]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/tile/kernel/single_step.c
Merge branch 'master' into for-linus
[mv-sheeva.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* No support for single-step yet. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <asm/cacheflush.h>
27 #include <asm/opcode-tile.h>
28 #include <asm/opcode_constants.h>
29 #include <arch/abi.h>
30
31 #define signExtend17(val) sign_extend((val), 17)
32 #define TILE_X1_MASK (0xffffffffULL << 31)
33
34 int unaligned_printk;
35
36 static int __init setup_unaligned_printk(char *str)
37 {
38         long val;
39         if (strict_strtol(str, 0, &val) != 0)
40                 return 0;
41         unaligned_printk = val;
42         printk("Printk for each unaligned data accesses is %s\n",
43                unaligned_printk ? "enabled" : "disabled");
44         return 1;
45 }
46 __setup("unaligned_printk=", setup_unaligned_printk);
47
48 unsigned int unaligned_fixup_count;
49
50 enum mem_op {
51         MEMOP_NONE,
52         MEMOP_LOAD,
53         MEMOP_STORE,
54         MEMOP_LOAD_POSTINCR,
55         MEMOP_STORE_POSTINCR
56 };
57
58 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset)
59 {
60         tile_bundle_bits result;
61
62         /* mask out the old offset */
63         tile_bundle_bits mask = create_BrOff_X1(-1);
64         result = n & (~mask);
65
66         /* or in the new offset */
67         result |= create_BrOff_X1(offset);
68
69         return result;
70 }
71
72 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
73 {
74         tile_bundle_bits result;
75         tile_bundle_bits op;
76
77         result = n & (~TILE_X1_MASK);
78
79         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
80                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
81                 create_Dest_X1(dest) |
82                 create_SrcB_X1(TREG_ZERO) |
83                 create_SrcA_X1(src) ;
84
85         result |= op;
86         return result;
87 }
88
89 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
90 {
91         return move_X1(n, TREG_ZERO, TREG_ZERO);
92 }
93
94 static inline tile_bundle_bits addi_X1(
95         tile_bundle_bits n, int dest, int src, int imm)
96 {
97         n &= ~TILE_X1_MASK;
98
99         n |=  (create_SrcA_X1(src) |
100                create_Dest_X1(dest) |
101                create_Imm8_X1(imm) |
102                create_S_X1(0) |
103                create_Opcode_X1(IMM_0_OPCODE_X1) |
104                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
105
106         return n;
107 }
108
109 static tile_bundle_bits rewrite_load_store_unaligned(
110         struct single_step_state *state,
111         tile_bundle_bits bundle,
112         struct pt_regs *regs,
113         enum mem_op mem_op,
114         int size, int sign_ext)
115 {
116         unsigned char *addr;
117         int val_reg, addr_reg, err, val;
118
119         /* Get address and value registers */
120         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
121                 addr_reg = get_SrcA_Y2(bundle);
122                 val_reg = get_SrcBDest_Y2(bundle);
123         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
124                 addr_reg = get_SrcA_X1(bundle);
125                 val_reg  = get_Dest_X1(bundle);
126         } else {
127                 addr_reg = get_SrcA_X1(bundle);
128                 val_reg  = get_SrcB_X1(bundle);
129         }
130
131         /*
132          * If registers are not GPRs, don't try to handle it.
133          *
134          * FIXME: we could handle non-GPR loads by getting the real value
135          * from memory, writing it to the single step buffer, using a
136          * temp_reg to hold a pointer to that memory, then executing that
137          * instruction and resetting temp_reg.  For non-GPR stores, it's a
138          * little trickier; we could use the single step buffer for that
139          * too, but we'd have to add some more state bits so that we could
140          * call back in here to copy that value to the real target.  For
141          * now, we just handle the simple case.
