]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/tile/kernel/single_step.c
arch/tile: support TIF_NOTIFY_RESUME
[mv-sheeva.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159         /* Handle unaligned load/store */
160         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161                 unsigned short val_16;
162                 switch (size) {
163                 case 2:
164                         err = copy_from_user(&val_16, addr, sizeof(val_16));
165                         val = sign_ext ? ((short)val_16) : val_16;
166                         break;
167                 case 4:
168                         err = copy_from_user(&val, addr, sizeof(val));
169                         break;
170                 default:
171                         BUG();
172                 }
173                 if (err == 0) {
174                         state->update_reg = val_reg;
175                         state->update_value = val;
176                         state->update = 1;
177                 }
178         } else {
179                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180                 err = copy_to_user(addr, &val, size);
181         }
182
183         if (err) {
184                 siginfo_t info = {
185                         .si_signo = SIGSEGV,
186                         .si_code = SEGV_MAPERR,
187                         .si_addr = addr
188                 };
189                 force_sig_info(info.si_signo, &info, current);
190                 return (tile_bundle_bits) 0;
191         }
192
193         if (unaligned_fixup == 0) {
194                 siginfo_t info = {
195                         .si_signo = SIGBUS,
196                         .si_code = BUS_ADRALN,
197                         .si_addr = addr
198                 };
199                 force_sig_info(info.si_signo, &info, current);
200                 return (tile_bundle_bits) 0;
201         }
202
203         if (unaligned_printk || unaligned_fixup_count == 0) {
204                 pr_info("Process %d/%s: PC %#lx: Fixup of"
205                         " unaligned %s at %#lx.\n",
206                         current->pid, current->comm, regs->pc,
207                         (mem_op == MEMOP_LOAD ||
208                          mem_op == MEMOP_LOAD_POSTINCR) ?
209                         "load" : "store",
210                         (unsigned long)addr);
211                 if (!unaligned_printk) {
212 #define P pr_info
213 P("\n");
214 P("Unaligned fixups in the kernel will slow your application considerably.\n");
215 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218 P("access will become a SIGBUS you can debug. No further warnings will be\n");
219 P("shown so as to avoid additional slowdown, but you can track the number\n");
220 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
222 P("\n");
223 #undef P
224                 }
225         }
226         ++unaligned_fixup_count;
227
228         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
229                 /* Convert the Y2 instruction to a prefetch. */
230                 bundle &= ~(create_SrcBDest_Y2(-1) |
231                             create_Opcode_Y2(-1));
232                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
233                            create_Opcode_Y2(LW_OPCODE_Y2));
234         /* Replace the load postincr with an addi */
235         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
236                 bundle = addi_X1(bundle, addr_reg, addr_reg,
237                                  get_Imm8_X1(bundle));
238         /* Replace the store postincr with an addi */
239         } else if (mem_op == MEMOP_STORE_POSTINCR) {
240                 bundle = addi_X1(bundle, addr_reg, addr_reg,
241                                  get_Dest_Imm8_X1(bundle));
242         } else {
243                 /* Convert the X1 instruction to a nop. */
244                 bundle &= ~(create_Opcode_X1(-1) |
245                             create_UnShOpcodeExtension_X1(-1) |
246                             create_UnOpcodeExtension_X1(-1));
247                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
248                            create_UnShOpcodeExtension_X1(
249                                    UN_0_SHUN_0_OPCODE_X1) |
250                            create_UnOpcodeExtension_X1(
251                                    NOP_UN_0_SHUN_0_OPCODE_X1));
252         }
253
254         return bundle;
255 }
256
257 /*
258  * Called after execve() has started the new image.  This allows us
259  * to reset the info state.  Note that the the mmap'ed memory, if there
260  * was any, has already been unmapped by the exec.
261  */
262 void single_step_execve(void)
263 {
264         struct thread_info *ti = current_thread_info();
265         kfree(ti->step_state);
266         ti->step_state = NULL;
267 }
268
269 /**
270  * single_step_once() - entry point when single stepping has been triggered.
