]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/events/core.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "../kernel/cpu/perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45         .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51                                 [PERF_COUNT_HW_CACHE_MAX]
52                                 [PERF_COUNT_HW_CACHE_OP_MAX]
53                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66         struct hw_perf_event *hwc = &event->hw;
67         int shift = 64 - x86_pmu.cntval_bits;
68         u64 prev_raw_count, new_raw_count;
69         int idx = hwc->idx;
70         s64 delta;
71
72         if (idx == INTEL_PMC_IDX_FIXED_BTS)
73                 return 0;
74
75         /*
76          * Careful: an NMI might modify the previous event value.
77          *
78          * Our tactic to handle this is to first atomically read and
79          * exchange a new raw count - then add that new-prev delta
80          * count to the generic event atomically:
81          */
82 again:
83         prev_raw_count = local64_read(&hwc->prev_count);
84         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87                                         new_raw_count) != prev_raw_count)
88                 goto again;
89
90         /*
91          * Now we have the new raw value and have updated the prev
92          * timestamp already. We can now calculate the elapsed delta
93          * (event-)time and add that to the generic event.
94          *
95          * Careful, not all hw sign-extends above the physical width
96          * of the count.
97          */
98         delta = (new_raw_count << shift) - (prev_raw_count << shift);
99         delta >>= shift;
100
101         local64_add(delta, &event->count);
102         local64_sub(delta, &hwc->period_left);
103
104         return new_raw_count;
105 }
106
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112         struct hw_perf_event_extra *reg;
113         struct extra_reg *er;
114
115         reg = &event->hw.extra_reg;
116
117         if (!x86_pmu.extra_regs)
118                 return 0;
119
120         for (er = x86_pmu.extra_regs; er->msr; er++) {
121                 if (er->event != (config & er->config_mask))
122                         continue;
123                 if (event->attr.config1 & ~er->valid_mask)
124                         return -EINVAL;
125                 /* Check if the extra msrs can be safely accessed*/
126                 if (!er->extra_msr_access)
127                         return -ENXIO;
128
129                 reg->idx = er->idx;
130                 reg->config = event->attr.config1;
131                 reg->reg = er->msr;
132                 break;
133         }
134         return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145         int i;
146
147         for (i = 0; i < x86_pmu.num_counters; i++) {
148                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149                         goto perfctr_fail;
150         }
151
152         for (i = 0; i < x86_pmu.num_counters; i++) {
153                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154                         goto eventsel_fail;
155         }
156
157         return true;
158
159 eventsel_fail:
160         for (i--; i >= 0; i--)
161                 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163         i = x86_pmu.num_counters;
164
165 perfctr_fail:
166         for (i--; i >= 0; i--)
167                 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169         return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174         int i;
175
176         for (i = 0; i < x86_pmu.num_counters; i++) {
177                 release_perfctr_nmi(x86_pmu_event_addr(i));
178                 release_evntsel_nmi(x86_pmu_config_addr(i));
179         }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191         u64 val, val_fail, val_new= ~0;
192         int i, reg, reg_fail, ret = 0;
193         int bios_fail = 0;
194         int reg_safe = -1;
195
196         /*
197          * Check to see if the BIOS enabled any of the counters, if so
198          * complain and bail.
199          */
200         for (i = 0; i < x86_pmu.num_counters; i++) {
201                 reg = x86_pmu_config_addr(i);
202                 ret = rdmsrl_safe(reg, &val);
203                 if (ret)
204                         goto msr_fail;
205                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206                         bios_fail = 1;
207                         val_fail = val;
208                         reg_fail = reg;
209                 } else {
210                         reg_safe = i;
211                 }
212         }
213
214         if (x86_pmu.num_counters_fixed) {
215                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216                 ret = rdmsrl_safe(reg, &val);
217                 if (ret)
218                         goto msr_fail;
219                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220                         if (val & (0x03 << i*4)) {
221                                 bios_fail = 1;
222                                 val_fail = val;
223                                 reg_fail = reg;
224                         }
225                 }
226         }
227
228         /*
229          * If all the counters are enabled, the below test will always
230          * fail.  The tools will also become useless in this scenario.
231          * Just fail and disable the hardware counters.