142          */
143         if ((val_reg >= PTREGS_NR_GPRS &&
144              (val_reg != TREG_ZERO ||
145               mem_op == MEMOP_LOAD ||
146               mem_op == MEMOP_LOAD_POSTINCR)) ||
147             addr_reg >= PTREGS_NR_GPRS)
148                 return bundle;
149
150         /* If it's aligned, don't handle it specially */
151         addr = (void *)regs->regs[addr_reg];
152         if (((unsigned long)addr % size) == 0)
153                 return bundle;
154
155 #ifndef __LITTLE_ENDIAN
156 # error We assume little-endian representation with copy_xx_user size 2 here
157 #endif
158         /* Handle unaligned load/store */
159         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
160                 unsigned short val_16;
161                 switch (size) {
162                 case 2:
163                         err = copy_from_user(&val_16, addr, sizeof(val_16));
164                         val = sign_ext ? ((short)val_16) : val_16;
165                         break;
166                 case 4:
167                         err = copy_from_user(&val, addr, sizeof(val));
168                         break;
169                 default:
170                         BUG();
171                 }
172                 if (err == 0) {
173                         state->update_reg = val_reg;
174                         state->update_value = val;
175                         state->update = 1;
176                 }
177         } else {
178                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
179                 err = copy_to_user(addr, &val, size);
180         }
181
182         if (err) {
183                 siginfo_t info = {
184                         .si_signo = SIGSEGV,
185                         .si_code = SEGV_MAPERR,
186                         .si_addr = (void __user *)addr
187                 };
188                 force_sig_info(info.si_signo, &info, current);
189                 return (tile_bundle_bits) 0;
190         }
191
192         if (unaligned_fixup == 0) {
193                 siginfo_t info = {
194                         .si_signo = SIGBUS,
195                         .si_code = BUS_ADRALN,
196                         .si_addr = (void __user *)addr
197                 };
198                 force_sig_info(info.si_signo, &info, current);
199                 return (tile_bundle_bits) 0;
200         }
201
202         if (unaligned_printk || unaligned_fixup_count == 0) {
203                 printk("Process %d/%s: PC %#lx: Fixup of"
204                        " unaligned %s at %#lx.\n",
205                        current->pid, current->comm, regs->pc,
206                        (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) ?
207                          "load" : "store",
208                        (unsigned long)addr);
209                 if (!unaligned_printk) {
210                         printk("\n"
211 "Unaligned fixups in the kernel will slow your application considerably.\n"
212 "You can find them by writing \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"
213 "which requests the kernel show all unaligned fixups, or writing a \"0\"\n"
214 "to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"
215 "access will become a SIGBUS you can debug. No further warnings will be\n"
216 "shown so as to avoid additional slowdown, but you can track the number\n"
217 "of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"
218 "Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"
219                                 "\n");
220                 }
221         }
222         ++unaligned_fixup_count;
223
224         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
225                 /* Convert the Y2 instruction to a prefetch. */
226                 bundle &= ~(create_SrcBDest_Y2(-1) |
227                             create_Opcode_Y2(-1));
228                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
229                            create_Opcode_Y2(LW_OPCODE_Y2));
230         /* Replace the load postincr with an addi */
231         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
232                 bundle = addi_X1(bundle, addr_reg, addr_reg,
233                                  get_Imm8_X1(bundle));
234         /* Replace the store postincr with an addi */
235         } else if (mem_op == MEMOP_STORE_POSTINCR) {
236                 bundle = addi_X1(bundle, addr_reg, addr_reg,
237                                  get_Dest_Imm8_X1(bundle));
238         } else {
239                 /* Convert the X1 instruction to a nop. */
240                 bundle &= ~(create_Opcode_X1(-1) |
241                             create_UnShOpcodeExtension_X1(-1) |
242                             create_UnOpcodeExtension_X1(-1));
243                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
244                            create_UnShOpcodeExtension_X1(
245                                    UN_0_SHUN_0_OPCODE_X1) |
246                            create_UnOpcodeExtension_X1(
247                                    NOP_UN_0_SHUN_0_OPCODE_X1));
248         }
249
250         return bundle;
251 }
252
253 /**
254  * single_step_once() - entry point when single stepping has been triggered.
255  * @regs: The machine register state
256  *
257  *  When we arrive at this routine via a trampoline, the single step
258  *  engine copies the executing bundle to the single step buffer.
259  *  If the instruction is a condition branch, then the target is
260  *  reset to one past the next instruction. If the instruction
261  *  sets the lr, then that is noted. If the instruction is a jump
262  *  or call, then the new target pc is preserved and the current
263  *  bundle instruction set to null.
264  *
265  *  The necessary post-single-step rewriting information is stored in
266  *  single_step_state->  We use data segment values because the
267  *  stack will be rewound when we run the rewritten single-stepped
268  *  instruction.
