]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/mm/srmmu.c
sparc32: drop loadmmu
[karo-tx-linux.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
50
51 #include <asm/btfixup.h>
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
61
62 extern struct resource sparc_iomap;
63
64 extern unsigned long last_valid_pfn;
65
66 static pgd_t *srmmu_swapper_pg_dir;
67
68 #ifdef CONFIG_SMP
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END       }
74 #endif
75
76 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
77 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
78
79 int flush_page_for_dma_global = 1;
80
81 #ifdef CONFIG_SMP
82 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
83 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
84 #endif
85
86 char *srmmu_name;
87
88 ctxd_t *srmmu_ctx_table_phys;
89 static ctxd_t *srmmu_context_table;
90
91 int viking_mxcc_present;
92 static DEFINE_SPINLOCK(srmmu_context_spinlock);
93
94 static int is_hypersparc;
95
96 static int srmmu_cache_pagetables;
97
98 /* these will be initialized in srmmu_nocache_calcsize() */
99 static unsigned long srmmu_nocache_size;
100 static unsigned long srmmu_nocache_end;
101
102 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
103 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
104
105 /* The context table is a nocache user with the biggest alignment needs. */
106 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
107
108 void *srmmu_nocache_pool;
109 void *srmmu_nocache_bitmap;
110 static struct bit_map srmmu_nocache_map;
111
112 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
113 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
114
115
116 static inline int srmmu_pte_none(pte_t pte)
117 { return !(pte_val(pte) & 0xFFFFFFF); }
118
119 static inline int srmmu_pte_present(pte_t pte)
120 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
121
122 static inline int srmmu_pmd_none(pmd_t pmd)
123 { return !(pmd_val(pmd) & 0xFFFFFFF); }
124
125 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
126 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
127
128 static inline pte_t srmmu_pte_mkclean(pte_t pte)
129 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
130
131 static inline pte_t srmmu_pte_mkold(pte_t pte)
132 { return __pte(pte_val(pte) & ~SRMMU_REF);}
133
134 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
135 { return __pte(pte_val(pte) | SRMMU_WRITE);}
136
137 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
138 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
139
140 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
141 { return __pte(pte_val(pte) | SRMMU_REF);}
142
143 /*
144  * Conversion functions: convert a page and protection to a page entry,
145  * and a page entry and page directory to the page they refer to.
146  */
147 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
148 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
149
150 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
151 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
152
153 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
154 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
155
156 /* XXX should we hyper_flush_whole_icache here - Anton */
157 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
158 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
159
160 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
161 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
162
163 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
164 {
165         unsigned long ptp;      /* Physical address, shifted right by 4 */
166         int i;
167
168         ptp = __nocache_pa((unsigned long) ptep) >> 4;
169         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
170                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
171                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
172         }
173 }
174
175 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
176 {
177         unsigned long ptp;      /* Physical address, shifted right by 4 */
178         int i;
179
180         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
181         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
182                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
183                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
184         }
185 }
186
187 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
188 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
189
190 /* to find an entry in a top-level page table... */
191 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
192 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
193
194 /* Find an entry in the second-level page table.. */
195 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
196 {
197         return (pmd_t *) srmmu_pgd_page(*dir) +
198             ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
199 }
200
201 /* Find an entry in the third-level page table.. */ 
202 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
203 {
204         void *pte;
205
206         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
207         return (pte_t *) pte +
208             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
209 }
210
211 static unsigned long srmmu_swp_type(swp_entry_t entry)
212 {
213         return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
214 }
215
216 static unsigned long srmmu_swp_offset(swp_entry_t entry)
217 {
218         return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
219 }
220
221 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
222 {
223         return (swp_entry_t) {
224                   (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
225                 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
226 }
227
228 /*
229  * size: bytes to allocate in the nocache area.
230  * align: bytes, number to align at.
231  * Returns the virtual address of the allocated area.
232  */
233 static unsigned long __srmmu_get_nocache(int size, int align)
234 {
235         int offset;
236
237         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
238                 printk("Size 0x%x too small for nocache request\n", size);
239                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
240         }
241         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
242                 printk("Size 0x%x unaligned int nocache request\n", size);
243                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
244         }
245         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
246
247         offset = bit_map_string_get(&srmmu_nocache_map,
248                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
249                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
250         if (offset == -1) {
251                 printk("srmmu: out of nocache %d: %d/%d\n",
252                     size, (int) srmmu_nocache_size,
253                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
254                 return 0;
255         }
256
257         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
258 }
259
260 static unsigned long srmmu_get_nocache(int size, int align)
261 {
262         unsigned long tmp;
263
264         tmp = __srmmu_get_nocache(size, align);
265
266         if (tmp)
267                 memset((void *)tmp, 0, size);
268
269         return tmp;
270 }
271
272 static void srmmu_free_nocache(unsigned long vaddr, int size)
273 {
274         int offset;
275
276         if (vaddr < SRMMU_NOCACHE_VADDR) {
277                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
278                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
279                 BUG();
280         }
281         if (vaddr+size > srmmu_nocache_end) {
282                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
283                     vaddr, srmmu_nocache_end);
284                 BUG();
285         }
286         if (!is_power_of_2(size)) {
287                 printk("Size 0x%x is not a power of 2\n", size);
288                 BUG();
289         }
290         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
291                 printk("Size 0x%x is too small\n", size);
292                 BUG();
293         }
294         if (vaddr & (size-1)) {
295                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
296                 BUG();
297         }
298
299         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
300         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
301
302         bit_map_clear(&srmmu_nocache_map, offset, size);
303 }
304
305 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
306                                                  unsigned long end);
307
308 extern unsigned long probe_memory(void);        /* in fault.c */
309
310 /*
311  * Reserve nocache dynamically proportionally to the amount of
312  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
313  */
314 static void srmmu_nocache_calcsize(void)
315 {
316         unsigned long sysmemavail = probe_memory() / 1024;
317         int srmmu_nocache_npages;
318
319         srmmu_nocache_npages =
320                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
321
322  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
323         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
324         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
325                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
326
327         /* anything above 1280 blows up */
328         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
329                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
330
331         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
332         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
333 }
334
335 static void __init srmmu_nocache_init(void)
336 {
337         unsigned int bitmap_bits;
338         pgd_t *pgd;
339         pmd_t *pmd;
340         pte_t *pte;
341         unsigned long paddr, vaddr;
342         unsigned long pteval;
343
344         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
345
346         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
347                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
348         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
349
350         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
351         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
352
353         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
354         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
355         init_mm.pgd = srmmu_swapper_pg_dir;
356
357         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
358
359         paddr = __pa((unsigned long)srmmu_nocache_pool);
360         vaddr = SRMMU_NOCACHE_VADDR;
361
362         while (vaddr < srmmu_nocache_end) {
363                 pgd = pgd_offset_k(vaddr);
364                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
365                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
366
367                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
368
369                 if (srmmu_cache_pagetables)
370                         pteval |= SRMMU_CACHE;
371
372                 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
373
374                 vaddr += PAGE_SIZE;
375                 paddr += PAGE_SIZE;
376         }
377
378         flush_cache_all();
379         flush_tlb_all();
380 }
381
382 static inline pgd_t *srmmu_get_pgd_fast(void)
383 {
384         pgd_t *pgd = NULL;
385
386         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
387         if (pgd) {
388                 pgd_t *init = pgd_offset_k(0);
389                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
390                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
391                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
392         }
393
394         return pgd;
395 }
396
397 static void srmmu_free_pgd_fast(pgd_t *pgd)
398 {
399         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
400 }
401
402 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
403 {
404         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
405 }
406
407 static void srmmu_pmd_free(pmd_t * pmd)
408 {
409         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
410 }
411
412 /*
413  * Hardware needs alignment to 256 only, but we align to whole page size
414  * to reduce fragmentation problems due to the buddy principle.
