]> git.karo-electronics.de Git - linux-beck.git/blob - arch/sparc64/mm/init.c
[SPARC64]: Initialize MDESC earlier and use lmb_alloc()
[linux-beck.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28
29 #include <asm/head.h>
30 #include <asm/system.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/sstate.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51
52 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
53 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
54 #define KPTE_BITMAP_BYTES       \
55         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
56
57 unsigned long kern_linear_pte_xor[2] __read_mostly;
58
59 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
60  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
61  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
62  */
63 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
64
65 #ifndef CONFIG_DEBUG_PAGEALLOC
66 /* A special kernel TSB for 4MB and 256MB linear mappings.
67  * Space is allocated for this right after the trap table
68  * in arch/sparc64/kernel/head.S
69  */
70 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
71 #endif
72
73 #define MAX_BANKS       32
74
75 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
76 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
77 static int pavail_ents __initdata;
78 static int pavail_rescan_ents __initdata;
79
80 static int cmp_p64(const void *a, const void *b)
81 {
82         const struct linux_prom64_registers *x = a, *y = b;
83
84         if (x->phys_addr > y->phys_addr)
85                 return 1;
86         if (x->phys_addr < y->phys_addr)
87                 return -1;
88         return 0;
89 }
90
91 static void __init read_obp_memory(const char *property,
92                                    struct linux_prom64_registers *regs,
93                                    int *num_ents)
94 {
95         int node = prom_finddevice("/memory");
96         int prop_size = prom_getproplen(node, property);
97         int ents, ret, i;
98
99         ents = prop_size / sizeof(struct linux_prom64_registers);
100         if (ents > MAX_BANKS) {
101                 prom_printf("The machine has more %s property entries than "
102                             "this kernel can support (%d).\n",
103                             property, MAX_BANKS);
104                 prom_halt();
105         }
106
107         ret = prom_getproperty(node, property, (char *) regs, prop_size);
108         if (ret == -1) {
109                 prom_printf("Couldn't get %s property from /memory.\n");
110                 prom_halt();
111         }
112
113         /* Sanitize what we got from the firmware, by page aligning
114          * everything.
115          */
116         for (i = 0; i < ents; i++) {
117                 unsigned long base, size;
118
119                 base = regs[i].phys_addr;
120                 size = regs[i].reg_size;
121
122                 size &= PAGE_MASK;
123                 if (base & ~PAGE_MASK) {
124                         unsigned long new_base = PAGE_ALIGN(base);
125
126                         size -= new_base - base;
127                         if ((long) size < 0L)
128                                 size = 0UL;
129                         base = new_base;
130                 }
131                 if (size == 0UL) {
132                         /* If it is empty, simply get rid of it.
133                          * This simplifies the logic of the other
134                          * functions that process these arrays.
135                          */
136                         memmove(&regs[i], &regs[i + 1],
137                                 (ents - i - 1) * sizeof(regs[0]));
138                         i--;
139                         ents--;
140                         continue;
141                 }
142                 regs[i].phys_addr = base;
143                 regs[i].reg_size = size;
144         }
145
146         *num_ents = ents;
147
148         sort(regs, ents, sizeof(struct linux_prom64_registers),
149              cmp_p64, NULL);
150 }
151
152 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
153
154 /* Kernel physical address base and size in bytes.  */
155 unsigned long kern_base __read_mostly;
156 unsigned long kern_size __read_mostly;
157
158 /* Initial ramdisk setup */
159 extern unsigned long sparc_ramdisk_image64;
160 extern unsigned int sparc_ramdisk_image;
161 extern unsigned int sparc_ramdisk_size;
162
163 struct page *mem_map_zero __read_mostly;
164
165 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166
167 unsigned long sparc64_kern_pri_context __read_mostly;
168 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
169 unsigned long sparc64_kern_sec_context __read_mostly;
170
171 int num_kernel_image_mappings;
172
173 #ifdef CONFIG_DEBUG_DCFLUSH
174 atomic_t dcpage_flushes = ATOMIC_INIT(0);
175 #ifdef CONFIG_SMP
176 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
177 #endif
178 #endif
179
180 inline void flush_dcache_page_impl(struct page *page)
181 {
182         BUG_ON(tlb_type == hypervisor);
183 #ifdef CONFIG_DEBUG_DCFLUSH
184         atomic_inc(&dcpage_flushes);
185 #endif
186
187 #ifdef DCACHE_ALIASING_POSSIBLE
188         __flush_dcache_page(page_address(page),
189                             ((tlb_type == spitfire) &&
190                              page_mapping(page) != NULL));
191 #else
192         if (page_mapping(page) != NULL &&
193             tlb_type == spitfire)
194                 __flush_icache_page(__pa(page_address(page)));
195 #endif
196 }
197
198 #define PG_dcache_dirty         PG_arch_1
199 #define PG_dcache_cpu_shift     32UL
200 #define PG_dcache_cpu_mask      \
201         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202
203 #define dcache_dirty_cpu(page) \
204         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205
206 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 {
208         unsigned long mask = this_cpu;
209         unsigned long non_cpu_bits;
210
211         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
212         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213
214         __asm__ __volatile__("1:\n\t"
215                              "ldx       [%2], %%g7\n\t"
216                              "and       %%g7, %1, %%g1\n\t"
217                              "or        %%g1, %0, %%g1\n\t"
218                              "casx      [%2], %%g7, %%g1\n\t"
219                              "cmp       %%g7, %%g1\n\t"
220                              "membar    #StoreLoad | #StoreStore\n\t"
221                              "bne,pn    %%xcc, 1b\n\t"
222                              " nop"
223                              : /* no outputs */
224                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
225                              : "g1", "g7");
226 }
227
228 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
229 {
230         unsigned long mask = (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
233                              "1:\n\t"
234                              "ldx       [%2], %%g7\n\t"
235                              "srlx      %%g7, %4, %%g1\n\t"
236                              "and       %%g1, %3, %%g1\n\t"
237                              "cmp       %%g1, %0\n\t"
238                              "bne,pn    %%icc, 2f\n\t"
239                              " andn     %%g7, %1, %%g1\n\t"
240                              "casx      [%2], %%g7, %%g1\n\t"
241                              "cmp       %%g7, %%g1\n\t"
242                              "membar    #StoreLoad | #StoreStore\n\t"
243                              "bne,pn    %%xcc, 1b\n\t"
244                              " nop\n"
245                              "2:"
246                              : /* no outputs */
247                              : "r" (cpu), "r" (mask), "r" (&page->flags),
248                                "i" (PG_dcache_cpu_mask),
249                                "i" (PG_dcache_cpu_shift)
250                              : "g1", "g7");
251 }
252
253 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
254 {
255         unsigned long tsb_addr = (unsigned long) ent;
256
257         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
258                 tsb_addr = __pa(tsb_addr);
259
260         __tsb_insert(tsb_addr, tag, pte);
261 }
262
263 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
264 unsigned long _PAGE_SZBITS __read_mostly;
265
266 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
267 {
268         struct mm_struct *mm;
269         struct tsb *tsb;
270         unsigned long tag, flags;
271         unsigned long tsb_index, tsb_hash_shift;
272
273         if (tlb_type != hypervisor) {
274                 unsigned long pfn = pte_pfn(pte);
275                 unsigned long pg_flags;
276                 struct page *page;
277
278                 if (pfn_valid(pfn) &&
279                     (page = pfn_to_page(pfn), page_mapping(page)) &&
280                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
281                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
282                                    PG_dcache_cpu_mask);
283                         int this_cpu = get_cpu();
284
285                         /* This is just to optimize away some function calls
286                          * in the SMP case.
