839                         PAGE_OFFSET;
1840                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1841                                            _PAGE_P_4V | _PAGE_W_4V);
1842         } else {
1843                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1844         }
1845 #endif
1846 }
1847
1848 /* paging_init() sets up the page tables */
1849
1850 static unsigned long last_valid_pfn;
1851 pgd_t swapper_pg_dir[PTRS_PER_PGD];
1852
1853 static void sun4u_pgprot_init(void);
1854 static void sun4v_pgprot_init(void);
1855
1856 void __init paging_init(void)
1857 {
1858         unsigned long end_pfn, shift, phys_base;
1859         unsigned long real_end, i;
1860         int node;
1861
1862         setup_page_offset();
1863
1864         /* These build time checkes make sure that the dcache_dirty_cpu()
1865          * page->flags usage will work.
1866          *
1867          * When a page gets marked as dcache-dirty, we store the
1868          * cpu number starting at bit 32 in the page->flags.  Also,
1869          * functions like clear_dcache_dirty_cpu use the cpu mask
1870          * in 13-bit signed-immediate instruction fields.
1871          */
1872
1873         /*
1874          * Page flags must not reach into upper 32 bits that are used
1875          * for the cpu number
1876          */
1877         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1878
1879         /*
1880          * The bit fields placed in the high range must not reach below
1881          * the 32 bit boundary. Otherwise we cannot place the cpu field
1882          * at the 32 bit boundary.
1883          */
1884         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1885                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1886
1887         BUILD_BUG_ON(NR_CPUS > 4096);
1888
1889         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1890         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1891
1892         /* Invalidate both kernel TSBs.  */
1893         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1894 #ifndef CONFIG_DEBUG_PAGEALLOC
1895         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1896 #endif
1897
1898         if (tlb_type == hypervisor)
1899                 sun4v_pgprot_init();
1900         else
1901                 sun4u_pgprot_init();
1902
1903         if (tlb_type == cheetah_plus ||
1904             tlb_type == hypervisor) {
1905                 tsb_phys_patch();
1906                 ktsb_phys_patch();
1907         }
1908
1909         if (tlb_type == hypervisor)
1910                 sun4v_patch_tlb_handlers();
1911
1912         /* Find available physical memory...
1913          *
1914          * Read it twice in order to work around a bug in openfirmware.
1915          * The call to grab this table itself can cause openfirmware to
1916          * allocate memory, which in turn can take away some space from
1917          * the list of available memory.  Reading it twice makes sure
1918          * we really do get the final value.
1919          */
1920         read_obp_translations();
1921         read_obp_memory("reg", &pall[0], &pall_ents);
1922         read_obp_memory("available", &pavail[0], &pavail_ents);
1923         read_obp_memory("available", &pavail[0], &pavail_ents);
1924
1925         phys_base = 0xffffffffffffffffUL;
1926         for (i = 0; i < pavail_ents; i++) {
1927                 phys_base = min(phys_base, pavail[i].phys_addr);
1928                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1929         }
1930
1931         memblock_reserve(kern_base, kern_size);
1932
1933         find_ramdisk(phys_base);
1934
1935         memblock_enforce_memory_limit(cmdline_memory_size);
1936
1937         memblock_allow_resize();
1938         memblock_dump_all();
1939
1940         set_bit(0, mmu_context_bmap);
1941
1942         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1943
1944         real_end = (unsigned long)_end;
1945         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1946         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1947                num_kernel_image_mappings);
1948
1949         /* Set kernel pgd to upper alias so physical page computations
1950          * work.
