]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/net/bpf_jit_comp.c
net: filter: Fix some more small issues in sparc JIT.
[karo-tx-linux.git] / arch / sparc / net / bpf_jit_comp.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6
7 #include <asm/cacheflush.h>
8 #include <asm/ptrace.h>
9
10 #include "bpf_jit.h"
11
12 int bpf_jit_enable __read_mostly;
13
14 static inline bool is_simm13(unsigned int value)
15 {
16         return value + 0x1000 < 0x2000;
17 }
18
19 static void bpf_flush_icache(void *start_, void *end_)
20 {
21 #ifdef CONFIG_SPARC64
22         /* Cheetah's I-cache is fully coherent.  */
23         if (tlb_type == spitfire) {
24                 unsigned long start = (unsigned long) start_;
25                 unsigned long end = (unsigned long) end_;
26
27                 start &= ~7UL;
28                 end = (end + 7UL) & ~7UL;
29                 while (start < end) {
30                         flushi(start);
31                         start += 32;
32                 }
33         }
34 #endif
35 }
36
37 #define SEEN_DATAREF 1 /* might call external helpers */
38 #define SEEN_XREG    2 /* ebx is used */
39 #define SEEN_MEM     4 /* use mem[] for temporary storage */
40
41 #define S13(X)          ((X) & 0x1fff)
42 #define IMMED           0x00002000
43 #define RD(X)           ((X) << 25)
44 #define RS1(X)          ((X) << 14)
45 #define RS2(X)          ((X))
46 #define OP(X)           ((X) << 30)
47 #define OP2(X)          ((X) << 22)
48 #define OP3(X)          ((X) << 19)
49 #define COND(X)         ((X) << 25)
50 #define F1(X)           OP(X)
51 #define F2(X, Y)        (OP(X) | OP2(Y))
52 #define F3(X, Y)        (OP(X) | OP3(Y))
53
54 #define CONDN           COND(0x0)
55 #define CONDE           COND(0x1)
56 #define CONDLE          COND(0x2)
57 #define CONDL           COND(0x3)
58 #define CONDLEU         COND(0x4)
59 #define CONDCS          COND(0x5)
60 #define CONDNEG         COND(0x6)
61 #define CONDVC          COND(0x7)
62 #define CONDA           COND(0x8)
63 #define CONDNE          COND(0x9)
64 #define CONDG           COND(0xa)
65 #define CONDGE          COND(0xb)
66 #define CONDGU          COND(0xc)
67 #define CONDCC          COND(0xd)
68 #define CONDPOS         COND(0xe)
69 #define CONDVS          COND(0xf)
70
71 #define CONDGEU         CONDCC
72 #define CONDLU          CONDCS
73
74 #define WDISP22(X)      (((X) >> 2) & 0x3fffff)
75
76 #define BA              (F2(0, 2) | CONDA)
77 #define BGU             (F2(0, 2) | CONDGU)
78 #define BLEU            (F2(0, 2) | CONDLEU)
79 #define BGEU            (F2(0, 2) | CONDGEU)
80 #define BLU             (F2(0, 2) | CONDLU)
81 #define BE              (F2(0, 2) | CONDE)
82 #define BNE             (F2(0, 2) | CONDNE)
83
84 #ifdef CONFIG_SPARC64
85 #define BNE_PTR         (F2(0, 1) | CONDNE | (2 << 20))
86 #else
87 #define BNE_PTR         BNE
88 #endif
89
90 #define SETHI(K, REG)   \
91         (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
92 #define OR_LO(K, REG)   \
93         (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
94
95 #define ADD             F3(2, 0x00)
96 #define AND             F3(2, 0x01)
97 #define ANDCC           F3(2, 0x11)
98 #define OR              F3(2, 0x02)
99 #define SUB             F3(2, 0x04)
100 #define SUBCC           F3(2, 0x14)
101 #define MUL             F3(2, 0x0a)     /* umul */
102 #define DIV             F3(2, 0x0e)     /* udiv */
103 #define SLL             F3(2, 0x25)
104 #define SRL             F3(2, 0x26)
105 #define JMPL            F3(2, 0x38)
106 #define CALL            F1(1)
107 #define BR              F2(0, 0x01)
108 #define RD_Y            F3(2, 0x28)
109 #define WR_Y            F3(2, 0x30)
110
111 #define LD32            F3(3, 0x00)
112 #define LD8             F3(3, 0x01)
113 #define LD16            F3(3, 0x02)
114 #define LD64            F3(3, 0x0b)
115 #define ST32            F3(3, 0x04)
116
117 #ifdef CONFIG_SPARC64
118 #define LDPTR           LD64
119 #define BASE_STACKFRAME 176
120 #else
121 #define LDPTR           LD32
122 #define BASE_STACKFRAME 96
123 #endif
124
125 #define LD32I           (LD32 | IMMED)
126 #define LD8I            (LD8 | IMMED)
127 #define LD16I           (LD16 | IMMED)
128 #define LD64I           (LD64 | IMMED)
129 #define LDPTRI          (LDPTR | IMMED)
130 #define ST32I           (ST32 | IMMED)
131
132 #define emit_nop()              \
133 do {                            \
134         *prog++ = SETHI(0, G0); \
135 } while (0)
136
137 #define emit_neg()                                      \
138 do {    /* sub %g0, r_A, r_A */                         \