287                          */
288                         if (cpu == this_cpu)
289                                 flush_dcache_page_impl(page);
290                         else
291                                 smp_flush_dcache_page_impl(page, cpu);
292
293                         clear_dcache_dirty_cpu(page, cpu);
294
295                         put_cpu();
296                 }
297         }
298
299         mm = vma->vm_mm;
300
301         tsb_index = MM_TSB_BASE;
302         tsb_hash_shift = PAGE_SHIFT;
303
304         spin_lock_irqsave(&mm->context.lock, flags);
305
306 #ifdef CONFIG_HUGETLB_PAGE
307         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
308                 if ((tlb_type == hypervisor &&
309                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
310                     (tlb_type != hypervisor &&
311                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
312                         tsb_index = MM_TSB_HUGE;
313                         tsb_hash_shift = HPAGE_SHIFT;
314                 }
315         }
316 #endif
317
318         tsb = mm->context.tsb_block[tsb_index].tsb;
319         tsb += ((address >> tsb_hash_shift) &
320                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
321         tag = (address >> 22UL);
322         tsb_insert(tsb, tag, pte_val(pte));
323
324         spin_unlock_irqrestore(&mm->context.lock, flags);
325 }
326
327 void flush_dcache_page(struct page *page)
328 {
329         struct address_space *mapping;
330         int this_cpu;
331
332         if (tlb_type == hypervisor)
333                 return;
334
335         /* Do not bother with the expensive D-cache flush if it
336          * is merely the zero page.  The 'bigcore' testcase in GDB
337          * causes this case to run millions of times.
338          */
339         if (page == ZERO_PAGE(0))
340                 return;
341
342         this_cpu = get_cpu();
343
344         mapping = page_mapping(page);
345         if (mapping && !mapping_mapped(mapping)) {
346                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
347                 if (dirty) {
348                         int dirty_cpu = dcache_dirty_cpu(page);
349
350                         if (dirty_cpu == this_cpu)
351                                 goto out;
352                         smp_flush_dcache_page_impl(page, dirty_cpu);
353                 }
354                 set_dcache_dirty(page, this_cpu);
355         } else {
356                 /* We could delay the flush for the !page_mapping
357                  * case too.  But that case is for exec env/arg
358                  * pages and those are %99 certainly going to get
359                  * faulted into the tlb (and thus flushed) anyways.
360                  */
361                 flush_dcache_page_impl(page);
362         }
363
364 out:
365         put_cpu();
366 }
367
368 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
369 {
370         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
371         if (tlb_type == spitfire) {
372                 unsigned long kaddr;
373
374                 /* This code only runs on Spitfire cpus so this is
375                  * why we can assume _PAGE_PADDR_4U.
376                  */
377                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
378                         unsigned long paddr, mask = _PAGE_PADDR_4U;
379
380                         if (kaddr >= PAGE_OFFSET)
381                                 paddr = kaddr & mask;
382                         else {
383                                 pgd_t *pgdp = pgd_offset_k(kaddr);
384                                 pud_t *pudp = pud_offset(pgdp, kaddr);
385                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
386                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
387
388                                 paddr = pte_val(*ptep) & mask;
389                         }
390                         __flush_icache_page(paddr);
391                 }
392         }
393 }
394
395 void show_mem(void)
396 {
397         unsigned long total = 0, reserved = 0;
398         unsigned long shared = 0, cached = 0;
399         pg_data_t *pgdat;
400
401         printk(KERN_INFO "Mem-info:\n");
402         show_free_areas();
403         printk(KERN_INFO "Free swap:       %6ldkB\n",
404                nr_swap_pages << (PAGE_SHIFT-10));
405         for_each_online_pgdat(pgdat) {
406                 unsigned long i, flags;
407
408                 pgdat_resize_lock(pgdat, &flags);
409                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
410                         struct page *page = pgdat_page_nr(pgdat, i);
411                         total++;
412                         if (PageReserved(page))
413                                 reserved++;
414                         else if (PageSwapCache(page))
415                                 cached++;
416                         else if (page_count(page))
417                                 shared += page_count(page) - 1;
418                 }
419                 pgdat_resize_unlock(pgdat, &flags);
420         }
421
422         printk(KERN_INFO "%lu pages of RAM\n", total);
423         printk(KERN_INFO "%lu reserved pages\n", reserved);
424         printk(KERN_INFO "%lu pages shared\n", shared);
425         printk(KERN_INFO "%lu pages swap cached\n", cached);
426
427         printk(KERN_INFO "%lu pages dirty\n",
428                global_page_state(NR_FILE_DIRTY));
429         printk(KERN_INFO "%lu pages writeback\n",
430                global_page_state(NR_WRITEBACK));
431         printk(KERN_INFO "%lu pages mapped\n",
432                global_page_state(NR_FILE_MAPPED));
433         printk(KERN_INFO "%lu pages slab\n",
434                 global_page_state(NR_SLAB_RECLAIMABLE) +
435                 global_page_state(NR_SLAB_UNRECLAIMABLE));
436         printk(KERN_INFO "%lu pages pagetables\n",
437                global_page_state(NR_PAGETABLE));
438 }
439
440 void mmu_info(struct seq_file *m)
441 {
442         if (tlb_type == cheetah)
443                 seq_printf(m, "MMU Type\t: Cheetah\n");
444         else if (tlb_type == cheetah_plus)
445                 seq_printf(m, "MMU Type\t: Cheetah+\n");
446         else if (tlb_type == spitfire)
447                 seq_printf(m, "MMU Type\t: Spitfire\n");
448         else if (tlb_type == hypervisor)
449                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
450         else
451                 seq_printf(m, "MMU Type\t: ???\n");
452
453 #ifdef CONFIG_DEBUG_DCFLUSH
454         seq_printf(m, "DCPageFlushes\t: %d\n",
455                    atomic_read(&dcpage_flushes));
456 #ifdef CONFIG_SMP
457         seq_printf(m, "DCPageFlushesXC\t: %d\n",
458                    atomic_read(&dcpage_flushes_xcall));
459 #endif /* CONFIG_SMP */
460 #endif /* CONFIG_DEBUG_DCFLUSH */
461 }
462
463 struct linux_prom_translation {
464         unsigned long virt;
465         unsigned long size;
466         unsigned long data;
467 };
468
469 /* Exported for kernel TLB miss handling in ktlb.S */
470 struct linux_prom_translation prom_trans[512] __read_mostly;
471 unsigned int prom_trans_ents __read_mostly;