1951          */
1952         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1953         
1954         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1955
1956         /* Now can init the kernel/bad page tables. */
1957         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1958                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1959         
1960         inherit_prom_mappings();
1961         
1962         init_kpte_bitmap();
1963
1964         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1965         setup_tba();
1966
1967         __flush_tlb_all();
1968
1969         prom_build_devicetree();
1970         of_populate_present_mask();
1971 #ifndef CONFIG_SMP
1972         of_fill_in_cpu_data();
1973 #endif
1974
1975         if (tlb_type == hypervisor) {
1976                 sun4v_mdesc_init();
1977                 mdesc_populate_present_mask(cpu_all_mask);
1978 #ifndef CONFIG_SMP
1979                 mdesc_fill_in_cpu_data(cpu_all_mask);
1980 #endif
1981                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1982
1983                 sun4v_linear_pte_xor_finalize();
1984
1985                 sun4v_ktsb_init();
1986                 sun4v_ktsb_register();
1987         } else {
1988                 unsigned long impl, ver;
1989
1990                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1991                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1992
1993                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1994                 impl = ((ver >> 32) & 0xffff);
1995                 if (impl == PANTHER_IMPL)
1996                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1997                                           HV_PGSZ_MASK_256MB);
1998
1999                 sun4u_linear_pte_xor_finalize();
2000         }
2001
2002         /* Flush the TLBs and the 4M TSB so that the updated linear
2003          * pte XOR settings are realized for all mappings.
2004          */
2005         __flush_tlb_all();
2006 #ifndef CONFIG_DEBUG_PAGEALLOC
2007         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2008 #endif
2009         __flush_tlb_all();
2010
2011         /* Setup bootmem... */
2012         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2013
2014         /* Once the OF device tree and MDESC have been setup, we know
2015          * the list of possible cpus.  Therefore we can allocate the
2016          * IRQ stacks.
2017          */
2018         for_each_possible_cpu(i) {
2019                 node = cpu_to_node(i);
2020
2021                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2022                                                         THREAD_SIZE,
2023                                                         THREAD_SIZE, 0);
2024                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2025                                                         THREAD_SIZE,
2026                                                         THREAD_SIZE, 0);
2027         }
2028
2029         kernel_physical_mapping_init();
2030
2031         {
2032                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2033
2034                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2035
2036                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2037
2038                 free_area_init_nodes(max_zone_pfns);
2039         }
2040
2041         printk("Booting Linux...\n");
2042 }
2043
2044 int page_in_phys_avail(unsigned long paddr)
2045 {
2046         int i;
2047
2048         paddr &= PAGE_MASK;
2049
2050         for (i = 0; i < pavail_ents; i++) {
2051                 unsigned long start, end;
2052
2053                 start = pavail[i].phys_addr;
2054                 end = start + pavail[i].reg_size;
2055
2056                 if (paddr >= start && paddr < end)
2057                         return 1;
2058         }
2059         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2060                 return 1;
2061 #ifdef CONFIG_BLK_DEV_INITRD
2062         if (paddr >= __pa(initrd_start) &&
2063             paddr < __pa(PAGE_ALIGN(initrd_end)))
2064                 return 1;
2065 #endif
2066
2067         return 0;
2068 }
2069
2070 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2071 static int pavail_rescan_ents __initdata;
2072
2073 /* Certain OBP calls, such as fetching "available" properties, can
2074  * claim physical memory.  So, along with initializing the valid
2075  * address bitmap, what we do here is refetch the physical available
2076  * memory list again, and make sure it provides at least as much
2077  * memory as 'pavail' does.
2078  */
2079 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2080 {
2081         int i;
2082
2083         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2084
2085         for (i = 0; i < pavail_ents; i++) {
2086                 unsigned long old_start, old_end;
2087
2088                 old_start = pavail[i].phys_addr;
2089                 old_end = old_start + pavail[i].reg_size;
2090                 while (old_start < old_end) {
2091                         int n;
2092
2093                         for (n = 0; n < pavail_rescan_ents; n++) {
2094                                 unsigned long new_start, new_end;
2095
2096                                 new_start = pavail_rescan[n].phys_addr;
2097                                 new_end = new_start +
2098                                         pavail_rescan[n].reg_size;
2099
2100                                 if (new_start <= old_start &&
2101                                     new_end >= (old_start + PAGE_SIZE)) {
2102                                         set_bit(old_start >> ILOG2_4MB, bitmap);
2103                                         goto do_next_page;
2104                                 }
2105                         }
2106
