]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
Merge branch 'ufs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init setup_hugepagesz(char *string)
329 {
330         unsigned long long hugepage_size;
331         unsigned int hugepage_shift;
332         unsigned short hv_pgsz_idx;
333         unsigned int hv_pgsz_mask;
334         int rc = 0;
335
336         hugepage_size = memparse(string, &string);
337         hugepage_shift = ilog2(hugepage_size);
338
339         switch (hugepage_shift) {
340         case HPAGE_2GB_SHIFT:
341                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
342                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
343                 break;
344         case HPAGE_256MB_SHIFT:
345                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
346                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
347                 break;
348         case HPAGE_SHIFT:
349                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
350                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
351                 break;
352         case HPAGE_64K_SHIFT:
353                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
354                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
355                 break;
356         default:
357                 hv_pgsz_mask = 0;
358         }
359
360         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
361                 hugetlb_bad_size();
362                 pr_err("hugepagesz=%llu not supported by MMU.\n",
363                         hugepage_size);
364                 goto out;
365         }
366
367         hugetlb_add_hstate(hugepage_shift - PAGE_SHIFT);
368         rc = 1;
369
370 out:
371         return rc;
372 }
373 __setup("hugepagesz=", setup_hugepagesz);
374 #endif  /* CONFIG_HUGETLB_PAGE */
375
376 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
377 {
378         struct mm_struct *mm;
379         unsigned long flags;
380         pte_t pte = *ptep;
381
382         if (tlb_type != hypervisor) {
383                 unsigned long pfn = pte_pfn(pte);
384
385                 if (pfn_valid(pfn))
386                         flush_dcache(pfn);
387         }
388
389         mm = vma->vm_mm;
390
391         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
392         if (!pte_accessible(mm, pte))
393                 return;
394
395         spin_lock_irqsave(&mm->context.lock, flags);
396
397 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
398         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
399             is_hugetlb_pmd(__pmd(pte_val(pte)))) {
400                 /* We are fabricating 8MB pages using 4MB real hw pages.  */
401                 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
402                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
403                                         address, pte_val(pte));
404         } else
405 #endif
406                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
407                                         address, pte_val(pte));
408
409         spin_unlock_irqrestore(&mm->context.lock, flags);
410 }
411
412 void flush_dcache_page(struct page *page)
413 {
414         struct address_space *mapping;
415         int this_cpu;
416
417         if (tlb_type == hypervisor)
418                 return;
419
420         /* Do not bother with the expensive D-cache flush if it
421          * is merely the zero page.  The 'bigcore' testcase in GDB
422          * causes this case to run millions of times.
423          */
424         if (page == ZERO_PAGE(0))
425                 return;
426
427         this_cpu = get_cpu();
428
429         mapping = page_mapping(page);
430         if (mapping && !mapping_mapped(mapping)) {
431                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
432                 if (dirty) {
433                         int dirty_cpu = dcache_dirty_cpu(page);
434
435                         if (dirty_cpu == this_cpu)
436                                 goto out;
437                         smp_flush_dcache_page_impl(page, dirty_cpu);
438                 }
439                 set_dcache_dirty(page, this_cpu);
440         } else {
441                 /* We could delay the flush for the !page_mapping
442                  * case too.  But that case is for exec env/arg
443                  * pages and those are %99 certainly going to get
444                  * faulted into the tlb (and thus flushed) anyways.
445                  */
446                 flush_dcache_page_impl(page);
447         }
448
449 out:
450         put_cpu();
451 }
452 EXPORT_SYMBOL(flush_dcache_page);
453
454 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
455 {
456         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
457         if (tlb_type == spitfire) {
458                 unsigned long kaddr;
459
460                 /* This code only runs on Spitfire cpus so this is
461                  * why we can assume _PAGE_PADDR_4U.
462                  */
463                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
464                         unsigned long paddr, mask = _PAGE_PADDR_4U;
465
466                         if (kaddr >= PAGE_OFFSET)
467                                 paddr = kaddr & mask;
468                         else {
469                                 pgd_t *pgdp = pgd_offset_k(kaddr);
470                                 pud_t *pudp = pud_offset(pgdp, kaddr);
471                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
472                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
473
474                                 paddr = pte_val(*ptep) & mask;
475                         }
476                         __flush_icache_page(paddr);
477                 }
478         }
479 }
480 EXPORT_SYMBOL(flush_icache_range);
481
482 void mmu_info(struct seq_file *m)
483 {
484         static const char *pgsz_strings[] = {
485                 "8K", "64K", "512K", "4MB", "32MB",
486                 "256MB", "2GB", "16GB",
487         };
488         int i, printed;
489
490         if (tlb_type == cheetah)
491                 seq_printf(m, "MMU Type\t: Cheetah\n");
492         else if (tlb_type == cheetah_plus)
493                 seq_printf(m, "MMU Type\t: Cheetah+\n");
494         else if (tlb_type == spitfire)
495                 seq_printf(m, "MMU Type\t: Spitfire\n");
496         else if (tlb_type == hypervisor)
497                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
498         else
499                 seq_printf(m, "MMU Type\t: ???\n");
500
501         seq_printf(m, "MMU PGSZs\t: ");
502         printed = 0;
503         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
504                 if (cpu_pgsz_mask & (1UL << i)) {
505                         seq_printf(m, "%s%s",
506                                    printed ? "," : "", pgsz_strings[i]);
507                         printed++;
508                 }
509         }
510         seq_putc(m, '\n');
511
512 #ifdef CONFIG_DEBUG_DCFLUSH
513         seq_printf(m, "DCPageFlushes\t: %d\n",
514                    atomic_read(&dcpage_flushes));
515 #ifdef CONFIG_SMP
516         seq_printf(m, "DCPageFlushesXC\t: %d\n",
517                    atomic_read(&dcpage_flushes_xcall));
518 #endif /* CONFIG_SMP */
519 #endif /* CONFIG_DEBUG_DCFLUSH */
520 }
521
522 struct linux_prom_translation prom_trans[512] __read_mostly;
523 unsigned int prom_trans_ents __read_mostly;
524
525 unsigned long kern_locked_tte_data;
526
527 /* The obp translations are saved based on 8k pagesize, since obp can
528  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
529  * HI_OBP_ADDRESS range are handled in ktlb.S.
530  */
531 static inline int in_obp_range(unsigned long vaddr)
532 {
533         return (vaddr >= LOW_OBP_ADDRESS &&
534                 vaddr < HI_OBP_ADDRESS);
535 }
536
537 static int cmp_ptrans(const void *a, const void *b)
538 {
539         const struct linux_prom_translation *x = a, *y = b;
540
541         if (x->virt > y->virt)
542                 return 1;
543         if (x->virt < y->virt)
544                 return -1;
545         return 0;
546 }
547
548 /* Read OBP translations property into 'prom_trans[]'.  */
549 static void __init read_obp_translations(void)
550 {
551         int n, node, ents, first, last, i;
552
553         node = prom_finddevice("/virtual-memory");
554         n = prom_getproplen(node, "translations");
555         if (unlikely(n == 0 || n == -1)) {
556                 prom_printf("prom_mappings: Couldn't get size.\n");
557                 prom_halt();
558         }
559         if (unlikely(n > sizeof(prom_trans))) {
560                 prom_printf("prom_mappings: Size %d is too big.\n", n);
561                 prom_halt();
562         }
563
564         if ((n = prom_getproperty(node, "translations",
565                                   (char *)&prom_trans[0],
566                                   sizeof(prom_trans))) == -1) {
567                 prom_printf("prom_mappings: Couldn't get property.\n");
568                 prom_halt();
569         }
570
571         n = n / sizeof(struct linux_prom_translation);
572
573         ents = n;
574
575         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
576              cmp_ptrans, NULL);
577
578         /* Now kick out all the non-OBP entries.  */
579         for (i = 0; i < ents; i++) {
580                 if (in_obp_range(prom_trans[i].virt))
581                         break;
582         }
583         first = i;
584         for (; i < ents; i++) {
585                 if (!in_obp_range(prom_trans[i].virt))
586                         break;
587         }
588         last = i;
589
590         for (i = 0; i < (last - first); i++) {
591                 struct linux_prom_translation *src = &prom_trans[i + first];
592                 struct linux_prom_translation *dest = &prom_trans[i];
593
594                 *dest = *src;
595         }
596         for (; i < ents; i++) {
597                 struct linux_prom_translation *dest = &prom_trans[i];
598                 dest->virt = dest->size = dest->data = 0x0UL;
599         }
600
601         prom_trans_ents = last - first;
602
603         if (tlb_type == spitfire) {
604                 /* Clear diag TTE bits. */
605                 for (i = 0; i < prom_trans_ents; i++)
606                         prom_trans[i].data &= ~0x0003fe0000000000UL;
607         }
608
609         /* Force execute bit on.  */
610         for (i = 0; i < prom_trans_ents; i++)
611                 prom_trans[i].data |= (tlb_type == hypervisor ?