472
473 /* Exported for SMP bootup purposes. */
474 unsigned long kern_locked_tte_data;
475
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482         return (vaddr >= LOW_OBP_ADDRESS &&
483                 vaddr < HI_OBP_ADDRESS);
484 }
485
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488         const struct linux_prom_translation *x = a, *y = b;
489
490         if (x->virt > y->virt)
491                 return 1;
492         if (x->virt < y->virt)
493                 return -1;
494         return 0;
495 }
496
497 /* Read OBP translations property into 'prom_trans[]'.  */
498 static void __init read_obp_translations(void)
499 {
500         int n, node, ents, first, last, i;
501
502         node = prom_finddevice("/virtual-memory");
503         n = prom_getproplen(node, "translations");
504         if (unlikely(n == 0 || n == -1)) {
505                 prom_printf("prom_mappings: Couldn't get size.\n");
506                 prom_halt();
507         }
508         if (unlikely(n > sizeof(prom_trans))) {
509                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
510                 prom_halt();
511         }
512
513         if ((n = prom_getproperty(node, "translations",
514                                   (char *)&prom_trans[0],
515                                   sizeof(prom_trans))) == -1) {
516                 prom_printf("prom_mappings: Couldn't get property.\n");
517                 prom_halt();
518         }
519
520         n = n / sizeof(struct linux_prom_translation);
521
522         ents = n;
523
524         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525              cmp_ptrans, NULL);
526
527         /* Now kick out all the non-OBP entries.  */
528         for (i = 0; i < ents; i++) {
529                 if (in_obp_range(prom_trans[i].virt))
530                         break;
531         }
532         first = i;
533         for (; i < ents; i++) {
534                 if (!in_obp_range(prom_trans[i].virt))
535                         break;
536         }
537         last = i;
538
539         for (i = 0; i < (last - first); i++) {
540                 struct linux_prom_translation *src = &prom_trans[i + first];
541                 struct linux_prom_translation *dest = &prom_trans[i];
542
543                 *dest = *src;
544         }
545         for (; i < ents; i++) {
546                 struct linux_prom_translation *dest = &prom_trans[i];
547                 dest->virt = dest->size = dest->data = 0x0UL;
548         }
549
550         prom_trans_ents = last - first;
551
552         if (tlb_type == spitfire) {
553                 /* Clear diag TTE bits. */
554                 for (i = 0; i < prom_trans_ents; i++)
555                         prom_trans[i].data &= ~0x0003fe0000000000UL;
556         }
557 }
558
559 static void __init hypervisor_tlb_lock(unsigned long vaddr,
560                                        unsigned long pte,
561                                        unsigned long mmu)
562 {
563         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
564
565         if (ret != 0) {
566                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
567                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
568                 prom_halt();
569         }
570 }
571
572 static unsigned long kern_large_tte(unsigned long paddr);
573
574 static void __init remap_kernel(void)
575 {
576         unsigned long phys_page, tte_vaddr, tte_data;
577         int i, tlb_ent = sparc64_highest_locked_tlbent();
578
579         tte_vaddr = (unsigned long) KERNBASE;
580         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
581         tte_data = kern_large_tte(phys_page);
582
583         kern_locked_tte_data = tte_data;
584
585         /* Now lock us into the TLBs via Hypervisor or OBP. */
586         if (tlb_type == hypervisor) {
587                 for (i = 0; i < num_kernel_image_mappings; i++) {
588                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
589                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
590                         tte_vaddr += 0x400000;
591                         tte_data += 0x400000;
592                 }
593         } else {
594                 for (i = 0; i < num_kernel_image_mappings; i++) {
595                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
596                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
597                         tte_vaddr += 0x400000;
598                         tte_data += 0x400000;
599                 }
600                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
601         }
602         if (tlb_type == cheetah_plus) {
603                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
604                                             CTX_CHEETAH_PLUS_NUC);
605                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
606                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
607         }
608 }
609
610
611 static void __init inherit_prom_mappings(void)
612 {
613         read_obp_translations();
614
615         /* Now fixup OBP's idea about where we really are mapped. */
616         printk("Remapping the kernel... ");
617         remap_kernel();
618         printk("done.\n");
619 }
620
621 void prom_world(int enter)
622 {
623         if (!enter)
624                 set_fs((mm_segment_t) { get_thread_current_ds() });
625
626         __asm__ __volatile__("flushw");
627 }
628
629 void __flush_dcache_range(unsigned long start, unsigned long end)
630 {
631         unsigned long va;
632
633         if (tlb_type == spitfire) {
634                 int n = 0;
635
636                 for (va = start; va < end; va += 32) {
637                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
638                         if (++n >= 512)
639                                 break;
640                 }
641         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
642                 start = __pa(start);
643                 end = __pa(end);
644                 for (va = start; va < end; va += 32)
645                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
646                                              "membar #Sync"
647                                              : /* no outputs */
648                                              : "r" (va),
649                                                "i" (ASI_DCACHE_INVALIDATE));
650         }
651 }
652
653 /* get_new_mmu_context() uses "cache + 1".  */
654 DEFINE_SPINLOCK(ctx_alloc_lock);
655 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
656 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
657 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
658 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
659
660 /* Caller does TLB context flushing on local CPU if necessary.
661  * The caller also ensures that CTX_VALID(mm->context) is false.
662  *
663  * We must be careful about boundary cases so that we never
664  * let the user have CTX 0 (nucleus) or we ever use a CTX
665  * version of zero (and thus NO_CONTEXT would not be caught
666  * by version mis-match tests in mmu_context.h).