271  * @regs: The machine register state
272  *
273  *  When we arrive at this routine via a trampoline, the single step
274  *  engine copies the executing bundle to the single step buffer.
275  *  If the instruction is a condition branch, then the target is
276  *  reset to one past the next instruction. If the instruction
277  *  sets the lr, then that is noted. If the instruction is a jump
278  *  or call, then the new target pc is preserved and the current
279  *  bundle instruction set to null.
280  *
281  *  The necessary post-single-step rewriting information is stored in
282  *  single_step_state->  We use data segment values because the
283  *  stack will be rewound when we run the rewritten single-stepped
284  *  instruction.
285  */
286 void single_step_once(struct pt_regs *regs)
287 {
288         extern tile_bundle_bits __single_step_ill_insn;
289         extern tile_bundle_bits __single_step_j_insn;
290         extern tile_bundle_bits __single_step_addli_insn;
291         extern tile_bundle_bits __single_step_auli_insn;
292         struct thread_info *info = (void *)current_thread_info();
293         struct single_step_state *state = info->step_state;
294         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
295         tile_bundle_bits __user *buffer, *pc;
296         tile_bundle_bits bundle;
297         int temp_reg;
298         int target_reg = TREG_LR;
299         int err;
300         enum mem_op mem_op = MEMOP_NONE;
301         int size = 0, sign_ext = 0;  /* happy compiler */
302
303         asm(
304 "    .pushsection .rodata.single_step\n"
305 "    .align 8\n"
306 "    .globl    __single_step_ill_insn\n"
307 "__single_step_ill_insn:\n"
308 "    ill\n"
309 "    .globl    __single_step_addli_insn\n"
310 "__single_step_addli_insn:\n"
311 "    { nop; addli r0, zero, 0 }\n"
312 "    .globl    __single_step_auli_insn\n"
313 "__single_step_auli_insn:\n"
314 "    { nop; auli r0, r0, 0 }\n"
315 "    .globl    __single_step_j_insn\n"
316 "__single_step_j_insn:\n"
317 "    j .\n"
318 "    .popsection\n"
319         );
320
321         /*
322          * Enable interrupts here to allow touching userspace and the like.
323          * The callers expect this: do_trap() already has interrupts
324          * enabled, and do_work_pending() handles functions that enable
325          * interrupts internally.
326          */
327         local_irq_enable();
328
329         if (state == NULL) {
330                 /* allocate a page of writable, executable memory */
331                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
332                 if (state == NULL) {
333                         pr_err("Out of kernel memory trying to single-step\n");
334                         return;
335                 }
336
337                 /* allocate a cache line of writable, executable memory */
338                 down_write(&current->mm->mmap_sem);
339                 buffer = (void __user *) do_mmap(NULL, 0, 64,
340                                           PROT_EXEC | PROT_READ | PROT_WRITE,
341                                           MAP_PRIVATE | MAP_ANONYMOUS,
342                                           0);
343                 up_write(&current->mm->mmap_sem);
344
345                 if (IS_ERR((void __force *)buffer)) {
346                         kfree(state);
347                         pr_err("Out of kernel pages trying to single-step\n");
348                         return;
349                 }
350
351                 state->buffer = buffer;
352                 state->is_enabled = 0;
353
354                 info->step_state = state;
355
356                 /* Validate our stored instruction patterns */
357                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
358                        ADDLI_OPCODE_X1);
359                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
360                        AULI_OPCODE_X1);
361                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
362                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
363                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
364         }
365
366         /*
367          * If we are returning from a syscall, we still haven't hit the
368          * "ill" for the swint1 instruction.  So back the PC up to be
369          * pointing at the swint1, but we'll actually return directly
370          * back to the "ill" so we come back in via SIGILL as if we
371          * had "executed" the swint1 without ever being in kernel space.