139         *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
140 } while (0)
141
142 #define emit_reg_move(FROM, TO)                         \
143 do {    /* or %g0, FROM, TO */                          \
144         *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
145 } while (0)
146
147 #define emit_clear(REG)                                 \
148 do {    /* or %g0, %g0, REG */                          \
149         *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
150 } while (0)
151
152 #define emit_set_const(K, REG)                                  \
153 do {    /* sethi %hi(K), REG */                                 \
154         *prog++ = SETHI(K, REG);                                \
155         /* or REG, %lo(K), REG */                               \
156         *prog++ = OR_LO(K, REG);                                \
157 } while (0)
158
159         /* Emit
160          *
161          *      OP      r_A, r_X, r_A
162          */
163 #define emit_alu_X(OPCODE)                                      \
164 do {                                                            \
165         seen |= SEEN_XREG;                                      \
166         *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
167 } while (0)
168
169         /* Emit either:
170          *
171          *      OP      r_A, K, r_A
172          *
173          * or
174          *
175          *      sethi   %hi(K), r_TMP
176          *      or      r_TMP, %lo(K), r_TMP
177          *      OP      r_A, r_TMP, r_A
178          *
179          * depending upon whether K fits in a signed 13-bit
180          * immediate instruction field.  Emit nothing if K
181          * is zero.
182          */
183 #define emit_alu_K(OPCODE, K)                                   \
184 do {                                                            \
185         if (K) {                                                \
186                 unsigned int _insn = OPCODE;                    \
187                 _insn |= RS1(r_A) | RD(r_A);                    \
188                 if (is_simm13(K)) {                             \
189                         *prog++ = _insn | IMMED | S13(K);       \
190                 } else {                                        \
191                         emit_set_const(K, r_TMP);               \
192                         *prog++ = _insn | RS2(r_TMP);           \
193                 }                                               \
194         }                                                       \
195 } while (0)
196
197 #define emit_loadimm(K, DEST)                                           \
198 do {                                                                    \
199         if (is_simm13(K)) {                                             \
200                 /* or %g0, K, DEST */                                   \
201                 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
202         } else {                                                        \
203                 emit_set_const(K, DEST);                                \
204         }                                                               \
205 } while (0)
206
207 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
208 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
209         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
210         *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
211 } while (0)
212
213 #define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
214 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
215         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
216         *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
217 } while (0)
218
219 #define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
220 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
221         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
222         *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
223 } while (0)
224
225 #define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
226 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
227         *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
228 } while (0)
229
230 #define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
231 do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
232         __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
233 } while (0)
234
235 #define emit_ldmem(OFF, DEST)                                   \