667  *
668  * Always invoked with interrupts disabled.
669  */
670 void get_new_mmu_context(struct mm_struct *mm)
671 {
672         unsigned long ctx, new_ctx;
673         unsigned long orig_pgsz_bits;
674         unsigned long flags;
675         int new_version;
676
677         spin_lock_irqsave(&ctx_alloc_lock, flags);
678         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
679         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
680         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
681         new_version = 0;
682         if (new_ctx >= (1 << CTX_NR_BITS)) {
683                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
684                 if (new_ctx >= ctx) {
685                         int i;
686                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
687                                 CTX_FIRST_VERSION;
688                         if (new_ctx == 1)
689                                 new_ctx = CTX_FIRST_VERSION;
690
691                         /* Don't call memset, for 16 entries that's just
692                          * plain silly...
693                          */
694                         mmu_context_bmap[0] = 3;
695                         mmu_context_bmap[1] = 0;
696                         mmu_context_bmap[2] = 0;
697                         mmu_context_bmap[3] = 0;
698                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
699                                 mmu_context_bmap[i + 0] = 0;
700                                 mmu_context_bmap[i + 1] = 0;
701                                 mmu_context_bmap[i + 2] = 0;
702                                 mmu_context_bmap[i + 3] = 0;
703                         }
704                         new_version = 1;
705                         goto out;
706                 }
707         }
708         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
709         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
710 out:
711         tlb_context_cache = new_ctx;
712         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
713         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
714
715         if (unlikely(new_version))
716                 smp_new_mmu_context_version();
717 }
718
719 /* Find a free area for the bootmem map, avoiding the kernel image
720  * and the initial ramdisk.
721  */
722 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
723                                                unsigned long end_pfn)
724 {
725         unsigned long bootmap_size;
726
727         bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
728         bootmap_size <<= PAGE_SHIFT;
729
730         return lmb_alloc(bootmap_size, PAGE_SIZE) >> PAGE_SHIFT;
731 }
732
733 static void __init find_ramdisk(unsigned long phys_base)
734 {
735 #ifdef CONFIG_BLK_DEV_INITRD
736         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
737                 unsigned long ramdisk_image;
738
739                 /* Older versions of the bootloader only supported a
740                  * 32-bit physical address for the ramdisk image
741                  * location, stored at sparc_ramdisk_image.  Newer
742                  * SILO versions set sparc_ramdisk_image to zero and
743                  * provide a full 64-bit physical address at
744                  * sparc_ramdisk_image64.
745                  */
746                 ramdisk_image = sparc_ramdisk_image;
747                 if (!ramdisk_image)
748                         ramdisk_image = sparc_ramdisk_image64;
749
750                 /* Another bootloader quirk.  The bootloader normalizes
751                  * the physical address to KERNBASE, so we have to
752                  * factor that back out and add in the lowest valid
753                  * physical page address to get the true physical address.
754                  */
755                 ramdisk_image -= KERNBASE;
756                 ramdisk_image += phys_base;
757
758                 initrd_start = ramdisk_image;
759                 initrd_end = ramdisk_image + sparc_ramdisk_size;
760
761                 lmb_reserve(initrd_start, initrd_end);
762         }
763 #endif
764 }
765
766 /* About pages_avail, this is the value we will use to calculate
767  * the zholes_size[] argument given to free_area_init_node().  The
768  * page allocator uses this to calculate nr_kernel_pages,
769  * nr_all_pages and zone->present_pages.  On NUMA it is used
770  * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
771  *
772  * So this number should really be set to what the page allocator
773  * actually ends up with.  This means:
774  * 1) It should include bootmem map pages, we'll release those.
775  * 2) It should not include the kernel image, except for the
776  *    __init sections which we will also release.
777  * 3) It should include the initrd image, since we'll release
778  *    that too.
779  */
780 static unsigned long __init bootmem_init(unsigned long *pages_avail,
781                                          unsigned long phys_base)
782 {
783         unsigned long end_pfn;
784         int i;
785
786         *pages_avail = lmb_phys_mem_size() >> PAGE_SHIFT;
787         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
788
789         /* Initialize the boot-time allocator. */
790         max_pfn = max_low_pfn = end_pfn;
791         min_low_pfn = (phys_base >> PAGE_SHIFT);
792
793         init_bootmem_node(NODE_DATA(0),
794                           choose_bootmap_pfn(min_low_pfn, end_pfn),
795                           min_low_pfn, end_pfn);
796
797         /* Now register the available physical memory with the
798          * allocator.
799          */
800         for (i = 0; i < lmb.memory.cnt; i++)
801                 free_bootmem(lmb.memory.region[i].base,
802                              lmb_size_bytes(&lmb.memory, i));
803
804         for (i = 0; i < lmb.reserved.cnt; i++)
805                 reserve_bootmem(lmb.reserved.region[i].base,
806                                 lmb_size_bytes(&lmb.reserved, i),
807                                 BOOTMEM_DEFAULT);
808
809         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
810
811         for (i = 0; i < lmb.memory.cnt; ++i) {
812                 unsigned long start_pfn, end_pfn, pages;
813
814                 pages = lmb_size_pages(&lmb.memory, i);
815                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
816                 end_pfn = start_pfn + pages;
817
818                 memory_present(0, start_pfn, end_pfn);
819         }
820
821         sparse_init();
822
823         return end_pfn;
824 }
825
826 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
827 static int pall_ents __initdata;
828
829 #ifdef CONFIG_DEBUG_PAGEALLOC
830 static unsigned long __ref kernel_map_range(unsigned long pstart,
831                                             unsigned long pend, pgprot_t prot)
832 {
833         unsigned long vstart = PAGE_OFFSET + pstart;
834         unsigned long vend = PAGE_OFFSET + pend;
835         unsigned long alloc_bytes = 0UL;
836
837         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
838                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
839                             vstart, vend);
840                 prom_halt();
841         }
842
843         while (vstart < vend) {
844                 unsigned long this_end, paddr = __pa(vstart);
845                 pgd_t *pgd = pgd_offset_k(vstart);
846                 pud_t *pud;
847                 pmd_t *pmd;
848                 pte_t *pte;
849
850                 pud = pud_offset(pgd, vstart);
851                 if (pud_none(*pud)) {
852                         pmd_t *new;
853
854                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
855                         alloc_bytes += PAGE_SIZE;
856                         pud_populate(&init_mm, pud, new);
857                 }
858
859                 pmd = pmd_offset(pud, vstart);
860                 if (!pmd_present(*pmd)) {
861                         pte_t *new;
862
863                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
864                         alloc_bytes += PAGE_SIZE;
865                         pmd_populate_kernel(&init_mm, pmd, new);
866                 }
867
868                 pte = pte_offset_kernel(pmd, vstart);
869                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