612                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
613 }
614
615 static void __init hypervisor_tlb_lock(unsigned long vaddr,
616                                        unsigned long pte,
617                                        unsigned long mmu)
618 {
619         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
620
621         if (ret != 0) {
622                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
623                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
624                 prom_halt();
625         }
626 }
627
628 static unsigned long kern_large_tte(unsigned long paddr);
629
630 static void __init remap_kernel(void)
631 {
632         unsigned long phys_page, tte_vaddr, tte_data;
633         int i, tlb_ent = sparc64_highest_locked_tlbent();
634
635         tte_vaddr = (unsigned long) KERNBASE;
636         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
637         tte_data = kern_large_tte(phys_page);
638
639         kern_locked_tte_data = tte_data;
640
641         /* Now lock us into the TLBs via Hypervisor or OBP. */
642         if (tlb_type == hypervisor) {
643                 for (i = 0; i < num_kernel_image_mappings; i++) {
644                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
645                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
646                         tte_vaddr += 0x400000;
647                         tte_data += 0x400000;
648                 }
649         } else {
650                 for (i = 0; i < num_kernel_image_mappings; i++) {
651                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
652                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
653                         tte_vaddr += 0x400000;
654                         tte_data += 0x400000;
655                 }
656                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
657         }
658         if (tlb_type == cheetah_plus) {
659                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
660                                             CTX_CHEETAH_PLUS_NUC);
661                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
662                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
663         }
664 }
665
666
667 static void __init inherit_prom_mappings(void)
668 {
669         /* Now fixup OBP's idea about where we really are mapped. */
670         printk("Remapping the kernel... ");
671         remap_kernel();
672         printk("done.\n");
673 }
674
675 void prom_world(int enter)
676 {
677         if (!enter)
678                 set_fs(get_fs());
679
680         __asm__ __volatile__("flushw");
681 }
682
683 void __flush_dcache_range(unsigned long start, unsigned long end)
684 {
685         unsigned long va;
686
687         if (tlb_type == spitfire) {
688                 int n = 0;
689
690                 for (va = start; va < end; va += 32) {
691                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
692                         if (++n >= 512)
693                                 break;
694                 }
695         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
696                 start = __pa(start);
697                 end = __pa(end);
698                 for (va = start; va < end; va += 32)
699                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
700                                              "membar #Sync"
701                                              : /* no outputs */
702                                              : "r" (va),
703                                                "i" (ASI_DCACHE_INVALIDATE));
704         }
705 }
706 EXPORT_SYMBOL(__flush_dcache_range);
707
708 /* get_new_mmu_context() uses "cache + 1".  */
709 DEFINE_SPINLOCK(ctx_alloc_lock);
710 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
711 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
712 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
713 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
714 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
715
716 static void mmu_context_wrap(void)
717 {
718         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
719         unsigned long new_ver, new_ctx, old_ctx;
720         struct mm_struct *mm;
721         int cpu;
722
723         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
724
725         /* Reserve kernel context */
726         set_bit(0, mmu_context_bmap);
727
728         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
729         if (unlikely(new_ver == 0))
730                 new_ver = CTX_FIRST_VERSION;
731         tlb_context_cache = new_ver;
732
733         /*
734          * Make sure that any new mm that are added into per_cpu_secondary_mm,
735          * are going to go through get_new_mmu_context() path.
736          */
737         mb();
738
739         /*
740          * Updated versions to current on those CPUs that had valid secondary
741          * contexts
742          */
743         for_each_online_cpu(cpu) {
744                 /*
745                  * If a new mm is stored after we took this mm from the array,
746                  * it will go into get_new_mmu_context() path, because we
747                  * already bumped the version in tlb_context_cache.
748                  */
749                 mm = per_cpu(per_cpu_secondary_mm, cpu);
750
751                 if (unlikely(!mm || mm == &init_mm))
752                         continue;
753
754                 old_ctx = mm->context.sparc64_ctx_val;
755                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
756                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
757                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
758                         mm->context.sparc64_ctx_val = new_ctx;
759                 }
760         }
761 }
762
763 /* Caller does TLB context flushing on local CPU if necessary.
764  * The caller also ensures that CTX_VALID(mm->context) is false.
765  *
766  * We must be careful about boundary cases so that we never
767  * let the user have CTX 0 (nucleus) or we ever use a CTX
768  * version of zero (and thus NO_CONTEXT would not be caught
769  * by version mis-match tests in mmu_context.h).
770  *
771  * Always invoked with interrupts disabled.
772  */
773 void get_new_mmu_context(struct mm_struct *mm)
774 {
775         unsigned long ctx, new_ctx;
776         unsigned long orig_pgsz_bits;
777
778         spin_lock(&ctx_alloc_lock);
779 retry:
780         /* wrap might have happened, test again if our context became valid */
781         if (unlikely(CTX_VALID(mm->context)))
782                 goto out;
783         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
784         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
785         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
786         if (new_ctx >= (1 << CTX_NR_BITS)) {
787                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
788                 if (new_ctx >= ctx) {
789                         mmu_context_wrap();
790                         goto retry;
791                 }
792         }
793         if (mm->context.sparc64_ctx_val)
794                 cpumask_clear(mm_cpumask(mm));
795         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
796         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
797         tlb_context_cache = new_ctx;
798         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
799 out:
800         spin_unlock(&ctx_alloc_lock);
801 }
802
803 static int numa_enabled = 1;
804 static int numa_debug;
805
806 static int __init early_numa(char *p)
807 {
808         if (!p)
809                 return 0;
810
811         if (strstr(p, "off"))
812                 numa_enabled = 0;
813
814         if (strstr(p, "debug"))
815                 numa_debug = 1;
816
817         return 0;
818 }
819 early_param("numa", early_numa);
820
821 #define numadbg(f, a...) \
822 do {    if (numa_debug) \
823                 printk(KERN_INFO f, ## a); \
824 } while (0)
825
826 static void __init find_ramdisk(unsigned long phys_base)
827 {
828 #ifdef CONFIG_BLK_DEV_INITRD
829         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
830                 unsigned long ramdisk_image;
831
832                 /* Older versions of the bootloader only supported a
833                  * 32-bit physical address for the ramdisk image
834                  * location, stored at sparc_ramdisk_image.  Newer
835                  * SILO versions set sparc_ramdisk_image to zero and
836                  * provide a full 64-bit physical address at
837                  * sparc_ramdisk_image64.
838                  */
839                 ramdisk_image = sparc_ramdisk_image;
840                 if (!ramdisk_image)
841                         ramdisk_image = sparc_ramdisk_image64;
842
843                 /* Another bootloader quirk.  The bootloader normalizes
844                  * the physical address to KERNBASE, so we have to
845                  * factor that back out and add in the lowest valid
846                  * physical page address to get the true physical address.
847                  */
848                 ramdisk_image -= KERNBASE;
849                 ramdisk_image += phys_base;
850
851                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
852                         ramdisk_image, sparc_ramdisk_size);
853
854                 initrd_start = ramdisk_image;
855                 initrd_end = ramdisk_image + sparc_ramdisk_size;
856
857                 memblock_reserve(initrd_start, sparc_ramdisk_size);
858
859                 initrd_start += PAGE_OFFSET;
860                 initrd_end += PAGE_OFFSET;
861         }
862 #endif
863 }
864
865 struct node_mem_mask {
866         unsigned long mask;
867         unsigned long match;
868 };
869 static struct node_mem_mask node_masks[MAX_NUMNODES];
870 static int num_node_masks;
871
872 #ifdef CONFIG_NEED_MULTIPLE_NODES
873
874 struct mdesc_mlgroup {
875         u64     node;
876         u64     latency;
877         u64     match;
878         u64     mask;
879 };
880
881 static struct mdesc_mlgroup *mlgroups;
882 static int num_mlgroups;
883
884 int numa_cpu_lookup_table[NR_CPUS];
885 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
886
887 struct mdesc_mblock {
888         u64     base;
889         u64     size;
890         u64     offset; /* RA-to-PA */
891 };
892 static struct mdesc_mblock *mblocks;
893 static int num_mblocks;
894
895 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
896 {
897         struct mdesc_mblock *m = NULL;
898         int i;
899
900         for (i = 0; i < num_mblocks; i++) {
901                 m = &mblocks[i];
902
903                 if (addr >= m->base &&
904                     addr < (m->base + m->size)) {
905                         break;
906                 }
907         }
908
909         return m;
910 }
911
912 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
913 {
914         int prev_nid, new_nid;
915
916         prev_nid = -1;
917         for ( ; start < end; start += PAGE_SIZE) {
918                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
919                         struct node_mem_mask *p = &node_masks[new_nid];
920
921                         if ((start & p->mask) == p->match) {
922                                 if (prev_nid == -1)
923                                         prev_nid = new_nid;
924                                 break;
925                         }
926                 }
927
928                 if (new_nid == num_node_masks) {
929                         prev_nid = 0;
930                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
931                                   start);
932                         break;
933                 }
934
935                 if (prev_nid != new_nid)
936                         break;
937         }
938         *nid = prev_nid;
939
940         return start > end ? end : start;
941 }
942
943 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
944 {
945         u64 ret_end, pa_start, m_mask, m_match, m_end;
946         struct mdesc_mblock *mblock;
947         int _nid, i;
948
949         if (tlb_type != hypervisor)
950                 return memblock_nid_range_sun4u(start, end, nid);
951
952         mblock = addr_to_mblock(start);
953         if (!mblock) {
954                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
955                           start);
956
957                 _nid = 0;
958                 ret_end = end;
959                 goto done;
960         }
961
962         pa_start = start + mblock->offset;
963         m_match = 0;
964         m_mask = 0;
965
966         for (_nid = 0; _nid < num_node_masks; _nid++) {
967                 struct node_mem_mask *const m = &node_masks[_nid];
968
969                 if ((pa_start & m->mask) == m->match) {
970                         m_match = m->match;
971                         m_mask = m->mask;
972                         break;
973                 }
974         }
975
976         if (num_node_masks == _nid) {
977                 /* We could not find NUMA group, so default to 0, but lets
978                  * search for latency group, so we could calculate the correct
979                  * end address that we return
980                  */
981                 _nid = 0;
982
983                 for (i = 0; i < num_mlgroups; i++) {
984                         struct mdesc_mlgroup *const m = &mlgroups[i];
985
986                         if ((pa_start & m->mask) == m->match) {
987                                 m_match = m->match;
988                                 m_mask = m->mask;
989                                 break;
990                         }
991                 }
992
993                 if (i == num_mlgroups) {
994                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
995                                   start);
996
997                         ret_end = end;
998                         goto done;
999                 }
1000         }
1001
1002         /*
1003          * Each latency group has match and mask, and each memory block has an
1004          * offset.  An address belongs to a latency group if its address matches
1005          * the following formula: ((addr + offset) & mask) == match
1006          * It is, however, slow to check every single page if it matches a
1007          * particular latency group. As optimization we calculate end value by
1008          * using bit arithmetics.