2107                         prom_printf("mem_init: Lost memory in pavail\n");
2108                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2109                                     pavail[i].phys_addr,
2110                                     pavail[i].reg_size);
2111                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2112                                     pavail_rescan[i].phys_addr,
2113                                     pavail_rescan[i].reg_size);
2114                         prom_printf("mem_init: Cannot continue, aborting.\n");
2115                         prom_halt();
2116
2117                 do_next_page:
2118                         old_start += PAGE_SIZE;
2119                 }
2120         }
2121 }
2122
2123 static void __init patch_tlb_miss_handler_bitmap(void)
2124 {
2125         extern unsigned int valid_addr_bitmap_insn[];
2126         extern unsigned int valid_addr_bitmap_patch[];
2127
2128         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2129         mb();
2130         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2131         flushi(&valid_addr_bitmap_insn[0]);
2132 }
2133
2134 static void __init register_page_bootmem_info(void)
2135 {
2136 #ifdef CONFIG_NEED_MULTIPLE_NODES
2137         int i;
2138
2139         for_each_online_node(i)
2140                 if (NODE_DATA(i)->node_spanned_pages)
2141                         register_page_bootmem_info_node(NODE_DATA(i));
2142 #endif
2143 }
2144 void __init mem_init(void)
2145 {
2146         unsigned long addr, last;
2147
2148         addr = PAGE_OFFSET + kern_base;
2149         last = PAGE_ALIGN(kern_size) + addr;
2150         while (addr < last) {
2151                 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2152                 addr += PAGE_SIZE;
2153         }
2154
2155         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2156         patch_tlb_miss_handler_bitmap();
2157
2158         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2159
2160         register_page_bootmem_info();
2161         free_all_bootmem();
2162
2163         /*
2164          * Set up the zero page, mark it reserved, so that page count
2165          * is not manipulated when freeing the page from user ptes.
2166          */
2167         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2168         if (mem_map_zero == NULL) {
2169                 prom_printf("paging_init: Cannot alloc zero page.\n");
2170                 prom_halt();
2171         }
2172         mark_page_reserved(mem_map_zero);
2173
2174         mem_init_print_info(NULL);
2175
2176         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2177                 cheetah_ecache_flush_init();
2178 }
2179
2180 void free_initmem(void)
2181 {
2182         unsigned long addr, initend;
2183         int do_free = 1;
2184
2185         /* If the physical memory maps were trimmed by kernel command
2186          * line options, don't even try freeing this initmem stuff up.
2187          * The kernel image could have been in the trimmed out region
2188          * and if so the freeing below will free invalid page structs.
2189          */
2190         if (cmdline_memory_size)
2191                 do_free = 0;
2192
2193         /*
2194          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2195          */
2196         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2197         initend = (unsigned long)(__init_end) & PAGE_MASK;
2198         for (; addr < initend; addr += PAGE_SIZE) {
2199                 unsigned long page;
2200
2201                 page = (addr +
2202                         ((unsigned long) __va(kern_base)) -
2203                         ((unsigned long) KERNBASE));
2204                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2205
2206                 if (do_free)
2207                         free_reserved_page(virt_to_page(page));
2208         }
2209 }
2210
2211 #ifdef CONFIG_BLK_DEV_INITRD
2212 void free_initrd_mem(unsigned long start, unsigned long end)
2213 {
2214         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2215                            "initrd");
2216 }
2217 #endif
2218
2219 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2220 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2221 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2222 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2223 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2224 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2225
2226 pgprot_t PAGE_KERNEL __read_mostly;
2227 EXPORT_SYMBOL(PAGE_KERNEL);
2228
2229 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2230 pgprot_t PAGE_COPY __read_mostly;
2231
2232 pgprot_t PAGE_SHARED __read_mostly;
2233 EXPORT_SYMBOL(PAGE_SHARED);
2234
2235 unsigned long pg_iobits __read_mostly;
2236
2237 unsigned long _PAGE_IE __read_mostly;
2238 EXPORT_SYMBOL(_PAGE_IE);
2239
2240 unsigned long _PAGE_E __read_mostly;
2241 EXPORT_SYMBOL(_PAGE_E);
2242
2243 unsigned long _PAGE_CACHE __read_mostly;
2244 EXPORT_SYMBOL(_PAGE_CACHE);
2245
2246 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2247 unsigned long vmemmap_table[VMEMMAP_SIZE];
2248
2249 static long __meminitdata addr_start, addr_end;
2250 static int __meminitdata node_start;
2251
2252 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2253                                int node)
2254 {
2255         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2256         unsigned long phys_end = (vend - VMEMMAP_BASE);
2257         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2258         unsigned long end = VMEMMAP_ALIGN(phys_end);
2259         unsigned long pte_base;
2260
2261         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2262                     _PAGE_CP_4U | _PAGE_CV_4U |
2263                     _PAGE_P_4U | _PAGE_W_4U);