372          */
373         if (regs->faultnum == INT_SWINT_1)
374                 regs->pc -= 8;
375
376         pc = (tile_bundle_bits __user *)(regs->pc);
377         if (get_user(bundle, pc) != 0) {
378                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
379                 return;
380         }
381
382         /* We'll follow the instruction with 2 ill op bundles */
383         state->orig_pc = (unsigned long)pc;
384         state->next_pc = (unsigned long)(pc + 1);
385         state->branch_next_pc = 0;
386         state->update = 0;
387
388         if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
389                 /* two wide, check for control flow */
390                 int opcode = get_Opcode_X1(bundle);
391
392                 switch (opcode) {
393                 /* branches */
394                 case BRANCH_OPCODE_X1:
395                 {
396                         s32 offset = signExtend17(get_BrOff_X1(bundle));
397
398                         /*
399                          * For branches, we use a rewriting trick to let the
400                          * hardware evaluate whether the branch is taken or
401                          * untaken.  We record the target offset and then
402                          * rewrite the branch instruction to target 1 insn
403                          * ahead if the branch is taken.  We then follow the
404                          * rewritten branch with two bundles, each containing
405                          * an "ill" instruction. The supervisor examines the
406                          * pc after the single step code is executed, and if
407                          * the pc is the first ill instruction, then the
408                          * branch (if any) was not taken.  If the pc is the
409                          * second ill instruction, then the branch was
410                          * taken. The new pc is computed for these cases, and
411                          * inserted into the registers for the thread.  If
412                          * the pc is the start of the single step code, then
413                          * an exception or interrupt was taken before the
414                          * code started processing, and the same "original"
415                          * pc is restored.  This change, different from the
416                          * original implementation, has the advantage of
417                          * executing a single user instruction.
418                          */
419                         state->branch_next_pc = (unsigned long)(pc + offset);
420
421                         /* rewrite branch offset to go forward one bundle */
422                         bundle = set_BrOff_X1(bundle, 2);
423                 }
424                 break;
425
426                 /* jumps */
427                 case JALB_OPCODE_X1:
428                 case JALF_OPCODE_X1:
429                         state->update = 1;
430                         state->next_pc =
431                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
432                         break;
433
434                 case JB_OPCODE_X1:
435                 case JF_OPCODE_X1:
436                         state->next_pc =
437                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
438                         bundle = nop_X1(bundle);
439                         break;
440
441                 case SPECIAL_0_OPCODE_X1:
442                         switch (get_RRROpcodeExtension_X1(bundle)) {
443                         /* jump-register */
444                         case JALRP_SPECIAL_0_OPCODE_X1:
445                         case JALR_SPECIAL_0_OPCODE_X1:
446                                 state->update = 1;
447                                 state->next_pc =
448                                         regs->regs[get_SrcA_X1(bundle)];
449                                 break;
450
451                         case JRP_SPECIAL_0_OPCODE_X1:
452                         case JR_SPECIAL_0_OPCODE_X1:
453                                 state->next_pc =
454                                         regs->regs[get_SrcA_X1(bundle)];
455                                 bundle = nop_X1(bundle);
456                                 break;
457
458                         case LNK_SPECIAL_0_OPCODE_X1:
459                                 state->update = 1;
460                                 target_reg = get_Dest_X1(bundle);
461                                 break;
462
463                         /* stores */
464                         case SH_SPECIAL_0_OPCODE_X1:
465                                 mem_op = MEMOP_STORE;
466                                 size = 2;
467                                 break;
468
469                         case SW_SPECIAL_0_OPCODE_X1:
470                                 mem_op = MEMOP_STORE;
471                                 size = 4;
472                                 break;
473                         }
474                         break;
475
476                 /* loads and iret */
477                 case SHUN_0_OPCODE_X1:
478                         if (get_UnShOpcodeExtension_X1(bundle) ==
479                             UN_0_SHUN_0_OPCODE_X1) {
480                                 switch (get_UnOpcodeExtension_X1(bundle)) {
481                                 case LH_UN_0_SHUN_0_OPCODE_X1:
482                                         mem_op = MEMOP_LOAD;
483                                         size = 2;
484                                         sign_ext = 1;
485                                         break;
486
487                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
488                                         mem_op = MEMOP_LOAD;
489                                         size = 2;
490                                         sign_ext = 0;
491                                         break;
492
493                                 case LW_UN_0_SHUN_0_OPCODE_X1:
494                                         mem_op = MEMOP_LOAD;
495                                         size = 4;
496                                         break;
497
498                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
499                                 {
500                                         unsigned long ex0_0 = __insn_mfspr(
501                                                 SPR_EX_CONTEXT_0_0);
502                                         unsigned long ex0_1 = __insn_mfspr(
503                                                 SPR_EX_CONTEXT_0_1);
504                                         /*
505                                          * Special-case it if we're iret'ing
506                                          * to PL0 again.  Otherwise just let
507                                          * it run and it will generate SIGILL.