236 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST);     \
237 } while (0)
238
239 #define emit_stmem(OFF, SRC)                                    \
240 do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC);      \
241 } while (0)
242
243 #define cpu_off         offsetof(struct thread_info, cpu)
244
245 #ifdef CONFIG_SMP
246 #ifdef CONFIG_SPARC64
247 #define emit_load_cpu(REG)                                              \
248         emit_load16(G6, struct thread_info, cpu, REG)
249 #else
250 #define emit_load_cpu(REG)                                              \
251         emit_load32(G6, struct thread_info, cpu, REG)
252 #endif
253 #else
254 #define emit_load_cpu(REG)      emit_clear(REG)
255 #endif
256
257 #define emit_skb_loadptr(FIELD, DEST) \
258         emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
259 #define emit_skb_load32(FIELD, DEST) \
260         emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
261 #define emit_skb_load16(FIELD, DEST) \
262         emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
263 #define __emit_skb_load8(FIELD, DEST) \
264         __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load8(FIELD, DEST) \
266         emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
267
268 #define emit_jmpl(BASE, IMM_OFF, LREG) \
269         *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
270
271 #define emit_call(FUNC)                                 \
272 do {    void *_here = image + addrs[i] - 8;             \
273         unsigned int _off = (void *)(FUNC) - _here;     \
274         *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
275         emit_nop();                                     \
276 } while (0)
277
278 #define emit_branch(BR_OPC, DEST)                       \
279 do {    unsigned int _here = addrs[i] - 8;              \
280         *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
281 } while (0)
282
283 #define emit_branch_off(BR_OPC, OFF)                    \
284 do {    *prog++ = BR_OPC | WDISP22(OFF);                \
285 } while (0)
286
287 #define emit_jump(DEST)         emit_branch(BA, DEST)
288
289 #define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
290 #define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
291
292 #define emit_cmp(R1, R2) \
293         *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
294
295 #define emit_cmpi(R1, IMM) \
296         *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
297
298 #define emit_btst(R1, R2) \
299         *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
300
301 #define emit_btsti(R1, IMM) \
302         *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
303
304 #define emit_sub(R1, R2, R3) \
305         *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
306
307 #define emit_subi(R1, IMM, R3) \
308         *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
309
310 #define emit_add(R1, R2, R3) \
311         *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
312
313 #define emit_addi(R1, IMM, R3) \
314         *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
315
316 #define emit_alloc_stack(SZ) \
317         *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
318
319 #define emit_release_stack(SZ) \
320         *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
321
322 /* A note about branch offset calculations.  The addrs[] array,
323  * indexed by BPF instruction, records the address after all the
324  * sparc instructions emitted for that BPF instruction.
325  *
326  * The most common case is to emit a branch at the end of such
327  * a code sequence.  So this would be two instructions, the
328  * branch and it's delay slot.
329  *
330  * Therefore by default the branch emitters calculate the branch
331  * offset field as:
332  *
333  *      destination - (addrs[i] - 8)
334  *
335  * This "addrs[i] - 8" is the address of the branch itself or
336  * what "." would be in assembler notation.  The "8" part is
337  * how we take into consideration the branch and it's delay
338  * slot mentioned above.
339  *
340  * Sometimes we need to emit a branch earlier in the code
341  * sequence.  And in these situations we adjust "destination"
342  * to accomodate this difference.  For example, if we needed
343  * to emit a branch (and it's delay slot) right before the
344  * final instruction emitted for a BPF opcode, we'd use
345  * "destination + 4" instead of just plain "destination" above.
346  *
347  * This is why you see all of these funny emit_branch() and
348  * emit_jump() calls with adjusted offsets.
