]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/tile/kernel/single_step.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/unaligned.h>
29 #include <arch/abi.h>
30 #include <arch/opcode.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156         /*
157          * Return SIGBUS with the unaligned address, if requested.
158          * Note that we return SIGBUS even for completely invalid addresses
159          * as long as they are in fact unaligned; this matches what the
160          * tilepro hardware would be doing, if it could provide us with the
161          * actual bad address in an SPR, which it doesn't.
162          */
163         if (unaligned_fixup == 0) {
164                 siginfo_t info = {
165                         .si_signo = SIGBUS,
166                         .si_code = BUS_ADRALN,
167                         .si_addr = addr
168                 };
169                 trace_unhandled_signal("unaligned trap", regs,
170                                        (unsigned long)addr, SIGBUS);
171                 force_sig_info(info.si_signo, &info, current);
172                 return (tilepro_bundle_bits) 0;
173         }
174
175 #ifndef __LITTLE_ENDIAN
176 # error We assume little-endian representation with copy_xx_user size 2 here
177 #endif
178         /* Handle unaligned load/store */
179         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
180                 unsigned short val_16;
181                 switch (size) {
182                 case 2:
183                         err = copy_from_user(&val_16, addr, sizeof(val_16));
184                         val = sign_ext ? ((short)val_16) : val_16;
185                         break;
186                 case 4:
187                         err = copy_from_user(&val, addr, sizeof(val));
188                         break;
189                 default:
190                         BUG();
191                 }
192                 if (err == 0) {
193                         state->update_reg = val_reg;
194                         state->update_value = val;
195                         state->update = 1;
196                 }
197         } else {
198                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199                 err = copy_to_user(addr, &val, size);
200         }
201
202         if (err) {
203                 siginfo_t info = {
204                         .si_signo = SIGSEGV,
205                         .si_code = SEGV_MAPERR,
206                         .si_addr = addr
207                 };
208                 trace_unhandled_signal("segfault", regs,
209                                        (unsigned long)addr, SIGSEGV);
210                 force_sig_info(info.si_signo, &info, current);
211                 return (tile_bundle_bits) 0;
212         }
213
214         if (unaligned_printk || unaligned_fixup_count == 0) {
215                 pr_info("Process %d/%s: PC %#lx: Fixup of"
216                         " unaligned %s at %#lx.\n",
217                         current->pid, current->comm, regs->pc,
218                         (mem_op == MEMOP_LOAD ||
219                          mem_op == MEMOP_LOAD_POSTINCR) ?
220                         "load" : "store",
221                         (unsigned long)addr);
222                 if (!unaligned_printk) {
223 #define P pr_info
224 P("\n");
225 P("Unaligned fixups in the kernel will slow your application considerably.\n");
226 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
227 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
228 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
229 P("access will become a SIGBUS you can debug. No further warnings will be\n");
230 P("shown so as to avoid additional slowdown, but you can track the number\n");
231 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
232 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
233 P("\n");
234 #undef P
235                 }
236         }
237         ++unaligned_fixup_count;
238
239         if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
240                 /* Convert the Y2 instruction to a prefetch. */
241                 bundle &= ~(create_SrcBDest_Y2(-1) |
242                             create_Opcode_Y2(-1));
243                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
244                            create_Opcode_Y2(LW_OPCODE_Y2));
245         /* Replace the load postincr with an addi */
246         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
247                 bundle = addi_X1(bundle, addr_reg, addr_reg,
248                                  get_Imm8_X1(bundle));
249         /* Replace the store postincr with an addi */
250         } else if (mem_op == MEMOP_STORE_POSTINCR) {
251                 bundle = addi_X1(bundle, addr_reg, addr_reg,
252                                  get_Dest_Imm8_X1(bundle));
253         } else {
254                 /* Convert the X1 instruction to a nop. */
255                 bundle &= ~(create_Opcode_X1(-1) |
256                             create_UnShOpcodeExtension_X1(-1) |
257                             create_UnOpcodeExtension_X1(-1));
258                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
259                            create_UnShOpcodeExtension_X1(
260                                    UN_0_SHUN_0_OPCODE_X1) |
261                            create_UnOpcodeExtension_X1(
262                                    NOP_UN_0_SHUN_0_OPCODE_X1));
263         }
264
265         return bundle;
266 }
267
268 /*
269  * Called after execve() has started the new image.  This allows us
270  * to reset the info state.  Note that the the mmap'ed memory, if there
271  * was any, has already been unmapped by the exec.