1009          */
1010         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1011         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1012         ret_end = m_end > end ? end : m_end;
1013
1014 done:
1015         *nid = _nid;
1016         return ret_end;
1017 }
1018 #endif
1019
1020 /* This must be invoked after performing all of the necessary
1021  * memblock_set_node() calls for 'nid'.  We need to be able to get
1022  * correct data from get_pfn_range_for_nid().
1023  */
1024 static void __init allocate_node_data(int nid)
1025 {
1026         struct pglist_data *p;
1027         unsigned long start_pfn, end_pfn;
1028 #ifdef CONFIG_NEED_MULTIPLE_NODES
1029         unsigned long paddr;
1030
1031         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1032         if (!paddr) {
1033                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1034                 prom_halt();
1035         }
1036         NODE_DATA(nid) = __va(paddr);
1037         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1038
1039         NODE_DATA(nid)->node_id = nid;
1040 #endif
1041
1042         p = NODE_DATA(nid);
1043
1044         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1045         p->node_start_pfn = start_pfn;
1046         p->node_spanned_pages = end_pfn - start_pfn;
1047 }
1048
1049 static void init_node_masks_nonnuma(void)
1050 {
1051 #ifdef CONFIG_NEED_MULTIPLE_NODES
1052         int i;
1053 #endif
1054
1055         numadbg("Initializing tables for non-numa.\n");
1056
1057         node_masks[0].mask = 0;
1058         node_masks[0].match = 0;
1059         num_node_masks = 1;
1060
1061 #ifdef CONFIG_NEED_MULTIPLE_NODES
1062         for (i = 0; i < NR_CPUS; i++)
1063                 numa_cpu_lookup_table[i] = 0;
1064
1065         cpumask_setall(&numa_cpumask_lookup_table[0]);
1066 #endif
1067 }
1068
1069 #ifdef CONFIG_NEED_MULTIPLE_NODES
1070 struct pglist_data *node_data[MAX_NUMNODES];
1071
1072 EXPORT_SYMBOL(numa_cpu_lookup_table);
1073 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1074 EXPORT_SYMBOL(node_data);
1075
1076 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1077                                    u32 cfg_handle)
1078 {
1079         u64 arc;
1080
1081         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1082                 u64 target = mdesc_arc_target(md, arc);
1083                 const u64 *val;
1084
1085                 val = mdesc_get_property(md, target,
1086                                          "cfg-handle", NULL);
1087                 if (val && *val == cfg_handle)
1088                         return 0;
1089         }
1090         return -ENODEV;
1091 }
1092
1093 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1094                                     u32 cfg_handle)
1095 {
1096         u64 arc, candidate, best_latency = ~(u64)0;
1097
1098         candidate = MDESC_NODE_NULL;
1099         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1100                 u64 target = mdesc_arc_target(md, arc);
1101                 const char *name = mdesc_node_name(md, target);
1102                 const u64 *val;
1103
1104                 if (strcmp(name, "pio-latency-group"))
1105                         continue;
1106
1107                 val = mdesc_get_property(md, target, "latency", NULL);
1108                 if (!val)
1109                         continue;
1110
1111                 if (*val < best_latency) {
1112                         candidate = target;
1113                         best_latency = *val;
1114                 }
1115         }
1116
1117         if (candidate == MDESC_NODE_NULL)
1118                 return -ENODEV;
1119
1120         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1121 }
1122
1123 int of_node_to_nid(struct device_node *dp)
1124 {
1125         const struct linux_prom64_registers *regs;
1126         struct mdesc_handle *md;
1127         u32 cfg_handle;
1128         int count, nid;
1129         u64 grp;
1130
1131         /* This is the right thing to do on currently supported
1132          * SUN4U NUMA platforms as well, as the PCI controller does
1133          * not sit behind any particular memory controller.
1134          */
1135         if (!mlgroups)
1136                 return -1;
1137
1138         regs = of_get_property(dp, "reg", NULL);
1139         if (!regs)
1140                 return -1;
1141
1142         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1143
1144         md = mdesc_grab();
1145
1146         count = 0;
1147         nid = -1;
1148         mdesc_for_each_node_by_name(md, grp, "group") {
1149                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1150                         nid = count;
1151                         break;
1152                 }
1153                 count++;
1154         }
1155
1156         mdesc_release(md);
1157
1158         return nid;
1159 }
1160
1161 static void __init add_node_ranges(void)
1162 {
1163         struct memblock_region *reg;
1164         unsigned long prev_max;
1165
1166 memblock_resized:
1167         prev_max = memblock.memory.max;
1168
1169         for_each_memblock(memory, reg) {
1170                 unsigned long size = reg->size;
1171                 unsigned long start, end;
1172
1173                 start = reg->base;
1174                 end = start + size;
1175                 while (start < end) {
1176                         unsigned long this_end;
1177                         int nid;
1178
1179                         this_end = memblock_nid_range(start, end, &nid);
1180
1181                         numadbg("Setting memblock NUMA node nid[%d] "
1182                                 "start[%lx] end[%lx]\n",
1183                                 nid, start, this_end);
1184
1185                         memblock_set_node(start, this_end - start,
1186                                           &memblock.memory, nid);
1187                         if (memblock.memory.max != prev_max)
1188                                 goto memblock_resized;
1189                         start = this_end;
1190                 }
1191         }
1192 }
1193
1194 static int __init grab_mlgroups(struct mdesc_handle *md)
1195 {
1196         unsigned long paddr;
1197         int count = 0;
1198         u64 node;
1199
1200         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1201                 count++;
1202         if (!count)
1203                 return -ENOENT;
1204
1205         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1206                           SMP_CACHE_BYTES);
1207         if (!paddr)
1208                 return -ENOMEM;
1209
1210         mlgroups = __va(paddr);
1211         num_mlgroups = count;
1212
1213         count = 0;
1214         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1215                 struct mdesc_mlgroup *m = &mlgroups[count++];
1216                 const u64 *val;
1217
1218                 m->node = node;
1219
1220                 val = mdesc_get_property(md, node, "latency", NULL);
1221                 m->latency = *val;
1222                 val = mdesc_get_property(md, node, "address-match", NULL);
1223                 m->match = *val;
1224                 val = mdesc_get_property(md, node, "address-mask", NULL);
1225                 m->mask = *val;
1226
1227                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1228                         "match[%llx] mask[%llx]\n",
1229                         count - 1, m->node, m->latency, m->match, m->mask);
1230         }
1231
1232         return 0;
1233 }
1234
1235 static int __init grab_mblocks(struct mdesc_handle *md)
1236 {
1237         unsigned long paddr;
1238         int count = 0;
1239         u64 node;
1240
1241         mdesc_for_each_node_by_name(md, node, "mblock")
1242                 count++;
1243         if (!count)
1244                 return -ENOENT;
1245
1246         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1247                           SMP_CACHE_BYTES);
1248         if (!paddr)
1249                 return -ENOMEM;
1250
1251         mblocks = __va(paddr);
1252         num_mblocks = count;
1253
1254         count = 0;
1255         mdesc_for_each_node_by_name(md, node, "mblock") {
1256                 struct mdesc_mblock *m = &mblocks[count++];
1257                 const u64 *val;
1258
1259                 val = mdesc_get_property(md, node, "base", NULL);
1260                 m->base = *val;
1261                 val = mdesc_get_property(md, node, "size", NULL);
1262                 m->size = *val;
1263                 val = mdesc_get_property(md, node,
1264                                          "address-congruence-offset", NULL);
1265
1266                 /* The address-congruence-offset property is optional.
1267                  * Explicity zero it be identifty this.