269  */
270 void single_step_once(struct pt_regs *regs)
271 {
272         extern tile_bundle_bits __single_step_ill_insn;
273         extern tile_bundle_bits __single_step_j_insn;
274         extern tile_bundle_bits __single_step_addli_insn;
275         extern tile_bundle_bits __single_step_auli_insn;
276         struct thread_info *info = (void *)current_thread_info();
277         struct single_step_state *state = info->step_state;
278         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
279         tile_bundle_bits *buffer, *pc;
280         tile_bundle_bits bundle;
281         int temp_reg;
282         int target_reg = TREG_LR;
283         int err;
284         enum mem_op mem_op = MEMOP_NONE;
285         int size = 0, sign_ext = 0;  /* happy compiler */
286
287         asm(
288 "    .pushsection .rodata.single_step\n"
289 "    .align 8\n"
290 "    .globl    __single_step_ill_insn\n"
291 "__single_step_ill_insn:\n"
292 "    ill\n"
293 "    .globl    __single_step_addli_insn\n"
294 "__single_step_addli_insn:\n"
295 "    { nop; addli r0, zero, 0 }\n"
296 "    .globl    __single_step_auli_insn\n"
297 "__single_step_auli_insn:\n"
298 "    { nop; auli r0, r0, 0 }\n"
299 "    .globl    __single_step_j_insn\n"
300 "__single_step_j_insn:\n"
301 "    j .\n"
302 "    .popsection\n"
303         );
304
305         if (state == NULL) {
306                 /* allocate a page of writable, executable memory */
307                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
308                 if (state == NULL) {
309                         printk("Out of kernel memory trying to single-step\n");
310                         return;
311                 }
312
313                 /* allocate a cache line of writable, executable memory */
314                 down_write(&current->mm->mmap_sem);
315                 buffer = (void *) do_mmap(0, 0, 64,
316                                           PROT_EXEC | PROT_READ | PROT_WRITE,
317                                           MAP_PRIVATE | MAP_ANONYMOUS,
318                                           0);
319                 up_write(&current->mm->mmap_sem);
320
321                 if ((int)buffer < 0 && (int)buffer > -PAGE_SIZE) {
322                         kfree(state);
323                         printk("Out of kernel pages trying to single-step\n");
324                         return;
325                 }
326
327                 state->buffer = buffer;
328                 state->is_enabled = 0;
329
330                 info->step_state = state;
331
332                 /* Validate our stored instruction patterns */
333                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
334                        ADDLI_OPCODE_X1);
335                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
336                        AULI_OPCODE_X1);
337                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
338                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
339                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
340         }
341
342         /*
343          * If we are returning from a syscall, we still haven't hit the
344          * "ill" for the swint1 instruction.  So back the PC up to be
345          * pointing at the swint1, but we'll actually return directly
346          * back to the "ill" so we come back in via SIGILL as if we
347          * had "executed" the swint1 without ever being in kernel space.
348          */
349         if (regs->faultnum == INT_SWINT_1)
350                 regs->pc -= 8;
351
352         pc = (tile_bundle_bits *)(regs->pc);
353         bundle = pc[0];
354
355         /* We'll follow the instruction with 2 ill op bundles */
356         state->orig_pc = (unsigned long) pc;
357         state->next_pc = (unsigned long)(pc + 1);
358         state->branch_next_pc = 0;
359         state->update = 0;
360
361         if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
362                 /* two wide, check for control flow */
363                 int opcode = get_Opcode_X1(bundle);
364
365                 switch (opcode) {
366                 /* branches */
367                 case BRANCH_OPCODE_X1:
368                 {
369                         int32_t offset = signExtend17(get_BrOff_X1(bundle));
370
371                         /*
372                          * For branches, we use a rewriting trick to let the
373                          * hardware evaluate whether the branch is taken or
374                          * untaken.  We record the target offset and then
375                          * rewrite the branch instruction to target 1 insn
376                          * ahead if the branch is taken.  We then follow the
377                          * rewritten branch with two bundles, each containing
378                          * an "ill" instruction. The supervisor examines the
379                          * pc after the single step code is executed, and if
380                          * the pc is the first ill instruction, then the
381                          * branch (if any) was not taken.  If the pc is the
382                          * second ill instruction, then the branch was
383                          * taken. The new pc is computed for these cases, and
384                          * inserted into the registers for the thread.  If
385                          * the pc is the start of the single step code, then
386                          * an exception or interrupt was taken before the
387                          * code started processing, and the same "original"
388                          * pc is restored.  This change, different from the
389                          * original implementation, has the advantage of
390                          * executing a single user instruction.