272  */
273 void single_step_execve(void)
274 {
275         struct thread_info *ti = current_thread_info();
276         kfree(ti->step_state);
277         ti->step_state = NULL;
278 }
279
280 /**
281  * single_step_once() - entry point when single stepping has been triggered.
282  * @regs: The machine register state
283  *
284  *  When we arrive at this routine via a trampoline, the single step
285  *  engine copies the executing bundle to the single step buffer.
286  *  If the instruction is a condition branch, then the target is
287  *  reset to one past the next instruction. If the instruction
288  *  sets the lr, then that is noted. If the instruction is a jump
289  *  or call, then the new target pc is preserved and the current
290  *  bundle instruction set to null.
291  *
292  *  The necessary post-single-step rewriting information is stored in
293  *  single_step_state->  We use data segment values because the
294  *  stack will be rewound when we run the rewritten single-stepped
295  *  instruction.
296  */
297 void single_step_once(struct pt_regs *regs)
298 {
299         extern tile_bundle_bits __single_step_ill_insn;
300         extern tile_bundle_bits __single_step_j_insn;
301         extern tile_bundle_bits __single_step_addli_insn;
302         extern tile_bundle_bits __single_step_auli_insn;
303         struct thread_info *info = (void *)current_thread_info();
304         struct single_step_state *state = info->step_state;
305         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
306         tile_bundle_bits __user *buffer, *pc;
307         tile_bundle_bits bundle;
308         int temp_reg;
309         int target_reg = TREG_LR;
310         int err;
311         enum mem_op mem_op = MEMOP_NONE;
312         int size = 0, sign_ext = 0;  /* happy compiler */
313
314         asm(
315 "    .pushsection .rodata.single_step\n"
316 "    .align 8\n"
317 "    .globl    __single_step_ill_insn\n"
318 "__single_step_ill_insn:\n"
319 "    ill\n"
320 "    .globl    __single_step_addli_insn\n"
321 "__single_step_addli_insn:\n"
322 "    { nop; addli r0, zero, 0 }\n"
323 "    .globl    __single_step_auli_insn\n"
324 "__single_step_auli_insn:\n"
325 "    { nop; auli r0, r0, 0 }\n"
326 "    .globl    __single_step_j_insn\n"
327 "__single_step_j_insn:\n"
328 "    j .\n"
329 "    .popsection\n"
330         );
331
332         /*
333          * Enable interrupts here to allow touching userspace and the like.
334          * The callers expect this: do_trap() already has interrupts
335          * enabled, and do_work_pending() handles functions that enable
336          * interrupts internally.
337          */
338         local_irq_enable();
339
340         if (state == NULL) {
341                 /* allocate a page of writable, executable memory */
342                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
343                 if (state == NULL) {
344                         pr_err("Out of kernel memory trying to single-step\n");
345                         return;
346                 }
347
348                 /* allocate a cache line of writable, executable memory */
349                 down_write(&current->mm->mmap_sem);
350                 buffer = (void __user *) do_mmap(NULL, 0, 64,
351                                           PROT_EXEC | PROT_READ | PROT_WRITE,
352                                           MAP_PRIVATE | MAP_ANONYMOUS,
353                                           0);
354                 up_write(&current->mm->mmap_sem);
355
356                 if (IS_ERR((void __force *)buffer)) {
357                         kfree(state);
358                         pr_err("Out of kernel pages trying to single-step\n");
359                         return;
360                 }
361
362                 state->buffer = buffer;
363                 state->is_enabled = 0;
364
365                 info->step_state = state;
366
367                 /* Validate our stored instruction patterns */
368                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
369                        ADDLI_OPCODE_X1);
370                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
371                        AULI_OPCODE_X1);
372                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
373                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
374                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
375         }
376
377         /*
378          * If we are returning from a syscall, we still haven't hit the
379          * "ill" for the swint1 instruction.  So back the PC up to be
380          * pointing at the swint1, but we'll actually return directly
381          * back to the "ill" so we come back in via SIGILL as if we
382          * had "executed" the swint1 without ever being in kernel space.