1268                  */
1269                 if (val)
1270                         m->offset = *val;
1271                 else
1272                         m->offset = 0UL;
1273
1274                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1275                         count - 1, m->base, m->size, m->offset);
1276         }
1277
1278         return 0;
1279 }
1280
1281 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1282                                                u64 grp, cpumask_t *mask)
1283 {
1284         u64 arc;
1285
1286         cpumask_clear(mask);
1287
1288         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1289                 u64 target = mdesc_arc_target(md, arc);
1290                 const char *name = mdesc_node_name(md, target);
1291                 const u64 *id;
1292
1293                 if (strcmp(name, "cpu"))
1294                         continue;
1295                 id = mdesc_get_property(md, target, "id", NULL);
1296                 if (*id < nr_cpu_ids)
1297                         cpumask_set_cpu(*id, mask);
1298         }
1299 }
1300
1301 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1302 {
1303         int i;
1304
1305         for (i = 0; i < num_mlgroups; i++) {
1306                 struct mdesc_mlgroup *m = &mlgroups[i];
1307                 if (m->node == node)
1308                         return m;
1309         }
1310         return NULL;
1311 }
1312
1313 int __node_distance(int from, int to)
1314 {
1315         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1316                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1317                         from, to);
1318                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1319         }
1320         return numa_latency[from][to];
1321 }
1322
1323 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1324 {
1325         int i;
1326
1327         for (i = 0; i < MAX_NUMNODES; i++) {
1328                 struct node_mem_mask *n = &node_masks[i];
1329
1330                 if ((grp->mask == n->mask) && (grp->match == n->match))
1331                         break;
1332         }
1333         return i;
1334 }
1335
1336 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1337                                                  u64 grp, int index)
1338 {
1339         u64 arc;
1340
1341         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1342                 int tnode;
1343                 u64 target = mdesc_arc_target(md, arc);
1344                 struct mdesc_mlgroup *m = find_mlgroup(target);
1345
1346                 if (!m)
1347                         continue;
1348                 tnode = find_best_numa_node_for_mlgroup(m);
1349                 if (tnode == MAX_NUMNODES)
1350                         continue;
1351                 numa_latency[index][tnode] = m->latency;
1352         }
1353 }
1354
1355 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1356                                       int index)
1357 {
1358         struct mdesc_mlgroup *candidate = NULL;
1359         u64 arc, best_latency = ~(u64)0;
1360         struct node_mem_mask *n;
1361
1362         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1363                 u64 target = mdesc_arc_target(md, arc);
1364                 struct mdesc_mlgroup *m = find_mlgroup(target);
1365                 if (!m)
1366                         continue;
1367                 if (m->latency < best_latency) {
1368                         candidate = m;
1369                         best_latency = m->latency;
1370                 }
1371         }
1372         if (!candidate)
1373                 return -ENOENT;
1374
1375         if (num_node_masks != index) {
1376                 printk(KERN_ERR "Inconsistent NUMA state, "
1377                        "index[%d] != num_node_masks[%d]\n",
1378                        index, num_node_masks);
1379                 return -EINVAL;
1380         }
1381
1382         n = &node_masks[num_node_masks++];
1383
1384         n->mask = candidate->mask;
1385         n->match = candidate->match;
1386
1387         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1388                 index, n->mask, n->match, candidate->latency);
1389
1390         return 0;
1391 }
1392
1393 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1394                                          int index)
1395 {
1396         cpumask_t mask;
1397         int cpu;
1398
1399         numa_parse_mdesc_group_cpus(md, grp, &mask);
1400
1401         for_each_cpu(cpu, &mask)
1402                 numa_cpu_lookup_table[cpu] = index;
1403         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1404
1405         if (numa_debug) {
1406                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1407                 for_each_cpu(cpu, &mask)
1408                         printk("%d ", cpu);
1409                 printk("]\n");
1410         }
1411
1412         return numa_attach_mlgroup(md, grp, index);
1413 }
1414
1415 static int __init numa_parse_mdesc(void)
1416 {
1417         struct mdesc_handle *md = mdesc_grab();
1418         int i, j, err, count;
1419         u64 node;
1420
1421         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1422         if (node == MDESC_NODE_NULL) {
1423                 mdesc_release(md);
1424                 return -ENOENT;
1425         }
1426
1427         err = grab_mblocks(md);
1428         if (err < 0)
1429                 goto out;
1430
1431         err = grab_mlgroups(md);
1432         if (err < 0)
1433                 goto out;
1434
1435         count = 0;
1436         mdesc_for_each_node_by_name(md, node, "group") {
1437                 err = numa_parse_mdesc_group(md, node, count);
1438                 if (err < 0)
1439                         break;
1440                 count++;
1441         }
1442
1443         count = 0;
1444         mdesc_for_each_node_by_name(md, node, "group") {
1445                 find_numa_latencies_for_group(md, node, count);
1446                 count++;
1447         }
1448
1449         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1450         for (i = 0; i < MAX_NUMNODES; i++) {
1451                 u64 self_latency = numa_latency[i][i];
1452
1453                 for (j = 0; j < MAX_NUMNODES; j++) {
1454                         numa_latency[i][j] =
1455                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1456                                 self_latency;
1457                 }
1458         }
1459
1460         add_node_ranges();
1461
1462         for (i = 0; i < num_node_masks; i++) {
1463                 allocate_node_data(i);
1464                 node_set_online(i);
1465         }
1466
1467         err = 0;
1468 out:
1469         mdesc_release(md);
1470         return err;
1471 }
1472
1473 static int __init numa_parse_jbus(void)
1474 {
1475         unsigned long cpu, index;
1476
1477         /* NUMA node id is encoded in bits 36 and higher, and there is
1478          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1479          */
1480         index = 0;
1481         for_each_present_cpu(cpu) {
1482                 numa_cpu_lookup_table[cpu] = index;
1483                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1484                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1485                 node_masks[index].match = cpu << 36UL;
1486
1487                 index++;
1488         }
1489         num_node_masks = index;
1490
1491         add_node_ranges();
1492
1493         for (index = 0; index < num_node_masks; index++) {
1494                 allocate_node_data(index);
1495                 node_set_online(index);
1496         }
1497
1498         return 0;
1499 }
1500
1501 static int __init numa_parse_sun4u(void)
1502 {
1503         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1504                 unsigned long ver;
1505
1506                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1507                 if ((ver >> 32UL) == __JALAPENO_ID ||
1508                     (ver >> 32UL) == __SERRANO_ID)
1509                         return numa_parse_jbus();
1510         }
1511         return -1;
1512 }
1513
1514 static int __init bootmem_init_numa(void)
1515 {
1516         int i, j;
1517         int err = -1;
1518
1519         numadbg("bootmem_init_numa()\n");
1520
1521         /* Some sane defaults for numa latency values */
1522         for (i = 0; i < MAX_NUMNODES; i++) {
1523                 for (j = 0; j < MAX_NUMNODES; j++)
1524                         numa_latency[i][j] = (i == j) ?
1525                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1526         }
1527
1528         if (numa_enabled) {
1529                 if (tlb_type == hypervisor)
1530                         err = numa_parse_mdesc();
1531                 else
1532                         err = numa_parse_sun4u();
1533         }
1534         return err;
1535 }
1536
1537 #else
1538
1539 static int bootmem_init_numa(void)
1540 {
1541         return -1;
1542 }
1543
1544 #endif
1545
1546 static void __init bootmem_init_nonnuma(void)
1547 {
1548         unsigned long top_of_ram = memblock_end_of_DRAM();
1549         unsigned long total_ram = memblock_phys_mem_size();
1550
1551         numadbg("bootmem_init_nonnuma()\n");
1552
1553         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1554                top_of_ram, total_ram);
1555         printk(KERN_INFO "Memory hole size: %ldMB\n",
1556                (top_of_ram - total_ram) >> 20);
1557
1558         init_node_masks_nonnuma();
1559         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1560         allocate_node_data(0);
1561         node_set_online(0);
1562 }
1563
1564 static unsigned long __init bootmem_init(unsigned long phys_base)
1565 {
1566         unsigned long end_pfn;
1567
1568         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1569         max_pfn = max_low_pfn = end_pfn;
1570         min_low_pfn = (phys_base >> PAGE_SHIFT);
1571
1572         if (bootmem_init_numa() < 0)
1573                 bootmem_init_nonnuma();
1574
1575         /* Dump memblock with node info. */
1576         memblock_dump_all();
1577
1578         /* XXX cpu notifier XXX */
1579
1580         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1581         sparse_init();
1582
1583         return end_pfn;
1584 }
1585
1586 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1587 static int pall_ents __initdata;
1588
1589 static unsigned long max_phys_bits = 40;
1590
1591 bool kern_addr_valid(unsigned long addr)
1592 {
1593         pgd_t *pgd;
1594         pud_t *pud;
1595         pmd_t *pmd;
1596         pte_t *pte;
1597
1598         if ((long)addr < 0L) {
1599                 unsigned long pa = __pa(addr);
1600
1601                 if ((pa >> max_phys_bits) != 0UL)
1602                         return false;
1603
1604                 return pfn_valid(pa >> PAGE_SHIFT);
1605         }
1606
1607         if (addr >= (unsigned long) KERNBASE &&
1608             addr < (unsigned long)&_end)
1609                 return true;
1610
1611         pgd = pgd_offset_k(addr);
1612         if (pgd_none(*pgd))
1613                 return 0;
1614
1615         pud = pud_offset(pgd, addr);
1616         if (pud_none(*pud))
1617                 return 0;
1618
1619         if (pud_large(*pud))
1620                 return pfn_valid(pud_pfn(*pud));
1621
1622         pmd = pmd_offset(pud, addr);
1623         if (pmd_none(*pmd))
1624                 return 0;
1625
1626         if (pmd_large(*pmd))
1627                 return pfn_valid(pmd_pfn(*pmd));
1628
1629         pte = pte_offset_kernel(pmd, addr);
1630         if (pte_none(*pte))
1631                 return 0;
1632
1633         return pfn_valid(pte_pfn(*pte));
1634 }
1635 EXPORT_SYMBOL(kern_addr_valid);
1636
1637 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1638                                               unsigned long vend,
1639                                               pud_t *pud)
1640 {
1641         const unsigned long mask16gb = (1UL << 34) - 1UL;
1642         u64 pte_val = vstart;
1643
1644         /* Each PUD is 8GB */
1645         if ((vstart & mask16gb) ||
1646             (vend - vstart <= mask16gb)) {
1647                 pte_val ^= kern_linear_pte_xor[2];
1648                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1649
1650                 return vstart + PUD_SIZE;
1651         }
1652
1653         pte_val ^= kern_linear_pte_xor[3];
1654         pte_val |= _PAGE_PUD_HUGE;
1655
1656         vend = vstart + mask16gb + 1UL;
1657         while (vstart < vend) {
1658                 pud_val(*pud) = pte_val;
1659
1660                 pte_val += PUD_SIZE;
1661                 vstart += PUD_SIZE;
1662                 pud++;
1663         }
1664         return vstart;
1665 }
1666
1667 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1668                                    bool guard)