349  */
350
351 void bpf_jit_compile(struct sk_filter *fp)
352 {
353         unsigned int cleanup_addr, proglen, oldproglen = 0;
354         u32 temp[8], *prog, *func, seen = 0, pass;
355         const struct sock_filter *filter = fp->insns;
356         int i, flen = fp->len, pc_ret0 = -1;
357         unsigned int *addrs;
358         void *image;
359
360         if (!bpf_jit_enable)
361                 return;
362
363         addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
364         if (addrs == NULL)
365                 return;
366
367         /* Before first pass, make a rough estimation of addrs[]
368          * each bpf instruction is translated to less than 64 bytes
369          */
370         for (proglen = 0, i = 0; i < flen; i++) {
371                 proglen += 64;
372                 addrs[i] = proglen;
373         }
374         cleanup_addr = proglen; /* epilogue address */
375         image = NULL;
376         for (pass = 0; pass < 10; pass++) {
377                 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
378
379                 /* no prologue/epilogue for trivial filters (RET something) */
380                 proglen = 0;
381                 prog = temp;
382
383                 /* Prologue */
384                 if (seen_or_pass0) {
385                         if (seen_or_pass0 & SEEN_MEM) {
386                                 unsigned int sz = BASE_STACKFRAME;
387                                 sz += BPF_MEMWORDS * sizeof(u32);
388                                 emit_alloc_stack(sz);
389                         }
390
391                         /* Make sure we dont leek kernel memory. */
392                         if (seen_or_pass0 & SEEN_XREG)
393                                 emit_clear(r_X);
394
395                         /* If this filter needs to access skb data,
396                          * load %o4 and %o5 with:
397                          *  %o4 = skb->len - skb->data_len
398                          *  %o5 = skb->data
399                          * And also back up %o7 into r_saved_O7 so we can
400                          * invoke the stubs using 'call'.
401                          */
402                         if (seen_or_pass0 & SEEN_DATAREF) {
403                                 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
404                                 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
405                                 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
406                                 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
407                         }
408                 }
409                 emit_reg_move(O7, r_saved_O7);
410
411                 switch (filter[0].code) {
412                 case BPF_S_RET_K:
413                 case BPF_S_LD_W_LEN:
414                 case BPF_S_ANC_PROTOCOL:
415                 case BPF_S_ANC_PKTTYPE:
416                 case BPF_S_ANC_IFINDEX:
417                 case BPF_S_ANC_MARK:
418                 case BPF_S_ANC_RXHASH:
419                 case BPF_S_ANC_CPU:
420                 case BPF_S_ANC_QUEUE:
421                 case BPF_S_LD_W_ABS:
422                 case BPF_S_LD_H_ABS:
423                 case BPF_S_LD_B_ABS:
424                         /* The first instruction sets the A register (or is
425                          * a "RET 'constant'")
426                          */
427                         break;
428                 default:
429                         /* Make sure we dont leak kernel information to the
430                          * user.
431                          */
432                         emit_clear(r_A); /* A = 0 */
433                 }
434
435                 for (i = 0; i < flen; i++) {
436                         unsigned int K = filter[i].k;
437                         unsigned int t_offset;
438                         unsigned int f_offset;
439                         u32 t_op, f_op;
440                         int ilen;
441
442                         switch (filter[i].code) {
443                         case BPF_S_ALU_ADD_X:   /* A += X; */
444                                 emit_alu_X(ADD);
445                                 break;
446                         case BPF_S_ALU_ADD_K:   /* A += K; */
447                                 emit_alu_K(ADD, K);
448                                 break;
449                         case BPF_S_ALU_SUB_X:   /* A -= X; */
450                                 emit_alu_X(SUB);
451                                 break;
452                         case BPF_S_ALU_SUB_K:   /* A -= K */
453                                 emit_alu_K(SUB, K);
454                                 break;
455                         case BPF_S_ALU_AND_X:   /* A &= X */
456                                 emit_alu_X(AND);
457                                 break;
458                         case BPF_S_ALU_AND_K:   /* A &= K */
459                                 emit_alu_K(AND, K);
460                                 break;
461                         case BPF_S_ALU_OR_X:    /* A |= X */
462                                 emit_alu_X(OR);
463                                 break;
464                         case BPF_S_ALU_OR_K:    /* A |= K */
465                                 emit_alu_K(OR, K);
466                                 break;