415  * XXX Provide actual fragmentation statistics in /proc.
416  *
417  * Alignments up to the page size are the same for physical and virtual
418  * addresses of the nocache area.
419  */
420 static pte_t *
421 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
422 {
423         return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
424 }
425
426 static pgtable_t
427 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
428 {
429         unsigned long pte;
430         struct page *page;
431
432         if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
433                 return NULL;
434         page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
435         pgtable_page_ctor(page);
436         return page;
437 }
438
439 static void srmmu_free_pte_fast(pte_t *pte)
440 {
441         srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
442 }
443
444 static void srmmu_pte_free(pgtable_t pte)
445 {
446         unsigned long p;
447
448         pgtable_page_dtor(pte);
449         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
450         if (p == 0)
451                 BUG();
452         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
453         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
454         srmmu_free_nocache(p, PTE_SIZE);
455 }
456
457 /*
458  */
459 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
460 {
461         struct ctx_list *ctxp;
462
463         ctxp = ctx_free.next;
464         if(ctxp != &ctx_free) {
465                 remove_from_ctx_list(ctxp);
466                 add_to_used_ctxlist(ctxp);
467                 mm->context = ctxp->ctx_number;
468                 ctxp->ctx_mm = mm;
469                 return;
470         }
471         ctxp = ctx_used.next;
472         if(ctxp->ctx_mm == old_mm)
473                 ctxp = ctxp->next;
474         if(ctxp == &ctx_used)
475                 panic("out of mmu contexts");
476         flush_cache_mm(ctxp->ctx_mm);
477         flush_tlb_mm(ctxp->ctx_mm);
478         remove_from_ctx_list(ctxp);
479         add_to_used_ctxlist(ctxp);
480         ctxp->ctx_mm->context = NO_CONTEXT;
481         ctxp->ctx_mm = mm;
482         mm->context = ctxp->ctx_number;
483 }
484
485 static inline void free_context(int context)
486 {
487         struct ctx_list *ctx_old;
488
489         ctx_old = ctx_list_pool + context;
490         remove_from_ctx_list(ctx_old);
491         add_to_free_ctxlist(ctx_old);
492 }
493
494
495 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
496                struct task_struct *tsk)
497 {
498         if(mm->context == NO_CONTEXT) {
499                 spin_lock(&srmmu_context_spinlock);
500                 alloc_context(old_mm, mm);
501                 spin_unlock(&srmmu_context_spinlock);
502                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
503         }
504
505         if (sparc_cpu_model == sparc_leon)
506                 leon_switch_mm();
507
508         if (is_hypersparc)
509                 hyper_flush_whole_icache();
510
511         srmmu_set_context(mm->context);
512 }
513
514 /* Low level IO area allocation on the SRMMU. */
515 static inline void srmmu_mapioaddr(unsigned long physaddr,
516     unsigned long virt_addr, int bus_type)
517 {
518         pgd_t *pgdp;
519         pmd_t *pmdp;
520         pte_t *ptep;
521         unsigned long tmp;
522
523         physaddr &= PAGE_MASK;
524         pgdp = pgd_offset_k(virt_addr);
525         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
526         ptep = srmmu_pte_offset(pmdp, virt_addr);
527         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
528
529         /*
530          * I need to test whether this is consistent over all
531          * sun4m's.  The bus_type represents the upper 4 bits of
532          * 36-bit physical address on the I/O space lines...
533          */
534         tmp |= (bus_type << 28);
535         tmp |= SRMMU_PRIV;
536         __flush_page_to_ram(virt_addr);
537         srmmu_set_pte(ptep, __pte(tmp));
538 }
539
540 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
541     unsigned long xva, unsigned int len)
542 {
543         while (len != 0) {
544                 len -= PAGE_SIZE;
545                 srmmu_mapioaddr(xpa, xva, bus);
546                 xva += PAGE_SIZE;
547                 xpa += PAGE_SIZE;
548         }
549         flush_tlb_all();
550 }
551
552 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
553 {
554         pgd_t *pgdp;
555         pmd_t *pmdp;
556         pte_t *ptep;
557
558         pgdp = pgd_offset_k(virt_addr);
559         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
560         ptep = srmmu_pte_offset(pmdp, virt_addr);
561
562         /* No need to flush uncacheable page. */
563         __pte_clear(ptep);
564 }
565
566 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
567 {
568         while (len != 0) {
569                 len -= PAGE_SIZE;
570                 srmmu_unmapioaddr(virt_addr);
571                 virt_addr += PAGE_SIZE;
572         }
573         flush_tlb_all();
574 }
575
576 /*
577  * On the SRMMU we do not have the problems with limited tlb entries
578  * for mapping kernel pages, so we just take things from the free page
579  * pool.  As a side effect we are putting a little too much pressure
580  * on the gfp() subsystem.  This setup also makes the logic of the
581  * iommu mapping code a lot easier as we can transparently handle
582  * mappings on the kernel stack without any special code.
583  */
584 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
585 {
586         struct thread_info *ret;
587
588         ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
589                                                      THREAD_INFO_ORDER);
590 #ifdef CONFIG_DEBUG_STACK_USAGE
591         if (ret)
592                 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
593 #endif /* DEBUG_STACK_USAGE */
594
595         return ret;
596 }
597
598 void free_thread_info(struct thread_info *ti)
599 {
600         free_pages((unsigned long)ti, THREAD_INFO_ORDER);
601 }
602
603 /* tsunami.S */
604 extern void tsunami_flush_cache_all(void);
605 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
606 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
607 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
608 extern void tsunami_flush_page_to_ram(unsigned long page);
609 extern void tsunami_flush_page_for_dma(unsigned long page);
610 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
611 extern void tsunami_flush_tlb_all(void);
612 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
613 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
614 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
615 extern void tsunami_setup_blockops(void);
616
617 /*
618  * Workaround, until we find what's going on with Swift. When low on memory,
619  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
620  * out it is already in page tables/ fault again on the same instruction.
621  * I really don't understand it, have checked it and contexts
622  * are right, flush_tlb_all is done as well, and it faults again...