1669 {
1670         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1671                 return true;
1672
1673         return false;
1674 }
1675
1676 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1677                                               unsigned long vend,
1678                                               pmd_t *pmd)
1679 {
1680         const unsigned long mask256mb = (1UL << 28) - 1UL;
1681         const unsigned long mask2gb = (1UL << 31) - 1UL;
1682         u64 pte_val = vstart;
1683
1684         /* Each PMD is 8MB */
1685         if ((vstart & mask256mb) ||
1686             (vend - vstart <= mask256mb)) {
1687                 pte_val ^= kern_linear_pte_xor[0];
1688                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1689
1690                 return vstart + PMD_SIZE;
1691         }
1692
1693         if ((vstart & mask2gb) ||
1694             (vend - vstart <= mask2gb)) {
1695                 pte_val ^= kern_linear_pte_xor[1];
1696                 pte_val |= _PAGE_PMD_HUGE;
1697                 vend = vstart + mask256mb + 1UL;
1698         } else {
1699                 pte_val ^= kern_linear_pte_xor[2];
1700                 pte_val |= _PAGE_PMD_HUGE;
1701                 vend = vstart + mask2gb + 1UL;
1702         }
1703
1704         while (vstart < vend) {
1705                 pmd_val(*pmd) = pte_val;
1706
1707                 pte_val += PMD_SIZE;
1708                 vstart += PMD_SIZE;
1709                 pmd++;
1710         }
1711
1712         return vstart;
1713 }
1714
1715 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1716                                    bool guard)
1717 {
1718         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1719                 return true;
1720
1721         return false;
1722 }
1723
1724 static unsigned long __ref kernel_map_range(unsigned long pstart,
1725                                             unsigned long pend, pgprot_t prot,
1726                                             bool use_huge)
1727 {
1728         unsigned long vstart = PAGE_OFFSET + pstart;
1729         unsigned long vend = PAGE_OFFSET + pend;
1730         unsigned long alloc_bytes = 0UL;
1731
1732         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1733                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1734                             vstart, vend);
1735                 prom_halt();
1736         }
1737
1738         while (vstart < vend) {
1739                 unsigned long this_end, paddr = __pa(vstart);
1740                 pgd_t *pgd = pgd_offset_k(vstart);
1741                 pud_t *pud;
1742                 pmd_t *pmd;
1743                 pte_t *pte;
1744
1745                 if (pgd_none(*pgd)) {
1746                         pud_t *new;
1747
1748                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1749                         alloc_bytes += PAGE_SIZE;
1750                         pgd_populate(&init_mm, pgd, new);
1751                 }
1752                 pud = pud_offset(pgd, vstart);
1753                 if (pud_none(*pud)) {
1754                         pmd_t *new;
1755
1756                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1757                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1758                                 continue;
1759                         }
1760                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1761                         alloc_bytes += PAGE_SIZE;
1762                         pud_populate(&init_mm, pud, new);
1763                 }
1764
1765                 pmd = pmd_offset(pud, vstart);
1766                 if (pmd_none(*pmd)) {
1767                         pte_t *new;
1768
1769                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1770                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1771                                 continue;
1772                         }
1773                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1774                         alloc_bytes += PAGE_SIZE;
1775                         pmd_populate_kernel(&init_mm, pmd, new);
1776                 }
1777
1778                 pte = pte_offset_kernel(pmd, vstart);
1779                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1780                 if (this_end > vend)
1781                         this_end = vend;
1782
1783                 while (vstart < this_end) {
1784                         pte_val(*pte) = (paddr | pgprot_val(prot));
1785
1786                         vstart += PAGE_SIZE;
1787                         paddr += PAGE_SIZE;
1788                         pte++;
1789                 }
1790         }
1791
1792         return alloc_bytes;
1793 }
1794
1795 static void __init flush_all_kernel_tsbs(void)
1796 {
1797         int i;
1798
1799         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1800                 struct tsb *ent = &swapper_tsb[i];
1801
1802                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1803         }
1804 #ifndef CONFIG_DEBUG_PAGEALLOC
1805         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1806                 struct tsb *ent = &swapper_4m_tsb[i];
1807
1808                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1809         }
1810 #endif
1811 }
1812
1813 extern unsigned int kvmap_linear_patch[1];
1814
1815 static void __init kernel_physical_mapping_init(void)
1816 {
1817         unsigned long i, mem_alloced = 0UL;
1818         bool use_huge = true;
1819
1820 #ifdef CONFIG_DEBUG_PAGEALLOC
1821         use_huge = false;
1822 #endif
1823         for (i = 0; i < pall_ents; i++) {
1824                 unsigned long phys_start, phys_end;
1825
1826                 phys_start = pall[i].phys_addr;
1827                 phys_end = phys_start + pall[i].reg_size;
1828
1829                 mem_alloced += kernel_map_range(phys_start, phys_end,
1830                                                 PAGE_KERNEL, use_huge);
1831         }
1832
1833         printk("Allocated %ld bytes for kernel page tables.\n",
1834                mem_alloced);
1835
1836         kvmap_linear_patch[0] = 0x01000000; /* nop */
1837         flushi(&kvmap_linear_patch[0]);
1838
1839         flush_all_kernel_tsbs();
1840
1841         __flush_tlb_all();
1842 }
1843
1844 #ifdef CONFIG_DEBUG_PAGEALLOC
1845 void __kernel_map_pages(struct page *page, int numpages, int enable)
1846 {
1847         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1848         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1849
1850         kernel_map_range(phys_start, phys_end,
1851                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1852
1853         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1854                                PAGE_OFFSET + phys_end);
1855
1856         /* we should perform an IPI and flush all tlbs,
1857          * but that can deadlock->flush only current cpu.
1858          */
1859         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1860                                  PAGE_OFFSET + phys_end);
1861 }
1862 #endif
1863
1864 unsigned long __init find_ecache_flush_span(unsigned long size)
1865 {
1866         int i;
1867
1868         for (i = 0; i < pavail_ents; i++) {
1869                 if (pavail[i].reg_size >= size)
1870                         return pavail[i].phys_addr;
1871         }
1872
1873         return ~0UL;
1874 }
1875
1876 unsigned long PAGE_OFFSET;
1877 EXPORT_SYMBOL(PAGE_OFFSET);
1878
1879 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1880 EXPORT_SYMBOL(VMALLOC_END);
1881
1882 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1883 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1884
1885 static void __init setup_page_offset(void)
1886 {
1887         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1888                 /* Cheetah/Panther support a full 64-bit virtual
1889                  * address, so we can use all that our page tables
1890                  * support.
1891                  */
1892                 sparc64_va_hole_top =    0xfff0000000000000UL;
1893                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1894
1895                 max_phys_bits = 42;
1896         } else if (tlb_type == hypervisor) {
1897                 switch (sun4v_chip_type) {
1898                 case SUN4V_CHIP_NIAGARA1:
1899                 case SUN4V_CHIP_NIAGARA2:
1900                         /* T1 and T2 support 48-bit virtual addresses.  */
1901                         sparc64_va_hole_top =    0xffff800000000000UL;
1902                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1903
1904                         max_phys_bits = 39;
1905                         break;
1906                 case SUN4V_CHIP_NIAGARA3:
1907                         /* T3 supports 48-bit virtual addresses.  */
1908                         sparc64_va_hole_top =    0xffff800000000000UL;
1909                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1910
1911                         max_phys_bits = 43;
1912                         break;
1913                 case SUN4V_CHIP_NIAGARA4:
1914                 case SUN4V_CHIP_NIAGARA5:
1915                 case SUN4V_CHIP_SPARC64X:
1916                 case SUN4V_CHIP_SPARC_M6:
1917                         /* T4 and later support 52-bit virtual addresses.  */
1918                         sparc64_va_hole_top =    0xfff8000000000000UL;
1919                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1920                         max_phys_bits = 47;
1921                         break;
1922                 case SUN4V_CHIP_SPARC_M7:
1923                 case SUN4V_CHIP_SPARC_SN:
1924                 default:
1925                         /* M7 and later support 52-bit virtual addresses.  */
1926                         sparc64_va_hole_top =    0xfff8000000000000UL;
1927                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1928                         max_phys_bits = 49;
1929                         break;
1930                 }
1931         }
1932
1933         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1934                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1935                             max_phys_bits);
1936                 prom_halt();
1937         }
1938
1939         PAGE_OFFSET = sparc64_va_hole_top;
1940         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1941                        (sparc64_va_hole_bottom >> 2));
1942
1943         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1944                 PAGE_OFFSET, max_phys_bits);
1945         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1946                 VMALLOC_START, VMALLOC_END);
1947         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1948                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1949 }
1950
1951 static void __init tsb_phys_patch(void)
1952 {
1953         struct tsb_ldquad_phys_patch_entry *pquad;
1954         struct tsb_phys_patch_entry *p;
1955
1956         pquad = &__tsb_ldquad_phys_patch;
1957         while (pquad < &__tsb_ldquad_phys_patch_end) {
1958                 unsigned long addr = pquad->addr;
1959
1960                 if (tlb_type == hypervisor)
1961                         *(unsigned int *) addr = pquad->sun4v_insn;
1962                 else
1963                         *(unsigned int *) addr = pquad->sun4u_insn;
1964                 wmb();
1965                 __asm__ __volatile__("flush     %0"
1966                                      : /* no outputs */
1967                                      : "r" (addr));
1968
1969                 pquad++;
1970         }
1971
1972         p = &__tsb_phys_patch;
1973         while (p < &__tsb_phys_patch_end) {
1974                 unsigned long addr = p->addr;
1975
1976                 *(unsigned int *) addr = p->insn;
1977                 wmb();
1978                 __asm__ __volatile__("flush     %0"
1979                                      : /* no outputs */
1980                                      : "r" (addr));
1981
1982                 p++;
1983         }
1984 }
1985
1986 /* Don't mark as init, we give this to the Hypervisor.  */
1987 #ifndef CONFIG_DEBUG_PAGEALLOC
1988 #define NUM_KTSB_DESCR  2
1989 #else
1990 #define NUM_KTSB_DESCR  1
1991 #endif
1992 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1993
1994 /* The swapper TSBs are loaded with a base sequence of:
1995  *
1996  *      sethi   %uhi(SYMBOL), REG1
1997  *      sethi   %hi(SYMBOL), REG2
1998  *      or      REG1, %ulo(SYMBOL), REG1
1999  *      or      REG2, %lo(SYMBOL), REG2
2000  *      sllx    REG1, 32, REG1
2001  *      or      REG1, REG2, REG1
2002  *
2003  * When we use physical addressing for the TSB accesses, we patch the
2004  * first four instructions in the above sequence.