467                         case BPF_S_ALU_LSH_X:   /* A <<= X */
468                                 emit_alu_X(SLL);
469                                 break;
470                         case BPF_S_ALU_LSH_K:   /* A <<= K */
471                                 emit_alu_K(SLL, K);
472                                 break;
473                         case BPF_S_ALU_RSH_X:   /* A >>= X */
474                                 emit_alu_X(SRL);
475                                 break;
476                         case BPF_S_ALU_RSH_K:   /* A >>= K */
477                                 emit_alu_K(SRL, K);
478                                 break;
479                         case BPF_S_ALU_MUL_X:   /* A *= X; */
480                                 emit_alu_X(MUL);
481                                 break;
482                         case BPF_S_ALU_MUL_K:   /* A *= K */
483                                 emit_alu_K(MUL, K);
484                                 break;
485                         case BPF_S_ALU_DIV_K:   /* A /= K */
486                                 emit_alu_K(MUL, K);
487                                 emit_read_y(r_A);
488                                 break;
489                         case BPF_S_ALU_DIV_X:   /* A /= X; */
490                                 emit_cmpi(r_X, 0);
491                                 if (pc_ret0 > 0) {
492                                         t_offset = addrs[pc_ret0 - 1];
493 #ifdef CONFIG_SPARC32
494                                         emit_branch(BE, t_offset + 20);
495 #else
496                                         emit_branch(BE, t_offset + 8);
497 #endif
498                                         emit_nop(); /* delay slot */
499                                 } else {
500                                         emit_branch_off(BNE, 16);
501                                         emit_nop();
502 #ifdef CONFIG_SPARC32
503                                         emit_jump(cleanup_addr + 20);
504 #else
505                                         emit_jump(cleanup_addr + 8);
506 #endif
507                                         emit_clear(r_A);
508                                 }
509                                 emit_write_y(G0);
510 #ifdef CONFIG_SPARC32
511                                 /* The Sparc v8 architecture requires
512                                  * three instructions between a %y
513                                  * register write and the first use.
514                                  */
515                                 emit_nop();
516                                 emit_nop();
517                                 emit_nop();
518 #endif
519                                 emit_alu_X(DIV);
520                                 break;
521                         case BPF_S_ALU_NEG:
522                                 emit_neg();
523                                 break;
524                         case BPF_S_RET_K:
525                                 if (!K) {
526                                         if (pc_ret0 == -1)
527                                                 pc_ret0 = i;
528                                         emit_clear(r_A);
529                                 } else {
530                                         emit_loadimm(K, r_A);
531                                 }
532                                 /* Fallthrough */
533                         case BPF_S_RET_A:
534                                 if (seen_or_pass0) {
535                                         if (i != flen - 1) {
536                                                 emit_jump(cleanup_addr);
537                                                 emit_nop();
538                                                 break;
539                                         }
540                                         if (seen_or_pass0 & SEEN_MEM) {
541                                                 unsigned int sz = BASE_STACKFRAME;
542                                                 sz += BPF_MEMWORDS * sizeof(u32);
543                                                 emit_release_stack(sz);
544                                         }
545                                 }
546                                 /* jmpl %r_saved_O7 + 8, %g0 */
547                                 emit_jmpl(r_saved_O7, 8, G0);
548                                 emit_reg_move(r_A, O0); /* delay slot */
549                                 break;
550                         case BPF_S_MISC_TAX:
551                                 seen |= SEEN_XREG;
552                                 emit_reg_move(r_A, r_X);
553                                 break;
554                         case BPF_S_MISC_TXA:
555                                 seen |= SEEN_XREG;
556                                 emit_reg_move(r_X, r_A);
557                                 break;
558                         case BPF_S_ANC_CPU:
559                                 emit_load_cpu(r_A);
560                                 break;
561                         case BPF_S_ANC_PROTOCOL:
562                                 emit_skb_load16(protocol, r_A);
563                                 break;
564 #if 0
565                                 /* GCC won't let us take the address of
566                                  * a bit field even though we very much
567                                  * know what we are doing here.