2264         if (tlb_type == hypervisor)
2265                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2266                             _PAGE_CP_4V | _PAGE_CV_4V |
2267                             _PAGE_P_4V | _PAGE_W_4V);
2268
2269         for (; addr < end; addr += VMEMMAP_CHUNK) {
2270                 unsigned long *vmem_pp =
2271                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2272                 void *block;
2273
2274                 if (!(*vmem_pp & _PAGE_VALID)) {
2275                         block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2276                         if (!block)
2277                                 return -ENOMEM;
2278
2279                         *vmem_pp = pte_base | __pa(block);
2280
2281                         /* check to see if we have contiguous blocks */
2282                         if (addr_end != addr || node_start != node) {
2283                                 if (addr_start)
2284                                         printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2285                                                addr_start, addr_end-1, node_start);
2286                                 addr_start = addr;
2287                                 node_start = node;
2288                         }
2289                         addr_end = addr + VMEMMAP_CHUNK;
2290                 }
2291         }
2292         return 0;
2293 }
2294
2295 void __meminit vmemmap_populate_print_last(void)
2296 {
2297         if (addr_start) {
2298                 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2299                        addr_start, addr_end-1, node_start);
2300                 addr_start = 0;
2301                 addr_end = 0;
2302                 node_start = 0;
2303         }
2304 }
2305
2306 void vmemmap_free(unsigned long start, unsigned long end)
2307 {
2308 }
2309
2310 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2311
2312 static void prot_init_common(unsigned long page_none,
2313                              unsigned long page_shared,
2314                              unsigned long page_copy,
2315                              unsigned long page_readonly,
2316                              unsigned long page_exec_bit)
2317 {
2318         PAGE_COPY = __pgprot(page_copy);
2319         PAGE_SHARED = __pgprot(page_shared);
2320
2321         protection_map[0x0] = __pgprot(page_none);
2322         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2323         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2324         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2325         protection_map[0x4] = __pgprot(page_readonly);
2326         protection_map[0x5] = __pgprot(page_readonly);
2327         protection_map[0x6] = __pgprot(page_copy);
2328         protection_map[0x7] = __pgprot(page_copy);
2329         protection_map[0x8] = __pgprot(page_none);
2330         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2331         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2332         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2333         protection_map[0xc] = __pgprot(page_readonly);
2334         protection_map[0xd] = __pgprot(page_readonly);
2335         protection_map[0xe] = __pgprot(page_shared);
2336         protection_map[0xf] = __pgprot(page_shared);
2337 }
2338
2339 static void __init sun4u_pgprot_init(void)
2340 {
2341         unsigned long page_none, page_shared, page_copy, page_readonly;
2342         unsigned long page_exec_bit;
2343         int i;
2344
2345         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2346                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2347                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2348                                 _PAGE_EXEC_4U);
2349         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2350                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2351                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2352                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2353
2354         _PAGE_IE = _PAGE_IE_4U;
2355         _PAGE_E = _PAGE_E_4U;
2356         _PAGE_CACHE = _PAGE_CACHE_4U;
2357
2358         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2359                      __ACCESS_BITS_4U | _PAGE_E_4U);
2360
2361 #ifdef CONFIG_DEBUG_PAGEALLOC
2362         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2363 #else
2364         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2365                 PAGE_OFFSET;
2366 #endif
2367         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2368                                    _PAGE_P_4U | _PAGE_W_4U);
2369
2370         for (i = 1; i < 4; i++)
2371                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2372
2373         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2374                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2375                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2376
2377
2378         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2379         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2380                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2381         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2382                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2383         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2384                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2385
2386         page_exec_bit = _PAGE_EXEC_4U;
2387
2388         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2389                          page_exec_bit);
2390 }
2391
2392 static void __init sun4v_pgprot_init(void)
2393 {
2394         unsigned long page_none, page_shared, page_copy, page_readonly;
2395         unsigned long page_exec_bit;