2005  */
2006
2007 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2008 {
2009         unsigned long high_bits, low_bits;
2010
2011         high_bits = (pa >> 32) & 0xffffffff;
2012         low_bits = (pa >> 0) & 0xffffffff;
2013
2014         while (start < end) {
2015                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2016
2017                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2018                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2019
2020                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2021                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2022
2023                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2024                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2025
2026                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2027                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2028
2029                 start++;
2030         }
2031 }
2032
2033 static void ktsb_phys_patch(void)
2034 {
2035         extern unsigned int __swapper_tsb_phys_patch;
2036         extern unsigned int __swapper_tsb_phys_patch_end;
2037         unsigned long ktsb_pa;
2038
2039         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2040         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2041                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2042 #ifndef CONFIG_DEBUG_PAGEALLOC
2043         {
2044         extern unsigned int __swapper_4m_tsb_phys_patch;
2045         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2046         ktsb_pa = (kern_base +
2047                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2048         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2049                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2050         }
2051 #endif
2052 }
2053
2054 static void __init sun4v_ktsb_init(void)
2055 {
2056         unsigned long ktsb_pa;
2057
2058         /* First KTSB for PAGE_SIZE mappings.  */
2059         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2060
2061         switch (PAGE_SIZE) {
2062         case 8 * 1024:
2063         default:
2064                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2065                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2066                 break;
2067
2068         case 64 * 1024:
2069                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2070                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2071                 break;
2072
2073         case 512 * 1024:
2074                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2075                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2076                 break;
2077
2078         case 4 * 1024 * 1024:
2079                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2080                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2081                 break;
2082         }
2083
2084         ktsb_descr[0].assoc = 1;
2085         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2086         ktsb_descr[0].ctx_idx = 0;
2087         ktsb_descr[0].tsb_base = ktsb_pa;
2088         ktsb_descr[0].resv = 0;
2089
2090 #ifndef CONFIG_DEBUG_PAGEALLOC
2091         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2092         ktsb_pa = (kern_base +
2093                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2094
2095         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2096         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2097                                     HV_PGSZ_MASK_256MB |
2098                                     HV_PGSZ_MASK_2GB |
2099                                     HV_PGSZ_MASK_16GB) &
2100                                    cpu_pgsz_mask);
2101         ktsb_descr[1].assoc = 1;
2102         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2103         ktsb_descr[1].ctx_idx = 0;
2104         ktsb_descr[1].tsb_base = ktsb_pa;
2105         ktsb_descr[1].resv = 0;
2106 #endif
2107 }
2108
2109 void sun4v_ktsb_register(void)
2110 {
2111         unsigned long pa, ret;
2112
2113         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2114
2115         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2116         if (ret != 0) {
2117                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2118                             "errors with %lx\n", pa, ret);
2119                 prom_halt();
2120         }
2121 }
2122
2123 static void __init sun4u_linear_pte_xor_finalize(void)
2124 {
2125 #ifndef CONFIG_DEBUG_PAGEALLOC
2126         /* This is where we would add Panther support for
2127          * 32MB and 256MB pages.
2128          */
2129 #endif
2130 }
2131
2132 static void __init sun4v_linear_pte_xor_finalize(void)
2133 {
2134         unsigned long pagecv_flag;
2135
2136         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2137          * enables MCD error. Do not set bit 9 on M7 processor.
2138          */
2139         switch (sun4v_chip_type) {
2140         case SUN4V_CHIP_SPARC_M7:
2141         case SUN4V_CHIP_SPARC_SN:
2142                 pagecv_flag = 0x00;
2143                 break;
2144         default:
2145                 pagecv_flag = _PAGE_CV_4V;
2146                 break;
2147         }
2148 #ifndef CONFIG_DEBUG_PAGEALLOC
2149         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2150                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2151                         PAGE_OFFSET;
2152                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2153                                            _PAGE_P_4V | _PAGE_W_4V);
2154         } else {
2155                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2156         }
2157
2158         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2159                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2160                         PAGE_OFFSET;
2161                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2162                                            _PAGE_P_4V | _PAGE_W_4V);
2163         } else {
2164                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2165         }
2166
2167         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2168                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2169                         PAGE_OFFSET;
2170                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2171                                            _PAGE_P_4V | _PAGE_W_4V);
2172         } else {
2173                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2174         }
2175 #endif
2176 }
2177
2178 /* paging_init() sets up the page tables */
2179
2180 static unsigned long last_valid_pfn;
2181
2182 static void sun4u_pgprot_init(void);
2183 static void sun4v_pgprot_init(void);
2184
2185 static phys_addr_t __init available_memory(void)
2186 {
2187         phys_addr_t available = 0ULL;
2188         phys_addr_t pa_start, pa_end;
2189         u64 i;
2190
2191         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2192                                 &pa_end, NULL)
2193                 available = available + (pa_end  - pa_start);
2194
2195         return available;
2196 }
2197
2198 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2199 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2200 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2201 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2202 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2203 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2204
2205 /* We need to exclude reserved regions. This exclusion will include
2206  * vmlinux and initrd. To be more precise the initrd size could be used to
2207  * compute a new lower limit because it is freed later during initialization.
2208  */
2209 static void __init reduce_memory(phys_addr_t limit_ram)
2210 {
2211         phys_addr_t avail_ram = available_memory();
2212         phys_addr_t pa_start, pa_end;
2213         u64 i;
2214
2215         if (limit_ram >= avail_ram)
2216                 return;
2217
2218         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2219                                 &pa_end, NULL) {
2220                 phys_addr_t region_size = pa_end - pa_start;
2221                 phys_addr_t clip_start = pa_start;
2222
2223                 avail_ram = avail_ram - region_size;
2224                 /* Are we consuming too much? */
2225                 if (avail_ram < limit_ram) {
2226                         phys_addr_t give_back = limit_ram - avail_ram;
2227
2228                         region_size = region_size - give_back;
2229                         clip_start = clip_start + give_back;
2230                 }
2231
2232                 memblock_remove(clip_start, region_size);
2233
2234                 if (avail_ram <= limit_ram)
2235                         break;
2236                 i = 0UL;
2237         }
2238 }
2239
2240 void __init paging_init(void)
2241 {
2242         unsigned long end_pfn, shift, phys_base;
2243         unsigned long real_end, i;
2244
2245         setup_page_offset();
2246
2247         /* These build time checkes make sure that the dcache_dirty_cpu()
2248          * page->flags usage will work.
2249          *
2250          * When a page gets marked as dcache-dirty, we store the
2251          * cpu number starting at bit 32 in the page->flags.  Also,
2252          * functions like clear_dcache_dirty_cpu use the cpu mask
2253          * in 13-bit signed-immediate instruction fields.
2254          */
2255
2256         /*
2257          * Page flags must not reach into upper 32 bits that are used
2258          * for the cpu number
2259          */
2260         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2261
2262         /*
2263          * The bit fields placed in the high range must not reach below
2264          * the 32 bit boundary. Otherwise we cannot place the cpu field
2265          * at the 32 bit boundary.
2266          */
2267         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2268                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2269
2270         BUILD_BUG_ON(NR_CPUS > 4096);
2271
2272         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2273         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2274
2275         /* Invalidate both kernel TSBs.  */
2276         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2277 #ifndef CONFIG_DEBUG_PAGEALLOC
2278         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2279 #endif
2280
2281         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2282          * bit on M7 processor. This is a conflicting usage of the same
2283          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2284          * Detection error on all pages and this will lead to problems
2285          * later. Kernel does not run with MCD enabled and hence rest
2286          * of the required steps to fully configure memory corruption
2287          * detection are not taken. We need to ensure TTE.mcde is not
2288          * set on M7 processor. Compute the value of cacheability
2289          * flag for use later taking this into consideration.
2290          */
2291         switch (sun4v_chip_type) {
2292         case SUN4V_CHIP_SPARC_M7:
2293         case SUN4V_CHIP_SPARC_SN:
2294                 page_cache4v_flag = _PAGE_CP_4V;
2295                 break;
2296         default:
2297                 page_cache4v_flag = _PAGE_CACHE_4V;
2298                 break;
2299         }
2300
2301         if (tlb_type == hypervisor)
2302                 sun4v_pgprot_init();
2303         else
2304                 sun4u_pgprot_init();
2305
2306         if (tlb_type == cheetah_plus ||
2307             tlb_type == hypervisor) {
2308                 tsb_phys_patch();
2309                 ktsb_phys_patch();
2310         }
2311
2312         if (tlb_type == hypervisor)
2313                 sun4v_patch_tlb_handlers();
2314
2315         /* Find available physical memory...
2316          *
2317          * Read it twice in order to work around a bug in openfirmware.
2318          * The call to grab this table itself can cause openfirmware to
2319          * allocate memory, which in turn can take away some space from
2320          * the list of available memory.  Reading it twice makes sure
2321          * we really do get the final value.
2322          */
2323         read_obp_translations();
2324         read_obp_memory("reg", &pall[0], &pall_ents);
2325         read_obp_memory("available", &pavail[0], &pavail_ents);
2326         read_obp_memory("available", &pavail[0], &pavail_ents);
2327
2328         phys_base = 0xffffffffffffffffUL;
2329         for (i = 0; i < pavail_ents; i++) {
2330                 phys_base = min(phys_base, pavail[i].phys_addr);
2331                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2332         }
2333
2334         memblock_reserve(kern_base, kern_size);
2335
2336         find_ramdisk(phys_base);
2337
2338         if (cmdline_memory_size)
2339                 reduce_memory(cmdline_memory_size);
2340
2341         memblock_allow_resize();
2342         memblock_dump_all();
2343
2344         set_bit(0, mmu_context_bmap);
2345
2346         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2347
2348         real_end = (unsigned long)_end;
2349         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2350         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2351                num_kernel_image_mappings);
2352
2353         /* Set kernel pgd to upper alias so physical page computations
2354          * work.
2355          */
2356         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2357         
2358         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2359
2360         inherit_prom_mappings();
2361         
2362         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2363         setup_tba();
2364
2365         __flush_tlb_all();
2366
2367         prom_build_devicetree();
2368         of_populate_present_mask();
2369 #ifndef CONFIG_SMP
2370         of_fill_in_cpu_data();
2371 #endif
2372
2373         if (tlb_type == hypervisor) {
2374                 sun4v_mdesc_init();
2375                 mdesc_populate_present_mask(cpu_all_mask);
2376 #ifndef CONFIG_SMP
2377                 mdesc_fill_in_cpu_data(cpu_all_mask);
2378 #endif
2379                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2380
2381                 sun4v_linear_pte_xor_finalize();
2382
2383                 sun4v_ktsb_init();
2384                 sun4v_ktsb_register();
2385         } else {
2386                 unsigned long impl, ver;
2387
2388                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2389                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2390
2391                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2392                 impl = ((ver >> 32) & 0xffff);
2393                 if (impl == PANTHER_IMPL)
2394                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2395                                           HV_PGSZ_MASK_256MB);
2396
2397                 sun4u_linear_pte_xor_finalize();
2398         }
2399
2400         /* Flush the TLBs and the 4M TSB so that the updated linear
2401          * pte XOR settings are realized for all mappings.