568                                  */
569                         case BPF_S_ANC_PKTTYPE:
570                                 __emit_skb_load8(pkt_type, r_A);
571                                 emit_alu_K(SRL, 5);
572                                 break;
573 #endif
574                         case BPF_S_ANC_IFINDEX:
575                                 emit_skb_loadptr(dev, r_A);
576                                 emit_cmpi(r_A, 0);
577                                 emit_branch(BNE_PTR, cleanup_addr + 4);
578                                 emit_nop();
579                                 emit_load32(r_A, struct net_device, ifindex, r_A);
580                                 break;
581                         case BPF_S_ANC_MARK:
582                                 emit_skb_load32(mark, r_A);
583                                 break;
584                         case BPF_S_ANC_QUEUE:
585                                 emit_skb_load16(queue_mapping, r_A);
586                                 break;
587                         case BPF_S_ANC_HATYPE:
588                                 emit_skb_loadptr(dev, r_A);
589                                 emit_cmpi(r_A, 0);
590                                 emit_branch(BNE_PTR, cleanup_addr + 4);
591                                 emit_nop();
592                                 emit_load16(r_A, struct net_device, type, r_A);
593                                 break;
594                         case BPF_S_ANC_RXHASH:
595                                 emit_skb_load32(rxhash, r_A);
596                                 break;
597
598                         case BPF_S_LD_IMM:
599                                 emit_loadimm(K, r_A);
600                                 break;
601                         case BPF_S_LDX_IMM:
602                                 emit_loadimm(K, r_X);
603                                 break;
604                         case BPF_S_LD_MEM:
605                                 emit_ldmem(K * 4, r_A);
606                                 break;
607                         case BPF_S_LDX_MEM:
608                                 emit_ldmem(K * 4, r_X);
609                                 break;
610                         case BPF_S_ST:
611                                 emit_stmem(K * 4, r_A);
612                                 break;
613                         case BPF_S_STX:
614                                 emit_stmem(K * 4, r_X);
615                                 break;
616
617 #define CHOOSE_LOAD_FUNC(K, func) \
618         ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
619
620                         case BPF_S_LD_W_ABS:
621                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
622 common_load:                    seen |= SEEN_DATAREF;
623                                 emit_loadimm(K, r_OFF);
624                                 emit_call(func);
625                                 break;
626                         case BPF_S_LD_H_ABS:
627                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
628                                 goto common_load;
629                         case BPF_S_LD_B_ABS:
630                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
631                                 goto common_load;
632                         case BPF_S_LDX_B_MSH:
633                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
634                                 goto common_load;
635                         case BPF_S_LD_W_IND:
636                                 func = bpf_jit_load_word;
637 common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
638                                 if (K) {
639                                         if (is_simm13(K)) {
640                                                 emit_addi(r_X, K, r_OFF);
641                                         } else {
642                                                 emit_loadimm(K, r_TMP);
643                                                 emit_add(r_X, r_TMP, r_OFF);
644                                         }
645                                 } else {
646                                         emit_reg_move(r_X, r_OFF);
647                                 }
648                                 emit_call(func);
649                                 break;
650                         case BPF_S_LD_H_IND:
651                                 func = bpf_jit_load_half;
652                                 goto common_load_ind;
653                         case BPF_S_LD_B_IND:
654                                 func = bpf_jit_load_byte;
655                                 goto common_load_ind;
656                         case BPF_S_JMP_JA:
657                                 emit_jump(addrs[i + K]);
658                                 emit_nop();
659                                 break;
660
661 #define COND_SEL(CODE, TOP, FOP)        \
662         case CODE:                      \
663                 t_op = TOP;             \
664                 f_op = FOP;             \
665                 goto cond_branch
666
667                         COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
668                         COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
669                         COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
670                         COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
671                         COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
672                         COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
673                         COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
674                         COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
675
676 cond_branch:                    f_offset = addrs[i + filter[i].jf];
677                                 t_offset = addrs[i + filter[i].jt];
678
679                                 /* same targets, can avoid doing the test :) */