391                          */
392                         state->branch_next_pc = (unsigned long)(pc + offset);
393
394                         /* rewrite branch offset to go forward one bundle */
395                         bundle = set_BrOff_X1(bundle, 2);
396                 }
397                 break;
398
399                 /* jumps */
400                 case JALB_OPCODE_X1:
401                 case JALF_OPCODE_X1:
402                         state->update = 1;
403                         state->next_pc =
404                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
405                         break;
406
407                 case JB_OPCODE_X1:
408                 case JF_OPCODE_X1:
409                         state->next_pc =
410                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
411                         bundle = nop_X1(bundle);
412                         break;
413
414                 case SPECIAL_0_OPCODE_X1:
415                         switch (get_RRROpcodeExtension_X1(bundle)) {
416                         /* jump-register */
417                         case JALRP_SPECIAL_0_OPCODE_X1:
418                         case JALR_SPECIAL_0_OPCODE_X1:
419                                 state->update = 1;
420                                 state->next_pc =
421                                         regs->regs[get_SrcA_X1(bundle)];
422                                 break;
423
424                         case JRP_SPECIAL_0_OPCODE_X1:
425                         case JR_SPECIAL_0_OPCODE_X1:
426                                 state->next_pc =
427                                         regs->regs[get_SrcA_X1(bundle)];
428                                 bundle = nop_X1(bundle);
429                                 break;
430
431                         case LNK_SPECIAL_0_OPCODE_X1:
432                                 state->update = 1;
433                                 target_reg = get_Dest_X1(bundle);
434                                 break;
435
436                         /* stores */
437                         case SH_SPECIAL_0_OPCODE_X1:
438                                 mem_op = MEMOP_STORE;
439                                 size = 2;
440                                 break;
441
442                         case SW_SPECIAL_0_OPCODE_X1:
443                                 mem_op = MEMOP_STORE;
444                                 size = 4;
445                                 break;
446                         }
447                         break;
448
449                 /* loads and iret */
450                 case SHUN_0_OPCODE_X1:
451                         if (get_UnShOpcodeExtension_X1(bundle) ==
452                             UN_0_SHUN_0_OPCODE_X1) {
453                                 switch (get_UnOpcodeExtension_X1(bundle)) {
454                                 case LH_UN_0_SHUN_0_OPCODE_X1:
455                                         mem_op = MEMOP_LOAD;
456                                         size = 2;
457                                         sign_ext = 1;
458                                         break;
459
460                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
461                                         mem_op = MEMOP_LOAD;
462                                         size = 2;
463                                         sign_ext = 0;
464                                         break;
465
466                                 case LW_UN_0_SHUN_0_OPCODE_X1:
467                                         mem_op = MEMOP_LOAD;
468                                         size = 4;
469                                         break;
470
471                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
472                                 {
473                                         unsigned long ex0_0 = __insn_mfspr(
474                                                 SPR_EX_CONTEXT_0_0);
475                                         unsigned long ex0_1 = __insn_mfspr(
476                                                 SPR_EX_CONTEXT_0_1);
477                                         /*
478                                          * Special-case it if we're iret'ing
479                                          * to PL0 again.  Otherwise just let
480                                          * it run and it will generate SIGILL.
481                                          */
482                                         if (EX1_PL(ex0_1) == USER_PL) {
483                                                 state->next_pc = ex0_0;
484                                                 regs->ex1 = ex0_1;
485                                                 bundle = nop_X1(bundle);
486                                         }
487                                 }
488                                 }
489                         }
490                         break;
491
492 #if CHIP_HAS_WH64()
493                 /* postincrement operations */
494                 case IMM_0_OPCODE_X1:
495                         switch (get_ImmOpcodeExtension_X1(bundle)) {
496                         case LWADD_IMM_0_OPCODE_X1:
497                                 mem_op = MEMOP_LOAD_POSTINCR;
498                                 size = 4;
499                                 break;
500
501                         case LHADD_IMM_0_OPCODE_X1:
502                                 mem_op = MEMOP_LOAD_POSTINCR;
503                                 size = 2;
504                                 sign_ext = 1;
505                                 break;
506
507                         case LHADD_U_IMM_0_OPCODE_X1:
508                                 mem_op = MEMOP_LOAD_POSTINCR;
509                                 size = 2;
510                                 sign_ext = 0;
511                                 break;
512
513                         case SWADD_IMM_0_OPCODE_X1:
514                                 mem_op = MEMOP_STORE_POSTINCR;
515                                 size = 4;
516                                 break;
517
518                         case SHADD_IMM_0_OPCODE_X1:
519                                 mem_op = MEMOP_STORE_POSTINCR;
520                                 size = 2;
521                                 break;
522
523                         default:
524                                 break;
525                         }
526                         break;
527 #endif /* CHIP_HAS_WH64() */
528                 }
529
530                 if (state->update) {
531                         /*
532                          * Get an available register.  We start with a
533                          * bitmask with 1's for available registers.