2402          */
2403         __flush_tlb_all();
2404 #ifndef CONFIG_DEBUG_PAGEALLOC
2405         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2406 #endif
2407         __flush_tlb_all();
2408
2409         /* Setup bootmem... */
2410         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2411
2412         kernel_physical_mapping_init();
2413
2414         {
2415                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2416
2417                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2418
2419                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2420
2421                 free_area_init_nodes(max_zone_pfns);
2422         }
2423
2424         printk("Booting Linux...\n");
2425 }
2426
2427 int page_in_phys_avail(unsigned long paddr)
2428 {
2429         int i;
2430
2431         paddr &= PAGE_MASK;
2432
2433         for (i = 0; i < pavail_ents; i++) {
2434                 unsigned long start, end;
2435
2436                 start = pavail[i].phys_addr;
2437                 end = start + pavail[i].reg_size;
2438
2439                 if (paddr >= start && paddr < end)
2440                         return 1;
2441         }
2442         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2443                 return 1;
2444 #ifdef CONFIG_BLK_DEV_INITRD
2445         if (paddr >= __pa(initrd_start) &&
2446             paddr < __pa(PAGE_ALIGN(initrd_end)))
2447                 return 1;
2448 #endif
2449
2450         return 0;
2451 }
2452
2453 static void __init register_page_bootmem_info(void)
2454 {
2455 #ifdef CONFIG_NEED_MULTIPLE_NODES
2456         int i;
2457
2458         for_each_online_node(i)
2459                 if (NODE_DATA(i)->node_spanned_pages)
2460                         register_page_bootmem_info_node(NODE_DATA(i));
2461 #endif
2462 }
2463 void __init mem_init(void)
2464 {
2465         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2466
2467         register_page_bootmem_info();
2468         free_all_bootmem();
2469
2470         /*
2471          * Set up the zero page, mark it reserved, so that page count
2472          * is not manipulated when freeing the page from user ptes.
2473          */
2474         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2475         if (mem_map_zero == NULL) {
2476                 prom_printf("paging_init: Cannot alloc zero page.\n");
2477                 prom_halt();
2478         }
2479         mark_page_reserved(mem_map_zero);
2480
2481         mem_init_print_info(NULL);
2482
2483         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2484                 cheetah_ecache_flush_init();
2485 }
2486
2487 void free_initmem(void)
2488 {
2489         unsigned long addr, initend;
2490         int do_free = 1;
2491
2492         /* If the physical memory maps were trimmed by kernel command
2493          * line options, don't even try freeing this initmem stuff up.
2494          * The kernel image could have been in the trimmed out region
2495          * and if so the freeing below will free invalid page structs.
2496          */
2497         if (cmdline_memory_size)
2498                 do_free = 0;
2499
2500         /*
2501          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2502          */
2503         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2504         initend = (unsigned long)(__init_end) & PAGE_MASK;
2505         for (; addr < initend; addr += PAGE_SIZE) {
2506                 unsigned long page;
2507
2508                 page = (addr +
2509                         ((unsigned long) __va(kern_base)) -
2510                         ((unsigned long) KERNBASE));
2511                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2512
2513                 if (do_free)
2514                         free_reserved_page(virt_to_page(page));
2515         }
2516 }
2517
2518 #ifdef CONFIG_BLK_DEV_INITRD
2519 void free_initrd_mem(unsigned long start, unsigned long end)
2520 {
2521         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2522                            "initrd");
2523 }
2524 #endif
2525
2526 pgprot_t PAGE_KERNEL __read_mostly;
2527 EXPORT_SYMBOL(PAGE_KERNEL);
2528
2529 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2530 pgprot_t PAGE_COPY __read_mostly;
2531
2532 pgprot_t PAGE_SHARED __read_mostly;
2533 EXPORT_SYMBOL(PAGE_SHARED);
2534
2535 unsigned long pg_iobits __read_mostly;
2536
2537 unsigned long _PAGE_IE __read_mostly;
2538 EXPORT_SYMBOL(_PAGE_IE);
2539
2540 unsigned long _PAGE_E __read_mostly;
2541 EXPORT_SYMBOL(_PAGE_E);
2542
2543 unsigned long _PAGE_CACHE __read_mostly;
2544 EXPORT_SYMBOL(_PAGE_CACHE);
2545
2546 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2547 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2548                                int node)
2549 {
2550         unsigned long pte_base;
2551
2552         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2553                     _PAGE_CP_4U | _PAGE_CV_4U |
2554                     _PAGE_P_4U | _PAGE_W_4U);
2555         if (tlb_type == hypervisor)
2556                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2557                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2558
2559         pte_base |= _PAGE_PMD_HUGE;
2560
2561         vstart = vstart & PMD_MASK;
2562         vend = ALIGN(vend, PMD_SIZE);
2563         for (; vstart < vend; vstart += PMD_SIZE) {
2564                 pgd_t *pgd = pgd_offset_k(vstart);
2565                 unsigned long pte;
2566                 pud_t *pud;
2567                 pmd_t *pmd;
2568
2569                 if (pgd_none(*pgd)) {
2570                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2571
2572                         if (!new)
2573                                 return -ENOMEM;
2574                         pgd_populate(&init_mm, pgd, new);
2575                 }
2576
2577                 pud = pud_offset(pgd, vstart);
2578                 if (pud_none(*pud)) {
2579                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2580
2581                         if (!new)
2582                                 return -ENOMEM;
2583                         pud_populate(&init_mm, pud, new);
2584                 }
2585
2586                 pmd = pmd_offset(pud, vstart);
2587
2588                 pte = pmd_val(*pmd);
2589                 if (!(pte & _PAGE_VALID)) {
2590                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2591
2592                         if (!block)
2593                                 return -ENOMEM;
2594
2595                         pmd_val(*pmd) = pte_base | __pa(block);
2596                 }
2597         }
2598
2599         return 0;
2600 }
2601
2602 void vmemmap_free(unsigned long start, unsigned long end)
2603 {
2604 }
2605 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2606
2607 static void prot_init_common(unsigned long page_none,
2608                              unsigned long page_shared,
2609                              unsigned long page_copy,
2610                              unsigned long page_readonly,
2611                              unsigned long page_exec_bit)
2612 {
2613         PAGE_COPY = __pgprot(page_copy);
2614         PAGE_SHARED = __pgprot(page_shared);
2615
2616         protection_map[0x0] = __pgprot(page_none);
2617         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2618         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2619         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2620         protection_map[0x4] = __pgprot(page_readonly);
2621         protection_map[0x5] = __pgprot(page_readonly);
2622         protection_map[0x6] = __pgprot(page_copy);
2623         protection_map[0x7] = __pgprot(page_copy);
2624         protection_map[0x8] = __pgprot(page_none);
2625         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2626         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2627         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2628         protection_map[0xc] = __pgprot(page_readonly);
2629         protection_map[0xd] = __pgprot(page_readonly);
2630         protection_map[0xe] = __pgprot(page_shared);
2631         protection_map[0xf] = __pgprot(page_shared);
2632 }
2633
2634 static void __init sun4u_pgprot_init(void)
2635 {
2636         unsigned long page_none, page_shared, page_copy, page_readonly;
2637         unsigned long page_exec_bit;
2638         int i;
2639
2640         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2641                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2642                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2643                                 _PAGE_EXEC_4U);
2644         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2645                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2646                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2647                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2648
2649         _PAGE_IE = _PAGE_IE_4U;
2650         _PAGE_E = _PAGE_E_4U;
2651         _PAGE_CACHE = _PAGE_CACHE_4U;
2652
2653         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2654                      __ACCESS_BITS_4U | _PAGE_E_4U);
2655
2656 #ifdef CONFIG_DEBUG_PAGEALLOC
2657         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2658 #else
2659         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2660                 PAGE_OFFSET;
2661 #endif
2662         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2663                                    _PAGE_P_4U | _PAGE_W_4U);
2664
2665         for (i = 1; i < 4; i++)
2666                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2667
2668         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2669                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2670                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2671
2672
2673         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2674         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2675                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2676         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2677                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2678         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2679                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2680
2681         page_exec_bit = _PAGE_EXEC_4U;
2682
2683         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2684                          page_exec_bit);
2685 }
2686
2687 static void __init sun4v_pgprot_init(void)
2688 {
2689         unsigned long page_none, page_shared, page_copy, page_readonly;
2690         unsigned long page_exec_bit;
2691         int i;
2692
2693         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2694                                 page_cache4v_flag | _PAGE_P_4V |
2695                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2696                                 _PAGE_EXEC_4V);
2697         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2698
2699         _PAGE_IE = _PAGE_IE_4V;
2700         _PAGE_E = _PAGE_E_4V;
2701         _PAGE_CACHE = page_cache4v_flag;
2702
2703 #ifdef CONFIG_DEBUG_PAGEALLOC
2704         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2705 #else
2706         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2707                 PAGE_OFFSET;
2708 #endif
2709         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2710                                    _PAGE_W_4V);
2711
2712         for (i = 1; i < 4; i++)
2713                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2714
2715         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2716                      __ACCESS_BITS_4V | _PAGE_E_4V);
2717
2718         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2719                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2720                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2721                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2722
2723         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2724         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2725                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2726         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2727                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2728         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2729                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2730
2731         page_exec_bit = _PAGE_EXEC_4V;
2732
2733         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2734                          page_exec_bit);
2735 }
2736
2737 unsigned long pte_sz_bits(unsigned long sz)
2738 {
2739         if (tlb_type == hypervisor) {
2740                 switch (sz) {
2741                 case 8 * 1024:
2742                 default:
2743                         return _PAGE_SZ8K_4V;
2744                 case 64 * 1024:
2745                         return _PAGE_SZ64K_4V;
2746                 case 512 * 1024:
2747                         return _PAGE_SZ512K_4V;
2748                 case 4 * 1024 * 1024:
2749                         return _PAGE_SZ4MB_4V;
2750                 }
2751         } else {
2752                 switch (sz) {
2753                 case 8 * 1024:
2754                 default:
2755                         return _PAGE_SZ8K_4U;
2756                 case 64 * 1024:
2757                         return _PAGE_SZ64K_4U;
2758                 case 512 * 1024:
2759                         return _PAGE_SZ512K_4U;
2760                 case 4 * 1024 * 1024:
2761                         return _PAGE_SZ4MB_4U;
2762                 }
2763         }
2764 }
2765
2766 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2767 {
2768         pte_t pte;
2769
2770         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2771         pte_val(pte) |= (((unsigned long)space) << 32);
2772         pte_val(pte) |= pte_sz_bits(page_size);
2773
2774         return pte;
2775 }
2776
2777 static unsigned long kern_large_tte(unsigned long paddr)
2778 {
2779         unsigned long val;
2780
2781         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2782                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2783                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2784         if (tlb_type == hypervisor)
2785                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2786                        page_cache4v_flag | _PAGE_P_4V |
2787                        _PAGE_EXEC_4V | _PAGE_W_4V);
2788
2789         return val | paddr;
2790 }
2791
2792 /* If not locked, zap it. */
2793 void __flush_tlb_all(void)
2794 {
2795         unsigned long pstate;
2796         int i;
2797
2798         __asm__ __volatile__("flushw\n\t"
2799                              "rdpr      %%pstate, %0\n\t"
2800                              "wrpr      %0, %1, %%pstate"
2801                              : "=r" (pstate)
2802                              : "i" (PSTATE_IE));
2803         if (tlb_type == hypervisor) {
2804                 sun4v_mmu_demap_all();
2805         } else if (tlb_type == spitfire) {
2806                 for (i = 0; i < 64; i++) {
2807                         /* Spitfire Errata #32 workaround */
2808                         /* NOTE: Always runs on spitfire, so no
2809                          *       cheetah+ page size encodings.