2396         int i;
2397
2398         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2399                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2400                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2401                                 _PAGE_EXEC_4V);
2402         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2403
2404         _PAGE_IE = _PAGE_IE_4V;
2405         _PAGE_E = _PAGE_E_4V;
2406         _PAGE_CACHE = _PAGE_CACHE_4V;
2407
2408 #ifdef CONFIG_DEBUG_PAGEALLOC
2409         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2410 #else
2411         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2412                 PAGE_OFFSET;
2413 #endif
2414         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2415                                    _PAGE_P_4V | _PAGE_W_4V);
2416
2417         for (i = 1; i < 4; i++)
2418                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2419
2420         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2421                      __ACCESS_BITS_4V | _PAGE_E_4V);
2422
2423         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2424                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2425                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2426                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2427
2428         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2429         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2430                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2431         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2432                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2433         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2434                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2435
2436         page_exec_bit = _PAGE_EXEC_4V;
2437
2438         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2439                          page_exec_bit);
2440 }
2441
2442 unsigned long pte_sz_bits(unsigned long sz)
2443 {
2444         if (tlb_type == hypervisor) {
2445                 switch (sz) {
2446                 case 8 * 1024:
2447                 default:
2448                         return _PAGE_SZ8K_4V;
2449                 case 64 * 1024:
2450                         return _PAGE_SZ64K_4V;
2451                 case 512 * 1024:
2452                         return _PAGE_SZ512K_4V;
2453                 case 4 * 1024 * 1024:
2454                         return _PAGE_SZ4MB_4V;
2455                 }
2456         } else {
2457                 switch (sz) {
2458                 case 8 * 1024:
2459                 default:
2460                         return _PAGE_SZ8K_4U;
2461                 case 64 * 1024:
2462                         return _PAGE_SZ64K_4U;
2463                 case 512 * 1024:
2464                         return _PAGE_SZ512K_4U;
2465                 case 4 * 1024 * 1024:
2466                         return _PAGE_SZ4MB_4U;
2467                 }
2468         }
2469 }
2470
2471 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2472 {
2473         pte_t pte;
2474
2475         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2476         pte_val(pte) |= (((unsigned long)space) << 32);
2477         pte_val(pte) |= pte_sz_bits(page_size);
2478
2479         return pte;
2480 }
2481
2482 static unsigned long kern_large_tte(unsigned long paddr)
2483 {
2484         unsigned long val;
2485
2486         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2487                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2488                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2489         if (tlb_type == hypervisor)
2490                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2491                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2492                        _PAGE_EXEC_4V | _PAGE_W_4V);
2493
2494         return val | paddr;
2495 }
2496
2497 /* If not locked, zap it. */
2498 void __flush_tlb_all(void)
2499 {
2500         unsigned long pstate;
2501         int i;
2502
2503         __asm__ __volatile__("flushw\n\t"
2504                              "rdpr      %%pstate, %0\n\t"
2505                              "wrpr      %0, %1, %%pstate"
2506                              : "=r" (pstate)
2507                              : "i" (PSTATE_IE));
2508         if (tlb_type == hypervisor) {
2509                 sun4v_mmu_demap_all();
2510         } else if (tlb_type == spitfire) {
2511                 for (i = 0; i < 64; i++) {
2512                         /* Spitfire Errata #32 workaround */
2513                         /* NOTE: Always runs on spitfire, so no
2514                          *       cheetah+ page size encodings.
2515                          */
2516                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2517                                              "flush     %%g6"
2518                                              : /* No outputs */
2519                                              : "r" (0),
2520                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2521
2522                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2523                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2524                                                      "membar #Sync"
2525                                                      : /* no outputs */
2526                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2527                                 spitfire_put_dtlb_data(i, 0x0UL);
2528                         }
2529
2530                         /* Spitfire Errata #32 workaround */
2531                         /* NOTE: Always runs on spitfire, so no
2532                          *       cheetah+ page size encodings.