680                                 if (filter[i].jt == filter[i].jf) {
681                                         emit_jump(t_offset);
682                                         emit_nop();
683                                         break;
684                                 }
685
686                                 switch (filter[i].code) {
687                                 case BPF_S_JMP_JGT_X:
688                                 case BPF_S_JMP_JGE_X:
689                                 case BPF_S_JMP_JEQ_X:
690                                         seen |= SEEN_XREG;
691                                         emit_cmp(r_A, r_X);
692                                         break;
693                                 case BPF_S_JMP_JSET_X:
694                                         seen |= SEEN_XREG;
695                                         emit_btst(r_A, r_X);
696                                         break;
697                                 case BPF_S_JMP_JEQ_K:
698                                 case BPF_S_JMP_JGT_K:
699                                 case BPF_S_JMP_JGE_K:
700                                         if (is_simm13(K)) {
701                                                 emit_cmpi(r_A, K);
702                                         } else {
703                                                 emit_loadimm(K, r_TMP);
704                                                 emit_cmp(r_A, r_TMP);
705                                         }
706                                         break;
707                                 case BPF_S_JMP_JSET_K:
708                                         if (is_simm13(K)) {
709                                                 emit_btsti(r_A, K);
710                                         } else {
711                                                 emit_loadimm(K, r_TMP);
712                                                 emit_btst(r_A, r_TMP);
713                                         }
714                                         break;
715                                 }
716                                 if (filter[i].jt != 0) {
717                                         if (filter[i].jf)
718                                                 t_offset += 8;
719                                         emit_branch(t_op, t_offset);
720                                         emit_nop(); /* delay slot */
721                                         if (filter[i].jf) {
722                                                 emit_jump(f_offset);
723                                                 emit_nop();
724                                         }
725                                         break;
726                                 }
727                                 emit_branch(f_op, f_offset);
728                                 emit_nop(); /* delay slot */
729                                 break;
730
731                         default:
732                                 /* hmm, too complex filter, give up with jit compiler */
733                                 goto out;
734                         }
735                         ilen = (void *) prog - (void *) temp;
736                         if (image) {
737                                 if (unlikely(proglen + ilen > oldproglen)) {
738                                         pr_err("bpb_jit_compile fatal error\n");
739                                         kfree(addrs);
740                                         module_free(NULL, image);
741                                         return;
742                                 }
743                                 memcpy(image + proglen, temp, ilen);
744                         }
745                         proglen += ilen;
746                         addrs[i] = proglen;
747                         prog = temp;
748                 }
749                 /* last bpf instruction is always a RET :
750                  * use it to give the cleanup instruction(s) addr
751                  */
752                 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
753                 if (seen_or_pass0 & SEEN_MEM)
754                         cleanup_addr -= 4; /* add %sp, X, %sp; */
755
756                 if (image) {
757                         if (proglen != oldproglen)
758                                 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
759                                        proglen, oldproglen);
760                         break;
761                 }
762                 if (proglen == oldproglen) {
763                         image = module_alloc(max_t(unsigned int,
764                                                    proglen,
765                                                    sizeof(struct work_struct)));
766                         if (!image)
767                                 goto out;
768                 }
769                 oldproglen = proglen;
770         }
771
772         if (bpf_jit_enable > 1)
773                 pr_err("flen=%d proglen=%u pass=%d image=%p\n",
774                        flen, proglen, pass, image);
775
776         if (image) {
777                 if (bpf_jit_enable > 1)
778                         print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
779                                        16, 1, image, proglen, false);
780                 bpf_flush_icache(image, image + proglen);
781                 fp->bpf_func = (void *)image;
782         }
783 out:
784         kfree(addrs);
785         return;
786 }
787
788 static void jit_free_defer(struct work_struct *arg)
789 {
790         module_free(NULL, arg);
791 }
792
793 /* run from softirq, we must use a work_struct to call
794  * module_free() from process context
795  */
796 void bpf_jit_free(struct sk_filter *fp)
797 {
798         if (fp->bpf_func != sk_run_filter) {
799                 struct work_struct *work = (struct work_struct *)fp->bpf_func;
800
801                 INIT_WORK(work, jit_free_defer);
802                 schedule_work(work);
803         }
804 }