2810                          */
2811                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2812                                              "flush     %%g6"
2813                                              : /* No outputs */
2814                                              : "r" (0),
2815                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2816
2817                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2818                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2819                                                      "membar #Sync"
2820                                                      : /* no outputs */
2821                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2822                                 spitfire_put_dtlb_data(i, 0x0UL);
2823                         }
2824
2825                         /* Spitfire Errata #32 workaround */
2826                         /* NOTE: Always runs on spitfire, so no
2827                          *       cheetah+ page size encodings.
2828                          */
2829                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2830                                              "flush     %%g6"
2831                                              : /* No outputs */
2832                                              : "r" (0),
2833                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2834
2835                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2836                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2837                                                      "membar #Sync"
2838                                                      : /* no outputs */
2839                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2840                                 spitfire_put_itlb_data(i, 0x0UL);
2841                         }
2842                 }
2843         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2844                 cheetah_flush_dtlb_all();
2845                 cheetah_flush_itlb_all();
2846         }
2847         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2848                              : : "r" (pstate));
2849 }
2850
2851 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2852                             unsigned long address)
2853 {
2854         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2855         pte_t *pte = NULL;
2856
2857         if (page)
2858                 pte = (pte_t *) page_address(page);
2859
2860         return pte;
2861 }
2862
2863 pgtable_t pte_alloc_one(struct mm_struct *mm,
2864                         unsigned long address)
2865 {
2866         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2867         if (!page)
2868                 return NULL;
2869         if (!pgtable_page_ctor(page)) {
2870                 free_hot_cold_page(page, 0);
2871                 return NULL;
2872         }
2873         return (pte_t *) page_address(page);
2874 }
2875
2876 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2877 {
2878         free_page((unsigned long)pte);
2879 }
2880
2881 static void __pte_free(pgtable_t pte)
2882 {
2883         struct page *page = virt_to_page(pte);
2884
2885         pgtable_page_dtor(page);
2886         __free_page(page);
2887 }
2888
2889 void pte_free(struct mm_struct *mm, pgtable_t pte)
2890 {
2891         __pte_free(pte);
2892 }
2893
2894 void pgtable_free(void *table, bool is_page)
2895 {
2896         if (is_page)
2897                 __pte_free(table);
2898         else
2899                 kmem_cache_free(pgtable_cache, table);
2900 }
2901
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2904                           pmd_t *pmd)
2905 {
2906         unsigned long pte, flags;
2907         struct mm_struct *mm;
2908         pmd_t entry = *pmd;
2909
2910         if (!pmd_large(entry) || !pmd_young(entry))
2911                 return;
2912
2913         pte = pmd_val(entry);
2914
2915         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2916         if (!(pte & _PAGE_VALID))
2917                 return;
2918
2919         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2920         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2921
2922         mm = vma->vm_mm;
2923
2924         spin_lock_irqsave(&mm->context.lock, flags);
2925
2926         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2927                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2928                                         addr, pte);
2929
2930         spin_unlock_irqrestore(&mm->context.lock, flags);
2931 }
2932 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2933
2934 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2935 static void context_reload(void *__data)
2936 {
2937         struct mm_struct *mm = __data;
2938
2939         if (mm == current->mm)
2940                 load_secondary_context(mm);
2941 }
2942
2943 void hugetlb_setup(struct pt_regs *regs)
2944 {
2945         struct mm_struct *mm = current->mm;
2946         struct tsb_config *tp;
2947
2948         if (faulthandler_disabled() || !mm) {
2949                 const struct exception_table_entry *entry;
2950
2951                 entry = search_exception_tables(regs->tpc);
2952                 if (entry) {
2953                         regs->tpc = entry->fixup;
2954                         regs->tnpc = regs->tpc + 4;
2955                         return;
2956                 }
2957                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2958                 die_if_kernel("HugeTSB in atomic", regs);
2959         }
2960
2961         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2962         if (likely(tp->tsb == NULL))
2963                 tsb_grow(mm, MM_TSB_HUGE, 0);
2964
2965         tsb_context_switch(mm);
2966         smp_tsb_sync(mm);
2967
2968         /* On UltraSPARC-III+ and later, configure the second half of
2969          * the Data-TLB for huge pages.
2970          */
2971         if (tlb_type == cheetah_plus) {
2972                 bool need_context_reload = false;
2973                 unsigned long ctx;
2974
2975                 spin_lock_irq(&ctx_alloc_lock);
2976                 ctx = mm->context.sparc64_ctx_val;
2977                 ctx &= ~CTX_PGSZ_MASK;
2978                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2979                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2980
2981                 if (ctx != mm->context.sparc64_ctx_val) {
2982                         /* When changing the page size fields, we
2983                          * must perform a context flush so that no
2984                          * stale entries match.  This flush must
2985                          * occur with the original context register
2986                          * settings.
2987                          */
2988                         do_flush_tlb_mm(mm);
2989
2990                         /* Reload the context register of all processors
2991                          * also executing in this address space.
2992                          */
2993                         mm->context.sparc64_ctx_val = ctx;
2994                         need_context_reload = true;
2995                 }
2996                 spin_unlock_irq(&ctx_alloc_lock);
2997
2998                 if (need_context_reload)
2999                         on_each_cpu(context_reload, mm, 0);
3000         }
3001 }
3002 #endif
3003
3004 static struct resource code_resource = {
3005         .name   = "Kernel code",
3006         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3007 };
3008
3009 static struct resource data_resource = {
3010         .name   = "Kernel data",
3011         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3012 };
3013
3014 static struct resource bss_resource = {
3015         .name   = "Kernel bss",
3016         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3017 };
3018
3019 static inline resource_size_t compute_kern_paddr(void *addr)
3020 {
3021         return (resource_size_t) (addr - KERNBASE + kern_base);
3022 }
3023
3024 static void __init kernel_lds_init(void)
3025 {
3026         code_resource.start = compute_kern_paddr(_text);
3027         code_resource.end   = compute_kern_paddr(_etext - 1);
3028         data_resource.start = compute_kern_paddr(_etext);
3029         data_resource.end   = compute_kern_paddr(_edata - 1);
3030         bss_resource.start  = compute_kern_paddr(__bss_start);
3031         bss_resource.end    = compute_kern_paddr(_end - 1);
3032 }
3033
3034 static int __init report_memory(void)
3035 {
3036         int i;
3037         struct resource *res;
3038
3039         kernel_lds_init();
3040
3041         for (i = 0; i < pavail_ents; i++) {
3042                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3043
3044                 if (!res) {
3045                         pr_warn("Failed to allocate source.\n");
3046                         break;
3047                 }
3048
3049                 res->name = "System RAM";
3050                 res->start = pavail[i].phys_addr;
3051                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3052                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3053
3054                 if (insert_resource(&iomem_resource, res) < 0) {
3055                         pr_warn("Resource insertion failed.\n");
3056                         break;
3057                 }
3058
3059                 insert_resource(res, &code_resource);
3060                 insert_resource(res, &data_resource);
3061                 insert_resource(res, &bss_resource);
3062         }
3063
3064         return 0;
3065 }
3066 arch_initcall(report_memory);
3067
3068 #ifdef CONFIG_SMP
3069 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3070 #else
3071 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3072 #endif
3073
3074 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3075 {
3076         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3077                 if (start < LOW_OBP_ADDRESS) {
3078                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3079                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3080                 }
3081                 if (end > HI_OBP_ADDRESS) {
3082                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3083                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3084                 }
3085         } else {
3086                 flush_tsb_kernel_range(start, end);
3087                 do_flush_tlb_kernel_range(start, end);
3088         }
3089 }