623  * Strange. -jj
624  *
625  * The following code is a deadwood that may be necessary when
626  * we start to make precise page flushes again. --zaitcev
627  */
628 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
629 {
630 #if 0
631         static unsigned long last;
632         unsigned int val;
633         /* unsigned int n; */
634
635         if (address == last) {
636                 val = srmmu_hwprobe(address);
637                 if (val != 0 && pte_val(*ptep) != val) {
638                         printk("swift_update_mmu_cache: "
639                             "addr %lx put %08x probed %08x from %pf\n",
640                             address, pte_val(*ptep), val,
641                             __builtin_return_address(0));
642                         srmmu_flush_whole_tlb();
643                 }
644         }
645         last = address;
646 #endif
647 }
648
649 /* swift.S */
650 extern void swift_flush_cache_all(void);
651 extern void swift_flush_cache_mm(struct mm_struct *mm);
652 extern void swift_flush_cache_range(struct vm_area_struct *vma,
653                                     unsigned long start, unsigned long end);
654 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
655 extern void swift_flush_page_to_ram(unsigned long page);
656 extern void swift_flush_page_for_dma(unsigned long page);
657 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
658 extern void swift_flush_tlb_all(void);
659 extern void swift_flush_tlb_mm(struct mm_struct *mm);
660 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
661                                   unsigned long start, unsigned long end);
662 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
663
664 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
665 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
666 {
667         int cctx, ctx1;
668
669         page &= PAGE_MASK;
670         if ((ctx1 = vma->vm_mm->context) != -1) {
671                 cctx = srmmu_get_context();
672 /* Is context # ever different from current context? P3 */
673                 if (cctx != ctx1) {
674                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
675                         srmmu_set_context(ctx1);
676                         swift_flush_page(page);
677                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
678                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
679                         srmmu_set_context(cctx);
680                 } else {
681                          /* Rm. prot. bits from virt. c. */
682                         /* swift_flush_cache_all(); */
683                         /* swift_flush_cache_page(vma, page); */
684                         swift_flush_page(page);
685
686                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
687                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
688                         /* same as above: srmmu_flush_tlb_page() */
689                 }
690         }
691 }
692 #endif
693
694 /*
695  * The following are all MBUS based SRMMU modules, and therefore could
696  * be found in a multiprocessor configuration.  On the whole, these
697  * chips seems to be much more touchy about DVMA and page tables
698  * with respect to cache coherency.
699  */
700
701 /* Cypress flushes. */
702 static void cypress_flush_cache_all(void)
703 {
704         volatile unsigned long cypress_sucks;
705         unsigned long faddr, tagval;
706
707         flush_user_windows();
708         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
709                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
710                                      "=r" (tagval) :
711                                      "r" (faddr), "r" (0x40000),
712                                      "i" (ASI_M_DATAC_TAG));
713
714                 /* If modified and valid, kick it. */
715                 if((tagval & 0x60) == 0x60)
716                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
717         }
718 }
719
720 static void cypress_flush_cache_mm(struct mm_struct *mm)
721 {
722         register unsigned long a, b, c, d, e, f, g;
723         unsigned long flags, faddr;
724         int octx;
725
726         FLUSH_BEGIN(mm)
727         flush_user_windows();
728         local_irq_save(flags);
729         octx = srmmu_get_context();
730         srmmu_set_context(mm->context);
731         a = 0x20; b = 0x40; c = 0x60;
732         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
733
734         faddr = (0x10000 - 0x100);
735         goto inside;
736         do {
737                 faddr -= 0x100;
738         inside:
739                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
740                                      "sta %%g0, [%0 + %2] %1\n\t"
741                                      "sta %%g0, [%0 + %3] %1\n\t"
742                                      "sta %%g0, [%0 + %4] %1\n\t"
743                                      "sta %%g0, [%0 + %5] %1\n\t"
744                                      "sta %%g0, [%0 + %6] %1\n\t"
745                                      "sta %%g0, [%0 + %7] %1\n\t"
746                                      "sta %%g0, [%0 + %8] %1\n\t" : :
747                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
748                                      "r" (a), "r" (b), "r" (c), "r" (d),
749                                      "r" (e), "r" (f), "r" (g));
750         } while(faddr);
751         srmmu_set_context(octx);
752         local_irq_restore(flags);
753         FLUSH_END
754 }
755
756 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
757 {
758         struct mm_struct *mm = vma->vm_mm;
759         register unsigned long a, b, c, d, e, f, g;
760         unsigned long flags, faddr;
761         int octx;
762
763         FLUSH_BEGIN(mm)
764         flush_user_windows();
765         local_irq_save(flags);
766         octx = srmmu_get_context();
767         srmmu_set_context(mm->context);
768         a = 0x20; b = 0x40; c = 0x60;
769         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
770
771         start &= SRMMU_REAL_PMD_MASK;
772         while(start < end) {
773                 faddr = (start + (0x10000 - 0x100));
774                 goto inside;
775                 do {
776                         faddr -= 0x100;
777                 inside:
778                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
779                                              "sta %%g0, [%0 + %2] %1\n\t"
780                                              "sta %%g0, [%0 + %3] %1\n\t"
781                                              "sta %%g0, [%0 + %4] %1\n\t"
782                                              "sta %%g0, [%0 + %5] %1\n\t"
783                                              "sta %%g0, [%0 + %6] %1\n\t"
784                                              "sta %%g0, [%0 + %7] %1\n\t"
785                                              "sta %%g0, [%0 + %8] %1\n\t" : :
786                                              "r" (faddr),
787                                              "i" (ASI_M_FLUSH_SEG),
788                                              "r" (a), "r" (b), "r" (c), "r" (d),
789                                              "r" (e), "r" (f), "r" (g));
790                 } while (faddr != start);
791                 start += SRMMU_REAL_PMD_SIZE;
792         }
793         srmmu_set_context(octx);
794         local_irq_restore(flags);
795         FLUSH_END
796 }
797
798 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
799 {
800         register unsigned long a, b, c, d, e, f, g;
801         struct mm_struct *mm = vma->vm_mm;
802         unsigned long flags, line;
803         int octx;
804
805         FLUSH_BEGIN(mm)
806         flush_user_windows();
807         local_irq_save(flags);
808         octx = srmmu_get_context();
809         srmmu_set_context(mm->context);
810         a = 0x20; b = 0x40; c = 0x60;
811         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
812
813         page &= PAGE_MASK;
814         line = (page + PAGE_SIZE) - 0x100;
815         goto inside;
816         do {
817                 line -= 0x100;
818         inside:
819                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
820                                              "sta %%g0, [%0 + %2] %1\n\t"
821                                              "sta %%g0, [%0 + %3] %1\n\t"
822                                              "sta %%g0, [%0 + %4] %1\n\t"
823                                              "sta %%g0, [%0 + %5] %1\n\t"
824                                              "sta %%g0, [%0 + %6] %1\n\t"
825                                              "sta %%g0, [%0 + %7] %1\n\t"
826                                              "sta %%g0, [%0 + %8] %1\n\t" : :
827                                              "r" (line),
828                                              "i" (ASI_M_FLUSH_PAGE),
829                                              "r" (a), "r" (b), "r" (c), "r" (d),
830                                              "r" (e), "r" (f), "r" (g));
831         } while(line != page);
832         srmmu_set_context(octx);
833         local_irq_restore(flags);
834         FLUSH_END
835 }
836
837 /* Cypress is copy-back, at least that is how we configure it. */
838 static void cypress_flush_page_to_ram(unsigned long page)
839 {
840         register unsigned long a, b, c, d, e, f, g;
841         unsigned long line;
842
843         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
844         page &= PAGE_MASK;
845         line = (page + PAGE_SIZE) - 0x100;
846         goto inside;
847         do {
848                 line -= 0x100;
849         inside:
850                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
851                                      "sta %%g0, [%0 + %2] %1\n\t"
852                                      "sta %%g0, [%0 + %3] %1\n\t"
853                                      "sta %%g0, [%0 + %4] %1\n\t"
854                                      "sta %%g0, [%0 + %5] %1\n\t"
855                                      "sta %%g0, [%0 + %6] %1\n\t"
856                                      "sta %%g0, [%0 + %7] %1\n\t"
857                                      "sta %%g0, [%0 + %8] %1\n\t" : :
858                                      "r" (line),
859                                      "i" (ASI_M_FLUSH_PAGE),
860                                      "r" (a), "r" (b), "r" (c), "r" (d),
861                                      "r" (e), "r" (f), "r" (g));
862         } while(line != page);
863 }
864
865 /* Cypress is also IO cache coherent. */
866 static void cypress_flush_page_for_dma(unsigned long page)
867 {
868 }
869
870 /* Cypress has unified L2 VIPT, from which both instructions and data
871  * are stored.  It does not have an onboard icache of any sort, therefore
872  * no flush is necessary.