383          */
384         if (regs->faultnum == INT_SWINT_1)
385                 regs->pc -= 8;
386
387         pc = (tile_bundle_bits __user *)(regs->pc);
388         if (get_user(bundle, pc) != 0) {
389                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
390                 return;
391         }
392
393         /* We'll follow the instruction with 2 ill op bundles */
394         state->orig_pc = (unsigned long)pc;
395         state->next_pc = (unsigned long)(pc + 1);
396         state->branch_next_pc = 0;
397         state->update = 0;
398
399         if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
400                 /* two wide, check for control flow */
401                 int opcode = get_Opcode_X1(bundle);
402
403                 switch (opcode) {
404                 /* branches */
405                 case BRANCH_OPCODE_X1:
406                 {
407                         s32 offset = signExtend17(get_BrOff_X1(bundle));
408
409                         /*
410                          * For branches, we use a rewriting trick to let the
411                          * hardware evaluate whether the branch is taken or
412                          * untaken.  We record the target offset and then
413                          * rewrite the branch instruction to target 1 insn
414                          * ahead if the branch is taken.  We then follow the
415                          * rewritten branch with two bundles, each containing
416                          * an "ill" instruction. The supervisor examines the
417                          * pc after the single step code is executed, and if
418                          * the pc is the first ill instruction, then the
419                          * branch (if any) was not taken.  If the pc is the
420                          * second ill instruction, then the branch was
421                          * taken. The new pc is computed for these cases, and
422                          * inserted into the registers for the thread.  If
423                          * the pc is the start of the single step code, then
424                          * an exception or interrupt was taken before the
425                          * code started processing, and the same "original"
426                          * pc is restored.  This change, different from the
427                          * original implementation, has the advantage of
428                          * executing a single user instruction.
429                          */
430                         state->branch_next_pc = (unsigned long)(pc + offset);
431
432                         /* rewrite branch offset to go forward one bundle */
433                         bundle = set_BrOff_X1(bundle, 2);
434                 }
435                 break;
436
437                 /* jumps */
438                 case JALB_OPCODE_X1:
439                 case JALF_OPCODE_X1:
440                         state->update = 1;
441                         state->next_pc =
442                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
443                         break;
444
445                 case JB_OPCODE_X1:
446                 case JF_OPCODE_X1:
447                         state->next_pc =
448                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
449                         bundle = nop_X1(bundle);
450                         break;
451
452                 case SPECIAL_0_OPCODE_X1:
453                         switch (get_RRROpcodeExtension_X1(bundle)) {
454                         /* jump-register */
455                         case JALRP_SPECIAL_0_OPCODE_X1:
456                         case JALR_SPECIAL_0_OPCODE_X1:
457                                 state->update = 1;
458                                 state->next_pc =
459                                         regs->regs[get_SrcA_X1(bundle)];
460                                 break;
461
462                         case JRP_SPECIAL_0_OPCODE_X1:
463                         case JR_SPECIAL_0_OPCODE_X1:
464                                 state->next_pc =
465                                         regs->regs[get_SrcA_X1(bundle)];
466                                 bundle = nop_X1(bundle);
467                                 break;
468
469                         case LNK_SPECIAL_0_OPCODE_X1:
470                                 state->update = 1;
471                                 target_reg = get_Dest_X1(bundle);
472                                 break;
473
474                         /* stores */
475                         case SH_SPECIAL_0_OPCODE_X1:
476                                 mem_op = MEMOP_STORE;
477                                 size = 2;
478                                 break;
479
480                         case SW_SPECIAL_0_OPCODE_X1:
481                                 mem_op = MEMOP_STORE;
482                                 size = 4;
483                                 break;
484                         }
485                         break;
486
487                 /* loads and iret */
488                 case SHUN_0_OPCODE_X1:
489                         if (get_UnShOpcodeExtension_X1(bundle) ==
490                             UN_0_SHUN_0_OPCODE_X1) {
491                                 switch (get_UnOpcodeExtension_X1(bundle)) {
492                                 case LH_UN_0_SHUN_0_OPCODE_X1:
493                                         mem_op = MEMOP_LOAD;
494                                         size = 2;
495                                         sign_ext = 1;
496                                         break;
497
498                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
499                                         mem_op = MEMOP_LOAD;
500                                         size = 2;
501                                         sign_ext = 0;
502                                         break;
503
504                                 case LW_UN_0_SHUN_0_OPCODE_X1:
505                                         mem_op = MEMOP_LOAD;
506                                         size = 4;
507                                         break;
508
509                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
510                                 {
511                                         unsigned long ex0_0 = __insn_mfspr(
512                                                 SPR_EX_CONTEXT_0_0);
513                                         unsigned long ex0_1 = __insn_mfspr(
514                                                 SPR_EX_CONTEXT_0_1);
515                                         /*
516                                          * Special-case it if we're iret'ing
517                                          * to PL0 again.  Otherwise just let
518                                          * it run and it will generate SIGILL.