870                 if (this_end > vend)
871                         this_end = vend;
872
873                 while (vstart < this_end) {
874                         pte_val(*pte) = (paddr | pgprot_val(prot));
875
876                         vstart += PAGE_SIZE;
877                         paddr += PAGE_SIZE;
878                         pte++;
879                 }
880         }
881
882         return alloc_bytes;
883 }
884
885 extern unsigned int kvmap_linear_patch[1];
886 #endif /* CONFIG_DEBUG_PAGEALLOC */
887
888 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
889 {
890         const unsigned long shift_256MB = 28;
891         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
892         const unsigned long size_256MB = (1UL << shift_256MB);
893
894         while (start < end) {
895                 long remains;
896
897                 remains = end - start;
898                 if (remains < size_256MB)
899                         break;
900
901                 if (start & mask_256MB) {
902                         start = (start + size_256MB) & ~mask_256MB;
903                         continue;
904                 }
905
906                 while (remains >= size_256MB) {
907                         unsigned long index = start >> shift_256MB;
908
909                         __set_bit(index, kpte_linear_bitmap);
910
911                         start += size_256MB;
912                         remains -= size_256MB;
913                 }
914         }
915 }
916
917 static void __init init_kpte_bitmap(void)
918 {
919         unsigned long i;
920
921         for (i = 0; i < pall_ents; i++) {
922                 unsigned long phys_start, phys_end;
923
924                 phys_start = pall[i].phys_addr;
925                 phys_end = phys_start + pall[i].reg_size;
926
927                 mark_kpte_bitmap(phys_start, phys_end);
928         }
929 }
930
931 static void __init kernel_physical_mapping_init(void)
932 {
933 #ifdef CONFIG_DEBUG_PAGEALLOC
934         unsigned long i, mem_alloced = 0UL;
935
936         for (i = 0; i < pall_ents; i++) {
937                 unsigned long phys_start, phys_end;
938
939                 phys_start = pall[i].phys_addr;
940                 phys_end = phys_start + pall[i].reg_size;
941
942                 mem_alloced += kernel_map_range(phys_start, phys_end,
943                                                 PAGE_KERNEL);
944         }
945
946         printk("Allocated %ld bytes for kernel page tables.\n",
947                mem_alloced);
948
949         kvmap_linear_patch[0] = 0x01000000; /* nop */
950         flushi(&kvmap_linear_patch[0]);
951
952         __flush_tlb_all();
953 #endif
954 }
955
956 #ifdef CONFIG_DEBUG_PAGEALLOC
957 void kernel_map_pages(struct page *page, int numpages, int enable)
958 {
959         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
960         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
961
962         kernel_map_range(phys_start, phys_end,
963                          (enable ? PAGE_KERNEL : __pgprot(0)));
964
965         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
966                                PAGE_OFFSET + phys_end);
967
968         /* we should perform an IPI and flush all tlbs,
969          * but that can deadlock->flush only current cpu.
970          */
971         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
972                                  PAGE_OFFSET + phys_end);
973 }
974 #endif
975
976 unsigned long __init find_ecache_flush_span(unsigned long size)
977 {
978         int i;
979
980         for (i = 0; i < pavail_ents; i++) {
981                 if (pavail[i].reg_size >= size)
982                         return pavail[i].phys_addr;
983         }
984
985         return ~0UL;
986 }
987
988 static void __init tsb_phys_patch(void)
989 {
990         struct tsb_ldquad_phys_patch_entry *pquad;
991         struct tsb_phys_patch_entry *p;
992
993         pquad = &__tsb_ldquad_phys_patch;
994         while (pquad < &__tsb_ldquad_phys_patch_end) {
995                 unsigned long addr = pquad->addr;
996
997                 if (tlb_type == hypervisor)
998                         *(unsigned int *) addr = pquad->sun4v_insn;
999                 else
1000                         *(unsigned int *) addr = pquad->sun4u_insn;
1001                 wmb();
1002                 __asm__ __volatile__("flush     %0"
1003                                      : /* no outputs */
1004                                      : "r" (addr));
1005
1006                 pquad++;
1007         }
1008
1009         p = &__tsb_phys_patch;
1010         while (p < &__tsb_phys_patch_end) {
1011                 unsigned long addr = p->addr;
1012
1013                 *(unsigned int *) addr = p->insn;
1014                 wmb();
1015                 __asm__ __volatile__("flush     %0"
1016                                      : /* no outputs */
1017                                      : "r" (addr));
1018
1019                 p++;
1020         }
1021 }
1022
1023 /* Don't mark as init, we give this to the Hypervisor.  */
1024 #ifndef CONFIG_DEBUG_PAGEALLOC
1025 #define NUM_KTSB_DESCR  2
1026 #else
1027 #define NUM_KTSB_DESCR  1
1028 #endif
1029 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1030 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1031
1032 static void __init sun4v_ktsb_init(void)
1033 {
1034         unsigned long ktsb_pa;
1035
1036         /* First KTSB for PAGE_SIZE mappings.  */
1037         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1038
1039         switch (PAGE_SIZE) {
1040         case 8 * 1024:
1041         default:
1042                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1043                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1044                 break;
1045
1046         case 64 * 1024:
1047                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1048                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1049                 break;
1050
1051         case 512 * 1024:
1052                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1053                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1054                 break;
1055
1056         case 4 * 1024 * 1024:
1057                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1058                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1059                 break;
1060         };
1061
1062         ktsb_descr[0].assoc = 1;
1063         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1064         ktsb_descr[0].ctx_idx = 0;
1065         ktsb_descr[0].tsb_base = ktsb_pa;
1066         ktsb_descr[0].resv = 0;
1067
1068 #ifndef CONFIG_DEBUG_PAGEALLOC
1069         /* Second KTSB for 4MB/256MB mappings.  */
1070         ktsb_pa = (kern_base +
1071                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1072
1073         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1074         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1075                                    HV_PGSZ_MASK_256MB);
1076         ktsb_descr[1].assoc = 1;
1077         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1078         ktsb_descr[1].ctx_idx = 0;
1079         ktsb_descr[1].tsb_base = ktsb_pa;
1080         ktsb_descr[1].resv = 0;
1081 #endif
1082 }
1083
1084 void __cpuinit sun4v_ktsb_register(void)
1085 {
1086         unsigned long pa, ret;
1087
1088         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1089
1090         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1091         if (ret != 0) {
1092                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1093                             "errors with %lx\n", pa, ret);
1094                 prom_halt();
1095         }
1096 }
1097
1098 /* paging_init() sets up the page tables */
1099
1100 extern void central_probe(void);
1101
1102 static unsigned long last_valid_pfn;
1103 pgd_t swapper_pg_dir[2048];
1104
1105 static void sun4u_pgprot_init(void);
1106 static void sun4v_pgprot_init(void);
1107
1108 /* Dummy function */
1109 void __init setup_per_cpu_areas(void)
1110 {
1111 }
1112
1113 void __init paging_init(void)
1114 {
1115         unsigned long end_pfn, pages_avail, shift, phys_base;
1116         unsigned long real_end, i;
1117
1118         /* These build time checkes make sure that the dcache_dirty_cpu()
1119          * page->flags usage will work.