873  */
874 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
875 {
876 }
877
878 static void cypress_flush_tlb_all(void)
879 {
880         srmmu_flush_whole_tlb();
881 }
882
883 static void cypress_flush_tlb_mm(struct mm_struct *mm)
884 {
885         FLUSH_BEGIN(mm)
886         __asm__ __volatile__(
887         "lda    [%0] %3, %%g5\n\t"
888         "sta    %2, [%0] %3\n\t"
889         "sta    %%g0, [%1] %4\n\t"
890         "sta    %%g5, [%0] %3\n"
891         : /* no outputs */
892         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
893           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
894         : "g5");
895         FLUSH_END
896 }
897
898 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
899 {
900         struct mm_struct *mm = vma->vm_mm;
901         unsigned long size;
902
903         FLUSH_BEGIN(mm)
904         start &= SRMMU_PGDIR_MASK;
905         size = SRMMU_PGDIR_ALIGN(end) - start;
906         __asm__ __volatile__(
907                 "lda    [%0] %5, %%g5\n\t"
908                 "sta    %1, [%0] %5\n"
909                 "1:\n\t"
910                 "subcc  %3, %4, %3\n\t"
911                 "bne    1b\n\t"
912                 " sta   %%g0, [%2 + %3] %6\n\t"
913                 "sta    %%g5, [%0] %5\n"
914         : /* no outputs */
915         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
916           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
917           "i" (ASI_M_FLUSH_PROBE)
918         : "g5", "cc");
919         FLUSH_END
920 }
921
922 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
923 {
924         struct mm_struct *mm = vma->vm_mm;
925
926         FLUSH_BEGIN(mm)
927         __asm__ __volatile__(
928         "lda    [%0] %3, %%g5\n\t"
929         "sta    %1, [%0] %3\n\t"
930         "sta    %%g0, [%2] %4\n\t"
931         "sta    %%g5, [%0] %3\n"
932         : /* no outputs */
933         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
934           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
935         : "g5");
936         FLUSH_END
937 }
938
939 /* viking.S */
940 extern void viking_flush_cache_all(void);
941 extern void viking_flush_cache_mm(struct mm_struct *mm);
942 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
943                                      unsigned long end);
944 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
945 extern void viking_flush_page_to_ram(unsigned long page);
946 extern void viking_flush_page_for_dma(unsigned long page);
947 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
948 extern void viking_flush_page(unsigned long page);
949 extern void viking_mxcc_flush_page(unsigned long page);
950 extern void viking_flush_tlb_all(void);
951 extern void viking_flush_tlb_mm(struct mm_struct *mm);
952 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
953                                    unsigned long end);
954 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
955                                   unsigned long page);
956 extern void sun4dsmp_flush_tlb_all(void);
957 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
958 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
959                                    unsigned long end);
960 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
961                                   unsigned long page);
962
963 /* hypersparc.S */
964 extern void hypersparc_flush_cache_all(void);
965 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
966 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
967 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
968 extern void hypersparc_flush_page_to_ram(unsigned long page);
969 extern void hypersparc_flush_page_for_dma(unsigned long page);
970 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
971 extern void hypersparc_flush_tlb_all(void);
972 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
973 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
974 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
975 extern void hypersparc_setup_blockops(void);
976
977 /*
978  * NOTE: All of this startup code assumes the low 16mb (approx.) of
979  *       kernel mappings are done with one single contiguous chunk of
980  *       ram.  On small ram machines (classics mainly) we only get
981  *       around 8mb mapped for us.
982  */
983
984 static void __init early_pgtable_allocfail(char *type)
985 {
986         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
987         prom_halt();
988 }
989
990 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
991                                                         unsigned long end)
992 {
993         pgd_t *pgdp;
994         pmd_t *pmdp;
995         pte_t *ptep;
996
997         while(start < end) {
998                 pgdp = pgd_offset_k(start);
999                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1000                         pmdp = (pmd_t *) __srmmu_get_nocache(
1001                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1002                         if (pmdp == NULL)
1003                                 early_pgtable_allocfail("pmd");
1004                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1005                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1006                 }
1007                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1008                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1009                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1010                         if (ptep == NULL)
1011                                 early_pgtable_allocfail("pte");
1012                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1013                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1014                 }
1015                 if (start > (0xffffffffUL - PMD_SIZE))
1016                         break;
1017                 start = (start + PMD_SIZE) & PMD_MASK;
1018         }
1019 }
1020
1021 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1022                                                   unsigned long end)
1023 {
1024         pgd_t *pgdp;
1025         pmd_t *pmdp;
1026         pte_t *ptep;
1027
1028         while(start < end) {
1029                 pgdp = pgd_offset_k(start);
1030                 if (pgd_none(*pgdp)) {
1031                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1032                         if (pmdp == NULL)
1033                                 early_pgtable_allocfail("pmd");
1034                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1035                         srmmu_pgd_set(pgdp, pmdp);
1036                 }
1037                 pmdp = srmmu_pmd_offset(pgdp, start);
1038                 if(srmmu_pmd_none(*pmdp)) {
1039                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1040                                                              PTE_SIZE);
1041                         if (ptep == NULL)
1042                                 early_pgtable_allocfail("pte");
1043                         memset(ptep, 0, PTE_SIZE);
1044                         srmmu_pmd_set(pmdp, ptep);
1045                 }
1046                 if (start > (0xffffffffUL - PMD_SIZE))
1047                         break;
1048                 start = (start + PMD_SIZE) & PMD_MASK;
1049         }
1050 }
1051
1052 /*
1053  * This is much cleaner than poking around physical address space
1054  * looking at the prom's page table directly which is what most
1055  * other OS's do.  Yuck... this is much better.