519                                          */
520                                         if (EX1_PL(ex0_1) == USER_PL) {
521                                                 state->next_pc = ex0_0;
522                                                 regs->ex1 = ex0_1;
523                                                 bundle = nop_X1(bundle);
524                                         }
525                                 }
526                                 }
527                         }
528                         break;
529
530 #if CHIP_HAS_WH64()
531                 /* postincrement operations */
532                 case IMM_0_OPCODE_X1:
533                         switch (get_ImmOpcodeExtension_X1(bundle)) {
534                         case LWADD_IMM_0_OPCODE_X1:
535                                 mem_op = MEMOP_LOAD_POSTINCR;
536                                 size = 4;
537                                 break;
538
539                         case LHADD_IMM_0_OPCODE_X1:
540                                 mem_op = MEMOP_LOAD_POSTINCR;
541                                 size = 2;
542                                 sign_ext = 1;
543                                 break;
544
545                         case LHADD_U_IMM_0_OPCODE_X1:
546                                 mem_op = MEMOP_LOAD_POSTINCR;
547                                 size = 2;
548                                 sign_ext = 0;
549                                 break;
550
551                         case SWADD_IMM_0_OPCODE_X1:
552                                 mem_op = MEMOP_STORE_POSTINCR;
553                                 size = 4;
554                                 break;
555
556                         case SHADD_IMM_0_OPCODE_X1:
557                                 mem_op = MEMOP_STORE_POSTINCR;
558                                 size = 2;
559                                 break;
560
561                         default:
562                                 break;
563                         }
564                         break;
565 #endif /* CHIP_HAS_WH64() */
566                 }
567
568                 if (state->update) {
569                         /*
570                          * Get an available register.  We start with a
571                          * bitmask with 1's for available registers.
572                          * We truncate to the low 32 registers since
573                          * we are guaranteed to have set bits in the
574                          * low 32 bits, then use ctz to pick the first.
575                          */
576                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
577                                            (1ULL << get_SrcA_X0(bundle)) |
578                                            (1ULL << get_SrcB_X0(bundle)) |
579                                            (1ULL << target_reg));
580                         temp_reg = __builtin_ctz(mask);
581                         state->update_reg = temp_reg;
582                         state->update_value = regs->regs[temp_reg];
583                         regs->regs[temp_reg] = (unsigned long) (pc+1);
584                         regs->flags |= PT_FLAGS_RESTORE_REGS;
585                         bundle = move_X1(bundle, target_reg, temp_reg);
586                 }
587         } else {
588                 int opcode = get_Opcode_Y2(bundle);
589
590                 switch (opcode) {
591                 /* loads */
592                 case LH_OPCODE_Y2:
593                         mem_op = MEMOP_LOAD;
594                         size = 2;
595                         sign_ext = 1;
596                         break;
597
598                 case LH_U_OPCODE_Y2:
599                         mem_op = MEMOP_LOAD;
600                         size = 2;
601                         sign_ext = 0;
602                         break;
603
604                 case LW_OPCODE_Y2:
605                         mem_op = MEMOP_LOAD;
606                         size = 4;
607                         break;
608
609                 /* stores */
610                 case SH_OPCODE_Y2:
611                         mem_op = MEMOP_STORE;
612                         size = 2;
613                         break;
614
615                 case SW_OPCODE_Y2:
616                         mem_op = MEMOP_STORE;
617                         size = 4;
618                         break;
619                 }
620         }
621
622         /*
623          * Check if we need to rewrite an unaligned load/store.