1120          *
1121          * When a page gets marked as dcache-dirty, we store the
1122          * cpu number starting at bit 32 in the page->flags.  Also,
1123          * functions like clear_dcache_dirty_cpu use the cpu mask
1124          * in 13-bit signed-immediate instruction fields.
1125          */
1126         BUILD_BUG_ON(FLAGS_RESERVED != 32);
1127         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1128                      ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1129         BUILD_BUG_ON(NR_CPUS > 4096);
1130
1131         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1132         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1133
1134         sstate_booting();
1135
1136         /* Invalidate both kernel TSBs.  */
1137         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1138 #ifndef CONFIG_DEBUG_PAGEALLOC
1139         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1140 #endif
1141
1142         if (tlb_type == hypervisor)
1143                 sun4v_pgprot_init();
1144         else
1145                 sun4u_pgprot_init();
1146
1147         if (tlb_type == cheetah_plus ||
1148             tlb_type == hypervisor)
1149                 tsb_phys_patch();
1150
1151         if (tlb_type == hypervisor) {
1152                 sun4v_patch_tlb_handlers();
1153                 sun4v_ktsb_init();
1154         }
1155
1156         lmb_init();
1157
1158         /* Find available physical memory... */
1159         read_obp_memory("available", &pavail[0], &pavail_ents);
1160
1161         phys_base = 0xffffffffffffffffUL;
1162         for (i = 0; i < pavail_ents; i++) {
1163                 phys_base = min(phys_base, pavail[i].phys_addr);
1164                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1165         }
1166
1167         lmb_reserve(kern_base, kern_size);
1168
1169         find_ramdisk(phys_base);
1170
1171         if (cmdline_memory_size)
1172                 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1173
1174         lmb_analyze();
1175         lmb_dump_all();
1176
1177         set_bit(0, mmu_context_bmap);
1178
1179         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1180
1181         real_end = (unsigned long)_end;
1182         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1183         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1184                num_kernel_image_mappings);
1185
1186         /* Set kernel pgd to upper alias so physical page computations
1187          * work.
1188          */
1189         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1190         
1191         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1192
1193         /* Now can init the kernel/bad page tables. */
1194         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1195                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1196         
1197         inherit_prom_mappings();
1198         
1199         read_obp_memory("reg", &pall[0], &pall_ents);
1200
1201         init_kpte_bitmap();
1202
1203         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1204         setup_tba();
1205
1206         __flush_tlb_all();
1207
1208         if (tlb_type == hypervisor)
1209                 sun4v_ktsb_register();
1210
1211         /* We must setup the per-cpu areas before we pull in the
1212          * PROM and the MDESC.  The code there fills in cpu and
1213          * other information into per-cpu data structures.
1214          */
1215         real_setup_per_cpu_areas();
1216
1217         prom_build_devicetree();
1218
1219         if (tlb_type == hypervisor)
1220                 sun4v_mdesc_init();
1221
1222         /* Setup bootmem... */
1223         pages_avail = 0;
1224         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1225
1226         max_mapnr = last_valid_pfn;
1227
1228         kernel_physical_mapping_init();
1229
1230         {
1231                 unsigned long zones_size[MAX_NR_ZONES];
1232                 unsigned long zholes_size[MAX_NR_ZONES];
1233                 int znum;
1234
1235                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1236                         zones_size[znum] = zholes_size[znum] = 0;
1237
1238                 zones_size[ZONE_NORMAL] = end_pfn;
1239                 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1240
1241                 free_area_init_node(0, &contig_page_data, zones_size,
1242                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1243                                     zholes_size);
1244         }
1245
1246         printk("Booting Linux...\n");
1247
1248         central_probe();
1249         cpu_probe();
1250 }
1251
1252 static void __init taint_real_pages(void)
1253 {
1254         int i;
1255
1256         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1257
1258         /* Find changes discovered in the physmem available rescan and
1259          * reserve the lost portions in the bootmem maps.
1260          */
1261         for (i = 0; i < pavail_ents; i++) {
1262                 unsigned long old_start, old_end;
1263
1264                 old_start = pavail[i].phys_addr;
1265                 old_end = old_start +
1266                         pavail[i].reg_size;
1267                 while (old_start < old_end) {
1268                         int n;
1269
1270                         for (n = 0; n < pavail_rescan_ents; n++) {
1271                                 unsigned long new_start, new_end;
1272
1273                                 new_start = pavail_rescan[n].phys_addr;
1274                                 new_end = new_start +
1275                                         pavail_rescan[n].reg_size;
1276
1277                                 if (new_start <= old_start &&
1278                                     new_end >= (old_start + PAGE_SIZE)) {
1279                                         set_bit(old_start >> 22,
1280                                                 sparc64_valid_addr_bitmap);
1281                                         goto do_next_page;
1282                                 }
1283                         }
1284                         reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1285
1286                 do_next_page:
1287                         old_start += PAGE_SIZE;
1288                 }
1289         }
1290 }
1291
1292 int __init page_in_phys_avail(unsigned long paddr)
1293 {
1294         int i;
1295
1296         paddr &= PAGE_MASK;
1297
1298         for (i = 0; i < pavail_rescan_ents; i++) {
1299                 unsigned long start, end;
1300
1301                 start = pavail_rescan[i].phys_addr;
1302                 end = start + pavail_rescan[i].reg_size;
1303
1304                 if (paddr >= start && paddr < end)
1305                         return 1;
1306         }
1307         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1308                 return 1;
1309 #ifdef CONFIG_BLK_DEV_INITRD
1310         if (paddr >= __pa(initrd_start) &&
1311             paddr < __pa(PAGE_ALIGN(initrd_end)))
1312                 return 1;
1313 #endif
1314
1315         return 0;
1316 }
1317
1318 void __init mem_init(void)
1319 {
1320         unsigned long codepages, datapages, initpages;
1321         unsigned long addr, last;
1322         int i;
1323
1324         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1325         i += 1;
1326         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1327         if (sparc64_valid_addr_bitmap == NULL) {
1328                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1329                 prom_halt();
1330         }
1331         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1332
1333         addr = PAGE_OFFSET + kern_base;
1334         last = PAGE_ALIGN(kern_size) + addr;
1335         while (addr < last) {
1336                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1337                 addr += PAGE_SIZE;
1338         }
1339
1340         taint_real_pages();
1341
1342         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1343
1344         /* We subtract one to account for the mem_map_zero page
1345          * allocated below.