1056  */
1057 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1058                                                unsigned long end)
1059 {
1060         pgd_t *pgdp;
1061         pmd_t *pmdp;
1062         pte_t *ptep;
1063         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1064         unsigned long prompte;
1065
1066         while(start <= end) {
1067                 if (start == 0)
1068                         break; /* probably wrap around */
1069                 if(start == 0xfef00000)
1070                         start = KADB_DEBUGGER_BEGVM;
1071                 if(!(prompte = srmmu_hwprobe(start))) {
1072                         start += PAGE_SIZE;
1073                         continue;
1074                 }
1075     
1076                 /* A red snapper, see what it really is. */
1077                 what = 0;
1078     
1079                 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1080                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1081                                 what = 1;
1082                 }
1083     
1084                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1085                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1086                            prompte)
1087                                 what = 2;
1088                 }
1089     
1090                 pgdp = pgd_offset_k(start);
1091                 if(what == 2) {
1092                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1093                         start += SRMMU_PGDIR_SIZE;
1094                         continue;
1095                 }
1096                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1097                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1098                         if (pmdp == NULL)
1099                                 early_pgtable_allocfail("pmd");
1100                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1101                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1102                 }
1103                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1104                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1105                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1106                                                              PTE_SIZE);
1107                         if (ptep == NULL)
1108                                 early_pgtable_allocfail("pte");
1109                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1110                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1111                 }
1112                 if(what == 1) {
1113                         /*
1114                          * We bend the rule where all 16 PTPs in a pmd_t point
1115                          * inside the same PTE page, and we leak a perfectly
1116                          * good hardware PTE piece. Alternatives seem worse.
1117                          */
1118                         unsigned int x; /* Index of HW PMD in soft cluster */
1119                         x = (start >> PMD_SHIFT) & 15;
1120                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1121                         start += SRMMU_REAL_PMD_SIZE;
1122                         continue;
1123                 }
1124                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1125                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1126                 start += PAGE_SIZE;
1127         }
1128 }
1129
1130 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1131
1132 /* Create a third-level SRMMU 16MB page mapping. */
1133 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1134 {
1135         pgd_t *pgdp = pgd_offset_k(vaddr);
1136         unsigned long big_pte;
1137
1138         big_pte = KERNEL_PTE(phys_base >> 4);
1139         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1140 }
1141
1142 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1143 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1144 {
1145         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1146         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1147         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1148         /* Map "low" memory only */
1149         const unsigned long min_vaddr = PAGE_OFFSET;
1150         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1151
1152         if (vstart < min_vaddr || vstart >= max_vaddr)
1153                 return vstart;
1154         
1155         if (vend > max_vaddr || vend < min_vaddr)
1156                 vend = max_vaddr;
1157
1158         while(vstart < vend) {
1159                 do_large_mapping(vstart, pstart);
1160                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1161         }
1162         return vstart;
1163 }
1164
1165 static inline void memprobe_error(char *msg)
1166 {
1167         prom_printf(msg);
1168         prom_printf("Halting now...\n");
1169         prom_halt();
1170 }
1171
1172 static inline void map_kernel(void)
1173 {
1174         int i;
1175
1176         if (phys_base > 0) {
1177                 do_large_mapping(PAGE_OFFSET, phys_base);
1178         }
1179
1180         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1181                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1182         }
1183 }
1184
1185 /* Paging initialization on the Sparc Reference MMU. */
1186 extern void sparc_context_init(int);
1187
1188 void (*poke_srmmu)(void) __cpuinitdata = NULL;
1189
1190 extern unsigned long bootmem_init(unsigned long *pages_avail);
1191
1192 void __init srmmu_paging_init(void)
1193 {
1194         int i;
1195         phandle cpunode;
1196         char node_str[128];
1197         pgd_t *pgd;
1198         pmd_t *pmd;
1199         pte_t *pte;
1200         unsigned long pages_avail;
1201
1202         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1203
1204         if (sparc_cpu_model == sun4d)
1205                 num_contexts = 65536; /* We know it is Viking */
1206         else {
1207                 /* Find the number of contexts on the srmmu. */
1208                 cpunode = prom_getchild(prom_root_node);
1209                 num_contexts = 0;
1210                 while(cpunode != 0) {
1211                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1212                         if(!strcmp(node_str, "cpu")) {
1213                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1214                                 break;
1215                         }
1216                         cpunode = prom_getsibling(cpunode);
1217                 }
1218         }
1219
1220         if(!num_contexts) {
1221                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1222                 prom_halt();
1223         }
1224
1225         pages_avail = 0;
1226         last_valid_pfn = bootmem_init(&pages_avail);
1227
1228         srmmu_nocache_calcsize();
1229         srmmu_nocache_init();
1230         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1231         map_kernel();
1232
1233         /* ctx table has to be physically aligned to its size */
1234         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1235         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1236
1237         for(i = 0; i < num_contexts; i++)
1238                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1239
1240         flush_cache_all();
1241         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1242 #ifdef CONFIG_SMP
1243         /* Stop from hanging here... */
1244         local_flush_tlb_all();
1245 #else
1246         flush_tlb_all();
1247 #endif
1248         poke_srmmu();
1249
1250         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1251         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1252
1253         srmmu_allocate_ptable_skeleton(
1254                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1255         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1256
1257         pgd = pgd_offset_k(PKMAP_BASE);
1258         pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1259         pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1260         pkmap_page_table = pte;
1261
1262         flush_cache_all();
1263         flush_tlb_all();
1264
1265         sparc_context_init(num_contexts);
1266
1267         kmap_init();
1268
1269         {
1270                 unsigned long zones_size[MAX_NR_ZONES];
1271                 unsigned long zholes_size[MAX_NR_ZONES];
1272                 unsigned long npages;
1273                 int znum;
1274
1275                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1276                         zones_size[znum] = zholes_size[znum] = 0;
1277
1278                 npages = max_low_pfn - pfn_base;
1279
1280                 zones_size[ZONE_DMA] = npages;
1281                 zholes_size[ZONE_DMA] = npages - pages_avail;
1282
1283                 npages = highend_pfn - max_low_pfn;
1284                 zones_size[ZONE_HIGHMEM] = npages;
1285                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1286
1287                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1288         }
1289 }
1290
1291 static void srmmu_mmu_info(struct seq_file *m)
1292 {
1293         seq_printf(m, 
1294                    "MMU type\t: %s\n"
1295                    "contexts\t: %d\n"
1296                    "nocache total\t: %ld\n"
1297                    "nocache used\t: %d\n",
1298                    srmmu_name,
1299                    num_contexts,
1300                    srmmu_nocache_size,
1301                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1302 }
1303
1304 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1305 {
1306 }
1307
1308 static void srmmu_destroy_context(struct mm_struct *mm)
1309 {
1310
1311         if(mm->context != NO_CONTEXT) {
1312                 flush_cache_mm(mm);
1313                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1314                 flush_tlb_mm(mm);
1315                 spin_lock(&srmmu_context_spinlock);
1316                 free_context(mm->context);
1317                 spin_unlock(&srmmu_context_spinlock);
1318                 mm->context = NO_CONTEXT;
1319         }
1320 }
1321
1322 /* Init various srmmu chip types. */
1323 static void __init srmmu_is_bad(void)
1324 {
1325         prom_printf("Could not determine SRMMU chip type.\n");
1326         prom_halt();
1327 }
1328
1329 static void __init init_vac_layout(void)
1330 {
1331         phandle nd;
1332         int cache_lines;
1333         char node_str[128];
1334 #ifdef CONFIG_SMP
1335         int cpu = 0;
1336         unsigned long max_size = 0;
1337         unsigned long min_line_size = 0x10000000;
1338 #endif
1339
1340         nd = prom_getchild(prom_root_node);
1341         while((nd = prom_getsibling(nd)) != 0) {
1342                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1343                 if(!strcmp(node_str, "cpu")) {
1344                         vac_line_size = prom_getint(nd, "cache-line-size");
1345                         if (vac_line_size == -1) {
1346                                 prom_printf("can't determine cache-line-size, "
1347                                             "halting.\n");
1348                                 prom_halt();
1349                         }
1350                         cache_lines = prom_getint(nd, "cache-nlines");
1351                         if (cache_lines == -1) {
1352                                 prom_printf("can't determine cache-nlines, halting.\n");
1353                                 prom_halt();
1354                         }
1355
1356                         vac_cache_size = cache_lines * vac_line_size;
1357 #ifdef CONFIG_SMP
1358                         if(vac_cache_size > max_size)
1359                                 max_size = vac_cache_size;
1360                         if(vac_line_size < min_line_size)
1361                                 min_line_size = vac_line_size;
1362                         //FIXME: cpus not contiguous!!