2533                          */
2534                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2535                                              "flush     %%g6"
2536                                              : /* No outputs */
2537                                              : "r" (0),
2538                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2539
2540                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2541                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2542                                                      "membar #Sync"
2543                                                      : /* no outputs */
2544                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2545                                 spitfire_put_itlb_data(i, 0x0UL);
2546                         }
2547                 }
2548         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2549                 cheetah_flush_dtlb_all();
2550                 cheetah_flush_itlb_all();
2551         }
2552         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2553                              : : "r" (pstate));
2554 }
2555
2556 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2557                             unsigned long address)
2558 {
2559         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2560                                        __GFP_REPEAT | __GFP_ZERO);
2561         pte_t *pte = NULL;
2562
2563         if (page)
2564                 pte = (pte_t *) page_address(page);
2565
2566         return pte;
2567 }
2568
2569 pgtable_t pte_alloc_one(struct mm_struct *mm,
2570                         unsigned long address)
2571 {
2572         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2573                                        __GFP_REPEAT | __GFP_ZERO);
2574         if (!page)
2575                 return NULL;
2576         if (!pgtable_page_ctor(page)) {
2577                 free_hot_cold_page(page, 0);
2578                 return NULL;
2579         }
2580         return (pte_t *) page_address(page);
2581 }
2582
2583 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2584 {
2585         free_page((unsigned long)pte);
2586 }
2587
2588 static void __pte_free(pgtable_t pte)
2589 {
2590         struct page *page = virt_to_page(pte);
2591
2592         pgtable_page_dtor(page);
2593         __free_page(page);
2594 }
2595
2596 void pte_free(struct mm_struct *mm, pgtable_t pte)
2597 {
2598         __pte_free(pte);
2599 }
2600
2601 void pgtable_free(void *table, bool is_page)
2602 {
2603         if (is_page)
2604                 __pte_free(table);
2605         else
2606                 kmem_cache_free(pgtable_cache, table);
2607 }
2608
2609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2610 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2611                           pmd_t *pmd)
2612 {
2613         unsigned long pte, flags;
2614         struct mm_struct *mm;
2615         pmd_t entry = *pmd;
2616
2617         if (!pmd_large(entry) || !pmd_young(entry))
2618                 return;
2619
2620         pte = pmd_val(entry);
2621
2622         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2623         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2624
2625         mm = vma->vm_mm;
2626
2627         spin_lock_irqsave(&mm->context.lock, flags);
2628
2629         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2630                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2631                                         addr, pte);
2632
2633         spin_unlock_irqrestore(&mm->context.lock, flags);
2634 }
2635 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2636
2637 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2638 static void context_reload(void *__data)
2639 {
2640         struct mm_struct *mm = __data;
2641
2642         if (mm == current->mm)
2643                 load_secondary_context(mm);
2644 }
2645
2646 void hugetlb_setup(struct pt_regs *regs)
2647 {
2648         struct mm_struct *mm = current->mm;
2649         struct tsb_config *tp;
2650
2651         if (in_atomic() || !mm) {
2652                 const struct exception_table_entry *entry;
2653
2654                 entry = search_exception_tables(regs->tpc);
2655                 if (entry) {
2656                         regs->tpc = entry->fixup;
2657                         regs->tnpc = regs->tpc + 4;
2658                         return;
2659                 }
2660                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2661                 die_if_kernel("HugeTSB in atomic", regs);
2662         }
2663
2664         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2665         if (likely(tp->tsb == NULL))
2666                 tsb_grow(mm, MM_TSB_HUGE, 0);
2667
2668         tsb_context_switch(mm);
2669         smp_tsb_sync(mm);
2670
2671         /* On UltraSPARC-III+ and later, configure the second half of
2672          * the Data-TLB for huge pages.
2673          */
2674         if (tlb_type == cheetah_plus) {
2675                 unsigned long ctx;
2676
2677                 spin_lock(&ctx_alloc_lock);
2678                 ctx = mm->context.sparc64_ctx_val;
2679                 ctx &= ~CTX_PGSZ_MASK;
2680                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2681                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2682
2683                 if (ctx != mm->context.sparc64_ctx_val) {
2684                         /* When changing the page size fields, we
2685                          * must perform a context flush so that no
2686                          * stale entries match.  This flush must
2687                          * occur with the original context register
2688                          * settings.
2689                          */
2690                         do_flush_tlb_mm(mm);
2691
2692                         /* Reload the context register of all processors
2693                          * also executing in this address space.
2694                          */
2695                         mm->context.sparc64_ctx_val = ctx;
2696                         on_each_cpu(context_reload, mm, 0);
2697                 }
2698                 spin_unlock(&ctx_alloc_lock);
2699         }
2700 }
2701 #endif