1346          */
1347         totalram_pages = num_physpages = free_all_bootmem() - 1;
1348
1349         /*
1350          * Set up the zero page, mark it reserved, so that page count
1351          * is not manipulated when freeing the page from user ptes.
1352          */
1353         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1354         if (mem_map_zero == NULL) {
1355                 prom_printf("paging_init: Cannot alloc zero page.\n");
1356                 prom_halt();
1357         }
1358         SetPageReserved(mem_map_zero);
1359
1360         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1361         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1362         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1363         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1364         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1365         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1366
1367         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1368                nr_free_pages() << (PAGE_SHIFT-10),
1369                codepages << (PAGE_SHIFT-10),
1370                datapages << (PAGE_SHIFT-10), 
1371                initpages << (PAGE_SHIFT-10), 
1372                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1373
1374         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1375                 cheetah_ecache_flush_init();
1376 }
1377
1378 void free_initmem(void)
1379 {
1380         unsigned long addr, initend;
1381
1382         /*
1383          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1384          */
1385         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1386         initend = (unsigned long)(__init_end) & PAGE_MASK;
1387         for (; addr < initend; addr += PAGE_SIZE) {
1388                 unsigned long page;
1389                 struct page *p;
1390
1391                 page = (addr +
1392                         ((unsigned long) __va(kern_base)) -
1393                         ((unsigned long) KERNBASE));
1394                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1395                 p = virt_to_page(page);
1396
1397                 ClearPageReserved(p);
1398                 init_page_count(p);
1399                 __free_page(p);
1400                 num_physpages++;
1401                 totalram_pages++;
1402         }
1403 }
1404
1405 #ifdef CONFIG_BLK_DEV_INITRD
1406 void free_initrd_mem(unsigned long start, unsigned long end)
1407 {
1408         if (start < end)
1409                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1410         for (; start < end; start += PAGE_SIZE) {
1411                 struct page *p = virt_to_page(start);
1412
1413                 ClearPageReserved(p);
1414                 init_page_count(p);
1415                 __free_page(p);
1416                 num_physpages++;
1417                 totalram_pages++;
1418         }
1419 }
1420 #endif
1421
1422 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1423 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1424 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1425 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1426 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1427 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1428
1429 pgprot_t PAGE_KERNEL __read_mostly;
1430 EXPORT_SYMBOL(PAGE_KERNEL);
1431
1432 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1433 pgprot_t PAGE_COPY __read_mostly;
1434
1435 pgprot_t PAGE_SHARED __read_mostly;
1436 EXPORT_SYMBOL(PAGE_SHARED);
1437
1438 pgprot_t PAGE_EXEC __read_mostly;
1439 unsigned long pg_iobits __read_mostly;
1440
1441 unsigned long _PAGE_IE __read_mostly;
1442 EXPORT_SYMBOL(_PAGE_IE);
1443
1444 unsigned long _PAGE_E __read_mostly;
1445 EXPORT_SYMBOL(_PAGE_E);
1446
1447 unsigned long _PAGE_CACHE __read_mostly;
1448 EXPORT_SYMBOL(_PAGE_CACHE);
1449
1450 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1451
1452 #define VMEMMAP_CHUNK_SHIFT     22
1453 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
1454 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
1455 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1456
1457 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1458                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1459 unsigned long vmemmap_table[VMEMMAP_SIZE];
1460
1461 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1462 {
1463         unsigned long vstart = (unsigned long) start;
1464         unsigned long vend = (unsigned long) (start + nr);
1465         unsigned long phys_start = (vstart - VMEMMAP_BASE);
1466         unsigned long phys_end = (vend - VMEMMAP_BASE);
1467         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1468         unsigned long end = VMEMMAP_ALIGN(phys_end);
1469         unsigned long pte_base;
1470
1471         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1472                     _PAGE_CP_4U | _PAGE_CV_4U |
1473                     _PAGE_P_4U | _PAGE_W_4U);
1474         if (tlb_type == hypervisor)
1475                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1476                             _PAGE_CP_4V | _PAGE_CV_4V |
1477                             _PAGE_P_4V | _PAGE_W_4V);
1478
1479         for (; addr < end; addr += VMEMMAP_CHUNK) {
1480                 unsigned long *vmem_pp =
1481                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1482                 void *block;
1483
1484                 if (!(*vmem_pp & _PAGE_VALID)) {
1485                         block = vmemmap_alloc_block(1UL << 22, node);
1486                         if (!block)
1487                                 return -ENOMEM;
1488
1489                         *vmem_pp = pte_base | __pa(block);
1490
1491                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
1492                                "node=%d entry=%lu/%lu\n", start, block, nr,
1493                                node,
1494                                addr >> VMEMMAP_CHUNK_SHIFT,
1495                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1496                 }
1497         }
1498         return 0;
1499 }
1500 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1501
1502 static void prot_init_common(unsigned long page_none,
1503                              unsigned long page_shared,
1504                              unsigned long page_copy,
1505                              unsigned long page_readonly,
1506                              unsigned long page_exec_bit)
1507 {
1508         PAGE_COPY = __pgprot(page_copy);
1509         PAGE_SHARED = __pgprot(page_shared);
1510
1511         protection_map[0x0] = __pgprot(page_none);
1512         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1513         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1514         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1515         protection_map[0x4] = __pgprot(page_readonly);
1516         protection_map[0x5] = __pgprot(page_readonly);
1517         protection_map[0x6] = __pgprot(page_copy);
1518         protection_map[0x7] = __pgprot(page_copy);
1519         protection_map[0x8] = __pgprot(page_none);
1520         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1521         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1522         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1523         protection_map[0xc] = __pgprot(page_readonly);
1524         protection_map[0xd] = __pgprot(page_readonly);
1525         protection_map[0xe] = __pgprot(page_shared);
1526         protection_map[0xf] = __pgprot(page_shared);
1527 }
1528
1529 static void __init sun4u_pgprot_init(void)
1530 {
1531         unsigned long page_none, page_shared, page_copy, page_readonly;
1532         unsigned long page_exec_bit;
1533
1534         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1535                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1536                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1537                                 _PAGE_EXEC_4U);
1538         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1539                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1540                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1541                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1542         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1543
1544         _PAGE_IE = _PAGE_IE_4U;
1545         _PAGE_E = _PAGE_E_4U;
1546         _PAGE_CACHE = _PAGE_CACHE_4U;
1547
1548         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1549                      __ACCESS_BITS_4U | _PAGE_E_4U);
1550
1551 #ifdef CONFIG_DEBUG_PAGEALLOC
1552         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1553                 0xfffff80000000000;
1554 #else
1555         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1556                 0xfffff80000000000;
1557 #endif
1558         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1559                                    _PAGE_P_4U | _PAGE_W_4U);