1363                         cpu++;
1364                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1365                                 break;
1366 #else
1367                         break;
1368 #endif
1369                 }
1370         }
1371         if(nd == 0) {
1372                 prom_printf("No CPU nodes found, halting.\n");
1373                 prom_halt();
1374         }
1375 #ifdef CONFIG_SMP
1376         vac_cache_size = max_size;
1377         vac_line_size = min_line_size;
1378 #endif
1379         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1380                (int)vac_cache_size, (int)vac_line_size);
1381 }
1382
1383 static void __cpuinit poke_hypersparc(void)
1384 {
1385         volatile unsigned long clear;
1386         unsigned long mreg = srmmu_get_mmureg();
1387
1388         hyper_flush_unconditional_combined();
1389
1390         mreg &= ~(HYPERSPARC_CWENABLE);
1391         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1392         mreg |= (HYPERSPARC_CMODE);
1393
1394         srmmu_set_mmureg(mreg);
1395
1396 #if 0 /* XXX I think this is bad news... -DaveM */
1397         hyper_clear_all_tags();
1398 #endif
1399
1400         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1401         hyper_flush_whole_icache();
1402         clear = srmmu_get_faddr();
1403         clear = srmmu_get_fstatus();
1404 }
1405
1406 static void __init init_hypersparc(void)
1407 {
1408         srmmu_name = "ROSS HyperSparc";
1409         srmmu_modtype = HyperSparc;
1410
1411         init_vac_layout();
1412
1413         is_hypersparc = 1;
1414
1415         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1416         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1417         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1418         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1419
1420         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1421         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1422         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1423         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1424
1425         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1426         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1427         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1428
1429
1430         poke_srmmu = poke_hypersparc;
1431
1432         hypersparc_setup_blockops();
1433 }
1434
1435 static void __cpuinit poke_cypress(void)
1436 {
1437         unsigned long mreg = srmmu_get_mmureg();
1438         unsigned long faddr, tagval;
1439         volatile unsigned long cypress_sucks;
1440         volatile unsigned long clear;
1441
1442         clear = srmmu_get_faddr();
1443         clear = srmmu_get_fstatus();
1444
1445         if (!(mreg & CYPRESS_CENABLE)) {
1446                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1447                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1448                                              "sta %%g0, [%0] %2\n\t" : :
1449                                              "r" (faddr), "r" (0x40000),
1450                                              "i" (ASI_M_DATAC_TAG));
1451                 }
1452         } else {
1453                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1454                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1455                                              "=r" (tagval) :
1456                                              "r" (faddr), "r" (0x40000),
1457                                              "i" (ASI_M_DATAC_TAG));
1458
1459                         /* If modified and valid, kick it. */
1460                         if((tagval & 0x60) == 0x60)
1461                                 cypress_sucks = *(unsigned long *)
1462                                                         (0xf0020000 + faddr);
1463                 }
1464         }
1465
1466         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1467         clear = srmmu_get_faddr();
1468         clear = srmmu_get_fstatus();
1469
1470         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1471         srmmu_set_mmureg(mreg);
1472 }
1473
1474 static void __init init_cypress_common(void)
1475 {
1476         init_vac_layout();
1477
1478         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1479         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1480         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1481         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1482
1483         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1484         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1485         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1486         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1487
1488
1489         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1490         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1491         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1492
1493         poke_srmmu = poke_cypress;
1494 }
1495
1496 static void __init init_cypress_604(void)
1497 {
1498         srmmu_name = "ROSS Cypress-604(UP)";
1499         srmmu_modtype = Cypress;
1500         init_cypress_common();
1501 }
1502
1503 static void __init init_cypress_605(unsigned long mrev)
1504 {
1505         srmmu_name = "ROSS Cypress-605(MP)";
1506         if(mrev == 0xe) {
1507                 srmmu_modtype = Cypress_vE;
1508                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1509         } else {
1510                 if(mrev == 0xd) {
1511                         srmmu_modtype = Cypress_vD;
1512                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1513                 } else {
1514                         srmmu_modtype = Cypress;
1515                 }
1516         }
1517         init_cypress_common();
1518 }
1519
1520 static void __cpuinit poke_swift(void)
1521 {
1522         unsigned long mreg;
1523
1524         /* Clear any crap from the cache or else... */
1525         swift_flush_cache_all();
1526
1527         /* Enable I & D caches */
1528         mreg = srmmu_get_mmureg();
1529         mreg |= (SWIFT_IE | SWIFT_DE);
1530         /*
1531          * The Swift branch folding logic is completely broken.  At
1532          * trap time, if things are just right, if can mistakenly
1533          * think that a trap is coming from kernel mode when in fact
1534          * it is coming from user mode (it mis-executes the branch in
1535          * the trap code).  So you see things like crashme completely
1536          * hosing your machine which is completely unacceptable.  Turn
1537          * this shit off... nice job Fujitsu.
1538          */
1539         mreg &= ~(SWIFT_BF);
1540         srmmu_set_mmureg(mreg);
1541 }
1542
1543 #define SWIFT_MASKID_ADDR  0x10003018
1544 static void __init init_swift(void)
1545 {
1546         unsigned long swift_rev;
1547
1548         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1549                              "srl %0, 0x18, %0\n\t" :
1550                              "=r" (swift_rev) :
1551                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1552         srmmu_name = "Fujitsu Swift";
1553         switch(swift_rev) {
1554         case 0x11:
1555         case 0x20:
1556         case 0x23:
1557         case 0x30:
1558                 srmmu_modtype = Swift_lots_o_bugs;
1559                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1560                 /*
1561                  * Gee george, I wonder why Sun is so hush hush about
1562                  * this hardware bug... really braindamage stuff going
1563                  * on here.  However I think we can find a way to avoid
1564                  * all of the workaround overhead under Linux.  Basically,
1565                  * any page fault can cause kernel pages to become user
1566                  * accessible (the mmu gets confused and clears some of
1567                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1568                  * horrible eh?  But wait, after extensive testing it appears
1569                  * that if you use pgd_t level large kernel pte's (like the
1570                  * 4MB pages on the Pentium) the bug does not get tripped
1571                  * at all.  This avoids almost all of the major overhead.
1572                  * Welcome to a world where your vendor tells you to,
1573                  * "apply this kernel patch" instead of "sorry for the
1574                  * broken hardware, send it back and we'll give you
1575                  * properly functioning parts"
1576                  */
1577                 break;
1578         case 0x25:
1579         case 0x31:
1580                 srmmu_modtype = Swift_bad_c;
1581                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1582                 /*
1583                  * You see Sun allude to this hardware bug but never
1584                  * admit things directly, they'll say things like,
1585                  * "the Swift chip cache problems" or similar.