534                          * We truncate to the low 32 registers since
535                          * we are guaranteed to have set bits in the
536                          * low 32 bits, then use ctz to pick the first.
537                          */
538                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
539                                            (1ULL << get_SrcA_X0(bundle)) |
540                                            (1ULL << get_SrcB_X0(bundle)) |
541                                            (1ULL << target_reg));
542                         temp_reg = __builtin_ctz(mask);
543                         state->update_reg = temp_reg;
544                         state->update_value = regs->regs[temp_reg];
545                         regs->regs[temp_reg] = (unsigned long) (pc+1);
546                         regs->flags |= PT_FLAGS_RESTORE_REGS;
547                         bundle = move_X1(bundle, target_reg, temp_reg);
548                 }
549         } else {
550                 int opcode = get_Opcode_Y2(bundle);
551
552                 switch (opcode) {
553                 /* loads */
554                 case LH_OPCODE_Y2:
555                         mem_op = MEMOP_LOAD;
556                         size = 2;
557                         sign_ext = 1;
558                         break;
559
560                 case LH_U_OPCODE_Y2:
561                         mem_op = MEMOP_LOAD;
562                         size = 2;
563                         sign_ext = 0;
564                         break;
565
566                 case LW_OPCODE_Y2:
567                         mem_op = MEMOP_LOAD;
568                         size = 4;
569                         break;
570
571                 /* stores */
572                 case SH_OPCODE_Y2:
573                         mem_op = MEMOP_STORE;
574                         size = 2;
575                         break;
576
577                 case SW_OPCODE_Y2:
578                         mem_op = MEMOP_STORE;
579                         size = 4;
580                         break;
581                 }
582         }
583
584         /*
585          * Check if we need to rewrite an unaligned load/store.
586          * Returning zero is a special value meaning we need to SIGSEGV.
587          */
588         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
589                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
590                                                       mem_op, size, sign_ext);
591                 if (bundle == 0)
592                         return;
593         }
594
595         /* write the bundle to our execution area */
596         buffer = state->buffer;
597         err = __put_user(bundle, buffer++);
598
599         /*
600          * If we're really single-stepping, we take an INT_ILL after.
601          * If we're just handling an unaligned access, we can just
602          * jump directly back to where we were in user code.
603          */
604         if (is_single_step) {
605                 err |= __put_user(__single_step_ill_insn, buffer++);
606                 err |= __put_user(__single_step_ill_insn, buffer++);
607         } else {
608                 long delta;
609
610                 if (state->update) {
611                         /* We have some state to update; do it inline */
612                         int ha16;
613                         bundle = __single_step_addli_insn;
614                         bundle |= create_Dest_X1(state->update_reg);
615                         bundle |= create_Imm16_X1(state->update_value);
616                         err |= __put_user(bundle, buffer++);
617                         bundle = __single_step_auli_insn;
618                         bundle |= create_Dest_X1(state->update_reg);
619                         bundle |= create_SrcA_X1(state->update_reg);
620                         ha16 = (state->update_value + 0x8000) >> 16;
621                         bundle |= create_Imm16_X1(ha16);
622                         err |= __put_user(bundle, buffer++);
623                         state->update = 0;
624                 }
625
626                 /* End with a jump back to the next instruction */
627                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
628                         (unsigned long)buffer) >>
629                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
630                 bundle = __single_step_j_insn;
631                 bundle |= create_JOffLong_X1(delta);
632                 err |= __put_user(bundle, buffer++);
633         }
634
635         if (err) {
636                 printk("Fault when writing to single-step buffer\n");
637                 return;
638         }
639
640         /*
641          * Flush the buffer.
642          * We do a local flush only, since this is a thread-specific buffer.
643          */
644         __flush_icache_range((unsigned long) state->buffer,
645                              (unsigned long) buffer);
646
647         /* Indicate enabled */
648         state->is_enabled = is_single_step;
649         regs->pc = (unsigned long) state->buffer;
650
651         /* Fault immediately if we are coming back from a syscall. */
652         if (regs->faultnum == INT_SWINT_1)
653                 regs->pc += 8;
654 }
655
656 #endif /* !__tilegx__ */