624          * Returning zero is a special value meaning we need to SIGSEGV.
625          */
626         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
627                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
628                                                       mem_op, size, sign_ext);
629                 if (bundle == 0)
630                         return;
631         }
632
633         /* write the bundle to our execution area */
634         buffer = state->buffer;
635         err = __put_user(bundle, buffer++);
636
637         /*
638          * If we're really single-stepping, we take an INT_ILL after.
639          * If we're just handling an unaligned access, we can just
640          * jump directly back to where we were in user code.
641          */
642         if (is_single_step) {
643                 err |= __put_user(__single_step_ill_insn, buffer++);
644                 err |= __put_user(__single_step_ill_insn, buffer++);
645         } else {
646                 long delta;
647
648                 if (state->update) {
649                         /* We have some state to update; do it inline */
650                         int ha16;
651                         bundle = __single_step_addli_insn;
652                         bundle |= create_Dest_X1(state->update_reg);
653                         bundle |= create_Imm16_X1(state->update_value);
654                         err |= __put_user(bundle, buffer++);
655                         bundle = __single_step_auli_insn;
656                         bundle |= create_Dest_X1(state->update_reg);
657                         bundle |= create_SrcA_X1(state->update_reg);
658                         ha16 = (state->update_value + 0x8000) >> 16;
659                         bundle |= create_Imm16_X1(ha16);
660                         err |= __put_user(bundle, buffer++);
661                         state->update = 0;
662                 }
663
664                 /* End with a jump back to the next instruction */
665                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
666                         (unsigned long)buffer) >>
667                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
668                 bundle = __single_step_j_insn;
669                 bundle |= create_JOffLong_X1(delta);
670                 err |= __put_user(bundle, buffer++);
671         }
672
673         if (err) {
674                 pr_err("Fault when writing to single-step buffer\n");
675                 return;
676         }
677
678         /*
679          * Flush the buffer.
680          * We do a local flush only, since this is a thread-specific buffer.
681          */
682         __flush_icache_range((unsigned long)state->buffer,
683                              (unsigned long)buffer);
684
685         /* Indicate enabled */
686         state->is_enabled = is_single_step;
687         regs->pc = (unsigned long)state->buffer;
688
689         /* Fault immediately if we are coming back from a syscall. */
690         if (regs->faultnum == INT_SWINT_1)
691                 regs->pc += 8;
692 }
693
694 #else
695 #include <linux/smp.h>
696 #include <linux/ptrace.h>
697 #include <arch/spr_def.h>
698
699 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
700
701
702 /*
703  * Called directly on the occasion of an interrupt.
704  *
705  * If the process doesn't have single step set, then we use this as an
706  * opportunity to turn single step off.
707  *
708  * It has been mentioned that we could conditionally turn off single stepping
709  * on each entry into the kernel and rely on single_step_once to turn it
710  * on for the processes that matter (as we already do), but this
711  * implementation is somewhat more efficient in that we muck with registers
712  * once on a bum interrupt rather than on every entry into the kernel.
713  *
714  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
715  * so we have to run through this process again before we can say that an
716  * instruction has executed.
717  *
718  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
719  * it changes the PC.  If it hasn't changed, then we know that the interrupt
720  * wasn't generated by swint and we'll need to run this process again before
721  * we can say an instruction has executed.
722  *
723  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
724  * on with our lives.
725  */
726
727 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
728 {
729         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
730         struct thread_info *info = (void *)current_thread_info();
731         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
732         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
733
734         if (is_single_step == 0) {
735                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
736
737         } else if ((*ss_pc != regs->pc) ||
738                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
739
740                 ptrace_notify(SIGTRAP);
741                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
742                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
743                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
744         }
745 }
746
747
748 /*
749  * Called from need_singlestep.  Set up the control registers and the enable
750  * register, then return back.
751  */
752
753 void single_step_once(struct pt_regs *regs)
754 {
755         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
756         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
757
758         *ss_pc = regs->pc;
759         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
760         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
761         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
762         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
763 }
764
765 void single_step_execve(void)
766 {
767         /* Nothing */
768 }
769
770 #endif /* !__tilegx__ */