1586                  */
1587                 break;
1588         default:
1589                 srmmu_modtype = Swift_ok;
1590                 break;
1591         }
1592
1593         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1594         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1595         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1596         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1597
1598
1599         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1600         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1601         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1602         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1603
1604         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1605         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1606         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1607
1608         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1609
1610         flush_page_for_dma_global = 0;
1611
1612         /*
1613          * Are you now convinced that the Swift is one of the
1614          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1615          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1616          * you examined the microcode of the Swift you'd find
1617          * XXX's all over the place.
1618          */
1619         poke_srmmu = poke_swift;
1620 }
1621
1622 static void turbosparc_flush_cache_all(void)
1623 {
1624         flush_user_windows();
1625         turbosparc_idflash_clear();
1626 }
1627
1628 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1629 {
1630         FLUSH_BEGIN(mm)
1631         flush_user_windows();
1632         turbosparc_idflash_clear();
1633         FLUSH_END
1634 }
1635
1636 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1637 {
1638         FLUSH_BEGIN(vma->vm_mm)
1639         flush_user_windows();
1640         turbosparc_idflash_clear();
1641         FLUSH_END
1642 }
1643
1644 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1645 {
1646         FLUSH_BEGIN(vma->vm_mm)
1647         flush_user_windows();
1648         if (vma->vm_flags & VM_EXEC)
1649                 turbosparc_flush_icache();
1650         turbosparc_flush_dcache();
1651         FLUSH_END
1652 }
1653
1654 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1655 static void turbosparc_flush_page_to_ram(unsigned long page)
1656 {
1657 #ifdef TURBOSPARC_WRITEBACK
1658         volatile unsigned long clear;
1659
1660         if (srmmu_hwprobe(page))
1661                 turbosparc_flush_page_cache(page);
1662         clear = srmmu_get_fstatus();
1663 #endif
1664 }
1665
1666 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1667 {
1668 }
1669
1670 static void turbosparc_flush_page_for_dma(unsigned long page)
1671 {
1672         turbosparc_flush_dcache();
1673 }
1674
1675 static void turbosparc_flush_tlb_all(void)
1676 {
1677         srmmu_flush_whole_tlb();
1678 }
1679
1680 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1681 {
1682         FLUSH_BEGIN(mm)
1683         srmmu_flush_whole_tlb();
1684         FLUSH_END
1685 }
1686
1687 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1688 {
1689         FLUSH_BEGIN(vma->vm_mm)
1690         srmmu_flush_whole_tlb();
1691         FLUSH_END
1692 }
1693
1694 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1695 {
1696         FLUSH_BEGIN(vma->vm_mm)
1697         srmmu_flush_whole_tlb();
1698         FLUSH_END
1699 }
1700
1701
1702 static void __cpuinit poke_turbosparc(void)
1703 {
1704         unsigned long mreg = srmmu_get_mmureg();
1705         unsigned long ccreg;
1706
1707         /* Clear any crap from the cache or else... */
1708         turbosparc_flush_cache_all();
1709         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1710         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1711         srmmu_set_mmureg(mreg);
1712         
1713         ccreg = turbosparc_get_ccreg();
1714
1715 #ifdef TURBOSPARC_WRITEBACK
1716         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1717         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1718                         /* Write-back D-cache, emulate VLSI
1719                          * abortion number three, not number one */
1720 #else
1721         /* For now let's play safe, optimize later */
1722         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1723                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1724         ccreg &= ~(TURBOSPARC_uS2);
1725                         /* Emulate VLSI abortion number three, not number one */
1726 #endif
1727
1728         switch (ccreg & 7) {
1729         case 0: /* No SE cache */
1730         case 7: /* Test mode */
1731                 break;
1732         default:
1733                 ccreg |= (TURBOSPARC_SCENABLE);
1734         }
1735         turbosparc_set_ccreg (ccreg);
1736
1737         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1738         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1739         srmmu_set_mmureg(mreg);
1740 }
1741
1742 static void __init init_turbosparc(void)
1743 {
1744         srmmu_name = "Fujitsu TurboSparc";
1745         srmmu_modtype = TurboSparc;
1746
1747         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1748         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1749         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1750         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1751
1752         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1753         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1754         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1755         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1756
1757         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1758
1759         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1760         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1761
1762         poke_srmmu = poke_turbosparc;
1763 }
1764
1765 static void __cpuinit poke_tsunami(void)
1766 {
1767         unsigned long mreg = srmmu_get_mmureg();
1768
1769         tsunami_flush_icache();
1770         tsunami_flush_dcache();
1771         mreg &= ~TSUNAMI_ITD;
1772         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1773         srmmu_set_mmureg(mreg);
1774 }
1775
1776 static void __init init_tsunami(void)
1777 {
1778         /*
1779          * Tsunami's pretty sane, Sun and TI actually got it
1780          * somewhat right this time.  Fujitsu should have
1781          * taken some lessons from them.
1782          */
1783
1784         srmmu_name = "TI Tsunami";
1785         srmmu_modtype = Tsunami;
1786
1787         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1788         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1789         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1790         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1791
1792
1793         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1794         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1795         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1796         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1797
1798         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1799         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1800         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1801
1802         poke_srmmu = poke_tsunami;
1803
1804         tsunami_setup_blockops();
1805 }
1806
1807 static void __cpuinit poke_viking(void)
1808 {
1809         unsigned long mreg = srmmu_get_mmureg();
1810         static int smp_catch;
1811
1812         if(viking_mxcc_present) {
1813                 unsigned long mxcc_control = mxcc_get_creg();
1814
1815                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1816                 mxcc_control &= ~(MXCC_CTL_RRC);
1817                 mxcc_set_creg(mxcc_control);
1818
1819                 /*
1820                  * We don't need memory parity checks.
1821                  * XXX This is a mess, have to dig out later. ecd.
1822                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1823                  */
1824
1825                 /* We do cache ptables on MXCC. */
1826                 mreg |= VIKING_TCENABLE;
1827         } else {
1828                 unsigned long bpreg;
1829
1830                 mreg &= ~(VIKING_TCENABLE);
1831                 if(smp_catch++) {
1832                         /* Must disable mixed-cmd mode here for other cpu's. */
1833                         bpreg = viking_get_bpreg();
1834                         bpreg &= ~(VIKING_ACTION_MIX);
1835                         viking_set_bpreg(bpreg);
1836
1837                         /* Just in case PROM does something funny. */
1838                         msi_set_sync();
1839                 }
1840         }
1841
1842         mreg |= VIKING_SPENABLE;
1843         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1844         mreg |= VIKING_SBENABLE;
1845         mreg &= ~(VIKING_ACENABLE);
1846         srmmu_set_mmureg(mreg);
1847 }
1848
1849 static void __init init_viking(void)
1850 {
1851         unsigned long mreg = srmmu_get_mmureg();
1852
1853         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1854         if(mreg & VIKING_MMODE) {
1855                 srmmu_name = "TI Viking";
1856                 viking_mxcc_present = 0;
1857                 msi_set_sync();
1858
1859                 /*
1860                  * We need this to make sure old viking takes no hits
1861                  * on it's cache for dma snoops to workaround the
1862                  * "load from non-cacheable memory" interrupt bug.