1560
1561         /* XXX Should use 256MB on Panther. XXX */
1562         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1563
1564         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1565         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1566                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1567                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1568
1569
1570         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1571         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1572                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1573         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1574                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1575         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1576                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1577
1578         page_exec_bit = _PAGE_EXEC_4U;
1579
1580         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1581                          page_exec_bit);
1582 }
1583
1584 static void __init sun4v_pgprot_init(void)
1585 {
1586         unsigned long page_none, page_shared, page_copy, page_readonly;
1587         unsigned long page_exec_bit;
1588
1589         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1590                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1591                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1592                                 _PAGE_EXEC_4V);
1593         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1594         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1595
1596         _PAGE_IE = _PAGE_IE_4V;
1597         _PAGE_E = _PAGE_E_4V;
1598         _PAGE_CACHE = _PAGE_CACHE_4V;
1599
1600 #ifdef CONFIG_DEBUG_PAGEALLOC
1601         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1602                 0xfffff80000000000;
1603 #else
1604         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1605                 0xfffff80000000000;
1606 #endif
1607         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1608                                    _PAGE_P_4V | _PAGE_W_4V);
1609
1610 #ifdef CONFIG_DEBUG_PAGEALLOC
1611         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1612                 0xfffff80000000000;
1613 #else
1614         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1615                 0xfffff80000000000;
1616 #endif
1617         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1618                                    _PAGE_P_4V | _PAGE_W_4V);
1619
1620         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1621                      __ACCESS_BITS_4V | _PAGE_E_4V);
1622
1623         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1624         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1625                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1626                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1627                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1628
1629         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1630         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1631                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1632         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1633                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1634         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1635                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1636
1637         page_exec_bit = _PAGE_EXEC_4V;
1638
1639         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1640                          page_exec_bit);
1641 }
1642
1643 unsigned long pte_sz_bits(unsigned long sz)
1644 {
1645         if (tlb_type == hypervisor) {
1646                 switch (sz) {
1647                 case 8 * 1024:
1648                 default:
1649                         return _PAGE_SZ8K_4V;
1650                 case 64 * 1024:
1651                         return _PAGE_SZ64K_4V;
1652                 case 512 * 1024:
1653                         return _PAGE_SZ512K_4V;
1654                 case 4 * 1024 * 1024:
1655                         return _PAGE_SZ4MB_4V;
1656                 };
1657         } else {
1658                 switch (sz) {
1659                 case 8 * 1024:
1660                 default:
1661                         return _PAGE_SZ8K_4U;
1662                 case 64 * 1024:
1663                         return _PAGE_SZ64K_4U;
1664                 case 512 * 1024:
1665                         return _PAGE_SZ512K_4U;
1666                 case 4 * 1024 * 1024:
1667                         return _PAGE_SZ4MB_4U;
1668                 };
1669         }
1670 }
1671
1672 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1673 {
1674         pte_t pte;
1675
1676         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1677         pte_val(pte) |= (((unsigned long)space) << 32);
1678         pte_val(pte) |= pte_sz_bits(page_size);
1679
1680         return pte;
1681 }
1682
1683 static unsigned long kern_large_tte(unsigned long paddr)
1684 {
1685         unsigned long val;
1686
1687         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1688                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1689                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1690         if (tlb_type == hypervisor)
1691                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1692                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1693                        _PAGE_EXEC_4V | _PAGE_W_4V);
1694
1695         return val | paddr;
1696 }
1697
1698 /* If not locked, zap it. */
1699 void __flush_tlb_all(void)
1700 {
1701         unsigned long pstate;
1702         int i;
1703
1704         __asm__ __volatile__("flushw\n\t"
1705                              "rdpr      %%pstate, %0\n\t"
1706                              "wrpr      %0, %1, %%pstate"
1707                              : "=r" (pstate)
1708                              : "i" (PSTATE_IE));
1709         if (tlb_type == hypervisor) {
1710                 sun4v_mmu_demap_all();
1711         } else if (tlb_type == spitfire) {
1712                 for (i = 0; i < 64; i++) {
1713                         /* Spitfire Errata #32 workaround */
1714                         /* NOTE: Always runs on spitfire, so no
1715                          *       cheetah+ page size encodings.
1716                          */
1717                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1718                                              "flush     %%g6"
1719                                              : /* No outputs */
1720                                              : "r" (0),
1721                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1722
1723                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1724                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1725                                                      "membar #Sync"
1726                                                      : /* no outputs */
1727                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1728                                 spitfire_put_dtlb_data(i, 0x0UL);
1729                         }
1730
1731                         /* Spitfire Errata #32 workaround */
1732                         /* NOTE: Always runs on spitfire, so no
1733                          *       cheetah+ page size encodings.
1734                          */
1735                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1736                                              "flush     %%g6"
1737                                              : /* No outputs */
1738                                              : "r" (0),
1739                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1740
1741                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1742                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1743                                                      "membar #Sync"
1744                                                      : /* no outputs */
1745                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1746                                 spitfire_put_itlb_data(i, 0x0UL);
1747                         }
1748                 }
1749         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1750                 cheetah_flush_dtlb_all();
1751                 cheetah_flush_itlb_all();
1752         }
1753         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1754                              : : "r" (pstate));
1755 }
1756
1757 #ifdef CONFIG_MEMORY_HOTPLUG
1758
1759 void online_page(struct page *page)
1760 {
1761         ClearPageReserved(page);
1762         init_page_count(page);
1763         __free_page(page);
1764         totalram_pages++;
1765         num_physpages++;
1766 }
1767
1768 #endif /* CONFIG_MEMORY_HOTPLUG */