508                                          */
509                                         if (EX1_PL(ex0_1) == USER_PL) {
510                                                 state->next_pc = ex0_0;
511                                                 regs->ex1 = ex0_1;
512                                                 bundle = nop_X1(bundle);
513                                         }
514                                 }
515                                 }
516                         }
517                         break;
518
519 #if CHIP_HAS_WH64()
520                 /* postincrement operations */
521                 case IMM_0_OPCODE_X1:
522                         switch (get_ImmOpcodeExtension_X1(bundle)) {
523                         case LWADD_IMM_0_OPCODE_X1:
524                                 mem_op = MEMOP_LOAD_POSTINCR;
525                                 size = 4;
526                                 break;
527
528                         case LHADD_IMM_0_OPCODE_X1:
529                                 mem_op = MEMOP_LOAD_POSTINCR;
530                                 size = 2;
531                                 sign_ext = 1;
532                                 break;
533
534                         case LHADD_U_IMM_0_OPCODE_X1:
535                                 mem_op = MEMOP_LOAD_POSTINCR;
536                                 size = 2;
537                                 sign_ext = 0;
538                                 break;
539
540                         case SWADD_IMM_0_OPCODE_X1:
541                                 mem_op = MEMOP_STORE_POSTINCR;
542                                 size = 4;
543                                 break;
544
545                         case SHADD_IMM_0_OPCODE_X1:
546                                 mem_op = MEMOP_STORE_POSTINCR;
547                                 size = 2;
548                                 break;
549
550                         default:
551                                 break;
552                         }
553                         break;
554 #endif /* CHIP_HAS_WH64() */
555                 }
556
557                 if (state->update) {
558                         /*
559                          * Get an available register.  We start with a
560                          * bitmask with 1's for available registers.
561                          * We truncate to the low 32 registers since
562                          * we are guaranteed to have set bits in the
563                          * low 32 bits, then use ctz to pick the first.
564                          */
565                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
566                                            (1ULL << get_SrcA_X0(bundle)) |
567                                            (1ULL << get_SrcB_X0(bundle)) |
568                                            (1ULL << target_reg));
569                         temp_reg = __builtin_ctz(mask);
570                         state->update_reg = temp_reg;
571                         state->update_value = regs->regs[temp_reg];
572                         regs->regs[temp_reg] = (unsigned long) (pc+1);
573                         regs->flags |= PT_FLAGS_RESTORE_REGS;
574                         bundle = move_X1(bundle, target_reg, temp_reg);
575                 }
576         } else {
577                 int opcode = get_Opcode_Y2(bundle);
578
579                 switch (opcode) {
580                 /* loads */
581                 case LH_OPCODE_Y2:
582                         mem_op = MEMOP_LOAD;
583                         size = 2;
584                         sign_ext = 1;
585                         break;
586
587                 case LH_U_OPCODE_Y2:
588                         mem_op = MEMOP_LOAD;
589                         size = 2;
590                         sign_ext = 0;
591                         break;
592
593                 case LW_OPCODE_Y2:
594                         mem_op = MEMOP_LOAD;
595                         size = 4;
596                         break;
597
598                 /* stores */
599                 case SH_OPCODE_Y2:
600                         mem_op = MEMOP_STORE;
601                         size = 2;
602                         break;
603
604                 case SW_OPCODE_Y2:
605                         mem_op = MEMOP_STORE;
606                         size = 4;
607                         break;
608                 }
609         }
610
611         /*
612          * Check if we need to rewrite an unaligned load/store.
613          * Returning zero is a special value meaning we need to SIGSEGV.