1863                  * This is only necessary because of the new way in
1864                  * which we use the IOMMU.
1865                  */
1866                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1867
1868                 flush_page_for_dma_global = 0;
1869         } else {
1870                 srmmu_name = "TI Viking/MXCC";
1871                 viking_mxcc_present = 1;
1872
1873                 srmmu_cache_pagetables = 1;
1874
1875                 /* MXCC vikings lack the DMA snooping bug. */
1876                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1877         }
1878
1879         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1880         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1881         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1882         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1883
1884 #ifdef CONFIG_SMP
1885         if (sparc_cpu_model == sun4d) {
1886                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1887                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1888                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1889                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1890         } else
1891 #endif
1892         {
1893                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1894                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1895                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1896                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1897         }
1898
1899         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1900         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1901
1902         poke_srmmu = poke_viking;
1903 }
1904
1905 #ifdef CONFIG_SPARC_LEON
1906
1907 void __init poke_leonsparc(void)
1908 {
1909 }
1910
1911 void __init init_leon(void)
1912 {
1913
1914         srmmu_name = "LEON";
1915
1916         BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1917                         BTFIXUPCALL_NORM);
1918         BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
1919                         BTFIXUPCALL_NORM);
1920         BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
1921                         BTFIXUPCALL_NORM);
1922         BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
1923                         BTFIXUPCALL_NORM);
1924         BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
1925                         BTFIXUPCALL_NORM);
1926
1927         BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1928         BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1929         BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1930         BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1931
1932         BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
1933                         BTFIXUPCALL_NOP);
1934         BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
1935
1936         poke_srmmu = poke_leonsparc;
1937
1938         srmmu_cache_pagetables = 0;
1939
1940         leon_flush_during_switch = leon_flush_needed();
1941 }
1942 #endif
1943
1944 /* Probe for the srmmu chip version. */
1945 static void __init get_srmmu_type(void)
1946 {
1947         unsigned long mreg, psr;
1948         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1949
1950         srmmu_modtype = SRMMU_INVAL_MOD;
1951         hwbug_bitmask = 0;
1952
1953         mreg = srmmu_get_mmureg(); psr = get_psr();
1954         mod_typ = (mreg & 0xf0000000) >> 28;
1955         mod_rev = (mreg & 0x0f000000) >> 24;
1956         psr_typ = (psr >> 28) & 0xf;
1957         psr_vers = (psr >> 24) & 0xf;
1958
1959         /* First, check for sparc-leon. */
1960         if (sparc_cpu_model == sparc_leon) {
1961                 init_leon();
1962                 return;
1963         }
1964
1965         /* Second, check for HyperSparc or Cypress. */
1966         if(mod_typ == 1) {
1967                 switch(mod_rev) {
1968                 case 7:
1969                         /* UP or MP Hypersparc */
1970                         init_hypersparc();
1971                         break;
1972                 case 0:
1973                 case 2:
1974                         /* Uniprocessor Cypress */
1975                         init_cypress_604();
1976                         break;
1977                 case 10:
1978                 case 11:
1979                 case 12:
1980                         /* _REALLY OLD_ Cypress MP chips... */
1981                 case 13:
1982                 case 14:
1983                 case 15:
1984                         /* MP Cypress mmu/cache-controller */
1985                         init_cypress_605(mod_rev);
1986                         break;
1987                 default:
1988                         /* Some other Cypress revision, assume a 605. */
1989                         init_cypress_605(mod_rev);
1990                         break;
1991                 }
1992                 return;
1993         }
1994         
1995         /*
1996          * Now Fujitsu TurboSparc. It might happen that it is
1997          * in Swift emulation mode, so we will check later...
1998          */
1999         if (psr_typ == 0 && psr_vers == 5) {
2000                 init_turbosparc();
2001                 return;
2002         }
2003
2004         /* Next check for Fujitsu Swift. */
2005         if(psr_typ == 0 && psr_vers == 4) {
2006                 phandle cpunode;
2007                 char node_str[128];
2008
2009                 /* Look if it is not a TurboSparc emulating Swift... */
2010                 cpunode = prom_getchild(prom_root_node);
2011                 while((cpunode = prom_getsibling(cpunode)) != 0) {
2012                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2013                         if(!strcmp(node_str, "cpu")) {
2014                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2015                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2016                                         init_turbosparc();
2017                                         return;
2018                                 }
2019                                 break;
2020                         }
2021                 }
2022                 
2023                 init_swift();
2024                 return;
2025         }
2026
2027         /* Now the Viking family of srmmu. */
2028         if(psr_typ == 4 &&
2029            ((psr_vers == 0) ||
2030             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2031                 init_viking();
2032                 return;
2033         }
2034
2035         /* Finally the Tsunami. */
2036         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2037                 init_tsunami();
2038                 return;
2039         }
2040
2041         /* Oh well */
2042         srmmu_is_bad();
2043 }
2044
2045 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2046         tsetup_mmu_patchme, rtrap_mmu_patchme;
2047
2048 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2049         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2050
2051 #ifdef CONFIG_SMP
2052 /* Local cross-calls. */
2053 static void smp_flush_page_for_dma(unsigned long page)
2054 {
2055         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2056         local_flush_page_for_dma(page);
2057 }
2058
2059 #endif
2060
2061 /* Load up routines and constants for sun4m and sun4d mmu */
2062 void __init load_mmu(void)
2063 {
2064         extern void ld_mmu_iommu(void);
2065         extern void ld_mmu_iounit(void);
2066         extern void ___xchg32_sun4md(void);
2067
2068         /* Functions */
2069 #ifndef CONFIG_SMP      
2070         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2071 #endif
2072
2073         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2074
2075         BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2076
2077         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2078
2079         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2080         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2081         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2082         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2083         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2084         BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2085         
2086         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2087         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2088         BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2089
2090         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2091         BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2092         BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2093         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2094         BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2095         BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2096         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2097         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2098
2099         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2100         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2101         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2102         BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2103         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2104         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2105         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2106         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2107         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2108         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2109         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2110         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2111
2112         BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2113         BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2114
2115         BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2116         BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2117         BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2118
2119         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2120
2121         get_srmmu_type();
2122
2123 #ifdef CONFIG_SMP
2124         /* El switcheroo... */
2125
2126         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2127         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2128         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2129         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2130         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2131         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2132         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2133         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2134         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2135         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2136         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2137
2138         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2139         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2140         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2141         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2142         if (sparc_cpu_model != sun4d &&
2143             sparc_cpu_model != sparc_leon) {
2144                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2145                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2146                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2147                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2148         }
2149         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2150         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2151         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2152
2153         if (poke_srmmu == poke_viking) {
2154                 /* Avoid unnecessary cross calls. */
2155                 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2156                 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2157                 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2158                 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2159                 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2160                 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2161                 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2162         }
2163 #endif
2164
2165         if (sparc_cpu_model == sun4d)
2166                 ld_mmu_iounit();
2167         else
2168                 ld_mmu_iommu();
2169 #ifdef CONFIG_SMP
2170         if (sparc_cpu_model == sun4d)
2171                 sun4d_init_smp();
2172         else if (sparc_cpu_model == sparc_leon)
2173                 leon_init_smp();
2174         else
2175                 sun4m_init_smp();
2176 #endif
2177         btfixup();
2178 }