614          */
615         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
616                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
617                                                       mem_op, size, sign_ext);
618                 if (bundle == 0)
619                         return;
620         }
621
622         /* write the bundle to our execution area */
623         buffer = state->buffer;
624         err = __put_user(bundle, buffer++);
625
626         /*
627          * If we're really single-stepping, we take an INT_ILL after.
628          * If we're just handling an unaligned access, we can just
629          * jump directly back to where we were in user code.
630          */
631         if (is_single_step) {
632                 err |= __put_user(__single_step_ill_insn, buffer++);
633                 err |= __put_user(__single_step_ill_insn, buffer++);
634         } else {
635                 long delta;
636
637                 if (state->update) {
638                         /* We have some state to update; do it inline */
639                         int ha16;
640                         bundle = __single_step_addli_insn;
641                         bundle |= create_Dest_X1(state->update_reg);
642                         bundle |= create_Imm16_X1(state->update_value);
643                         err |= __put_user(bundle, buffer++);
644                         bundle = __single_step_auli_insn;
645                         bundle |= create_Dest_X1(state->update_reg);
646                         bundle |= create_SrcA_X1(state->update_reg);
647                         ha16 = (state->update_value + 0x8000) >> 16;
648                         bundle |= create_Imm16_X1(ha16);
649                         err |= __put_user(bundle, buffer++);
650                         state->update = 0;
651                 }
652
653                 /* End with a jump back to the next instruction */
654                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
655                         (unsigned long)buffer) >>
656                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
657                 bundle = __single_step_j_insn;
658                 bundle |= create_JOffLong_X1(delta);
659                 err |= __put_user(bundle, buffer++);
660         }
661
662         if (err) {
663                 pr_err("Fault when writing to single-step buffer\n");
664                 return;
665         }
666
667         /*
668          * Flush the buffer.
669          * We do a local flush only, since this is a thread-specific buffer.
670          */
671         __flush_icache_range((unsigned long)state->buffer,
672                              (unsigned long)buffer);
673
674         /* Indicate enabled */
675         state->is_enabled = is_single_step;
676         regs->pc = (unsigned long)state->buffer;
677
678         /* Fault immediately if we are coming back from a syscall. */
679         if (regs->faultnum == INT_SWINT_1)
680                 regs->pc += 8;
681 }
682
683 #else
684 #include <linux/smp.h>
685 #include <linux/ptrace.h>
686 #include <arch/spr_def.h>
687
688 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
689
690
691 /*
692  * Called directly on the occasion of an interrupt.
693  *
694  * If the process doesn't have single step set, then we use this as an
695  * opportunity to turn single step off.
696  *
697  * It has been mentioned that we could conditionally turn off single stepping
698  * on each entry into the kernel and rely on single_step_once to turn it
699  * on for the processes that matter (as we already do), but this
700  * implementation is somewhat more efficient in that we muck with registers
701  * once on a bum interrupt rather than on every entry into the kernel.
702  *
703  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
704  * so we have to run through this process again before we can say that an
705  * instruction has executed.
706  *
707  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
708  * it changes the PC.  If it hasn't changed, then we know that the interrupt
709  * wasn't generated by swint and we'll need to run this process again before
710  * we can say an instruction has executed.
711  *
712  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
713  * on with our lives.
714  */
715
716 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
717 {
718         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
719         struct thread_info *info = (void *)current_thread_info();
720         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
721         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
722
723         if (is_single_step == 0) {
724                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
725
726         } else if ((*ss_pc != regs->pc) ||
727                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
728
729                 ptrace_notify(SIGTRAP);
730                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
731                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
732                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
733         }
734 }
735
736
737 /*
738  * Called from need_singlestep.  Set up the control registers and the enable
739  * register, then return back.
740  */
741
742 void single_step_once(struct pt_regs *regs)
743 {
744         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
745         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
746
747         *ss_pc = regs->pc;
748         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
749         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
750         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
751         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
752 }
753
754 void single_step_execve(void)
755 {
756         /* Nothing */
757 }
758
759 #endif /* !__tilegx__ */