232          */
233
234         if (reg_safe == -1) {
235                 reg = reg_safe;
236                 goto msr_fail;
237         }
238
239         /*
240          * Read the current value, change it and read it back to see if it
241          * matches, this is needed to detect certain hardware emulators
242          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243          */
244         reg = x86_pmu_event_addr(reg_safe);
245         if (rdmsrl_safe(reg, &val))
246                 goto msr_fail;
247         val ^= 0xffffUL;
248         ret = wrmsrl_safe(reg, val);
249         ret |= rdmsrl_safe(reg, &val_new);
250         if (ret || val != val_new)
251                 goto msr_fail;
252
253         /*
254          * We still allow the PMU driver to operate:
255          */
256         if (bios_fail) {
257                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259                               reg_fail, val_fail);
260         }
261
262         return true;
263
264 msr_fail:
265         pr_cont("Broken PMU hardware detected, using software events only.\n");
266         pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267                 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268                 reg, val_new);
269
270         return false;
271 }
272
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275         x86_release_hardware();
276         atomic_dec(&active_events);
277 }
278
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281         hw_perf_event_destroy(event);
282
283         /* undo the lbr/bts event accounting */
284         x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286
287 static inline int x86_pmu_initialized(void)
288 {
289         return x86_pmu.handle_irq != NULL;
290 }
291
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295         struct perf_event_attr *attr = &event->attr;
296         unsigned int cache_type, cache_op, cache_result;
297         u64 config, val;
298
299         config = attr->config;
300
301         cache_type = (config >>  0) & 0xff;
302         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303                 return -EINVAL;
304
305         cache_op = (config >>  8) & 0xff;
306         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307                 return -EINVAL;
308
309         cache_result = (config >> 16) & 0xff;
310         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311                 return -EINVAL;
312
313         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315         if (val == 0)
316                 return -ENOENT;
317
318         if (val == -1)
319                 return -EINVAL;
320
321         hwc->config |= val;
322         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323         return x86_pmu_extra_regs(val, event);
324 }
325
326 int x86_reserve_hardware(void)
327 {
328         int err = 0;
329
330         if (!atomic_inc_not_zero(&pmc_refcount)) {
331                 mutex_lock(&pmc_reserve_mutex);
332                 if (atomic_read(&pmc_refcount) == 0) {
333                         if (!reserve_pmc_hardware())
334                                 err = -EBUSY;
335                         else
336                                 reserve_ds_buffers();
337                 }
338                 if (!err)
339                         atomic_inc(&pmc_refcount);
340                 mutex_unlock(&pmc_reserve_mutex);
341         }
342
343         return err;
344 }
345
346 void x86_release_hardware(void)
347 {
348         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349                 release_pmc_hardware();
350                 release_ds_buffers();
351                 mutex_unlock(&pmc_reserve_mutex);
352         }
353 }
354
355 /*
356  * Check if we can create event of a certain type (that no conflicting events
357  * are present).
358  */
359 int x86_add_exclusive(unsigned int what)
360 {
361         int i;
362
363         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
364                 mutex_lock(&pmc_reserve_mutex);
365                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
366                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
367                                 goto fail_unlock;
368                 }
369                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
370                 mutex_unlock(&pmc_reserve_mutex);
371         }
372
373         atomic_inc(&active_events);
374         return 0;
375
376 fail_unlock:
377         mutex_unlock(&pmc_reserve_mutex);
378         return -EBUSY;
379 }
380
381 void x86_del_exclusive(unsigned int what)
382 {
383         atomic_dec(&x86_pmu.lbr_exclusive[what]);
384         atomic_dec(&active_events);
385 }
386
387 int x86_setup_perfctr(struct perf_event *event)
388 {
389         struct perf_event_attr *attr = &event->attr;
390         struct hw_perf_event *hwc = &event->hw;
391         u64 config;
392
393         if (!is_sampling_event(event)) {
394                 hwc->sample_period = x86_pmu.max_period;
395                 hwc->last_period = hwc->sample_period;
396                 local64_set(&hwc->period_left, hwc->sample_period);
397         }
398
399         if (attr->type == PERF_TYPE_RAW)
400                 return x86_pmu_extra_regs(event->attr.config, event);
401
402         if (attr->type == PERF_TYPE_HW_CACHE)
403                 return set_ext_hw_attr(hwc, event);
404
405         if (attr->config >= x86_pmu.max_events)
406                 return -EINVAL;
407
408         /*
409          * The generic map:
410          */
411         config = x86_pmu.event_map(attr->config);
412
413         if (config == 0)
414                 return -ENOENT;
415
416         if (config == -1LL)
417                 return -EINVAL;
418
419         /*
420          * Branch tracing:
421          */
422         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
423             !attr->freq && hwc->sample_period == 1) {
424                 /* BTS is not supported by this architecture. */
425                 if (!x86_pmu.bts_active)
426                         return -EOPNOTSUPP;
427
428                 /* BTS is currently only allowed for user-mode. */
429                 if (!attr->exclude_kernel)
430                         return -EOPNOTSUPP;
431
432                 /* disallow bts if conflicting events are present */
433                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
434                         return -EBUSY;
435
436                 event->destroy = hw_perf_lbr_event_destroy;
437         }
438
439         hwc->config |= config;
440
441         return 0;
442 }
443
444 /*
445  * check that branch_sample_type is compatible with
446  * settings needed for precise_ip > 1 which implies
447  * using the LBR to capture ALL taken branches at the
448  * priv levels of the measurement
449  */
450 static inline int precise_br_compat(struct perf_event *event)
451 {
452         u64 m = event->attr.branch_sample_type;
453         u64 b = 0;
454
455         /* must capture all branches */
456         if (!(m & PERF_SAMPLE_BRANCH_ANY))
457                 return 0;
458
459         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
460
461         if (!event->attr.exclude_user)
462                 b |= PERF_SAMPLE_BRANCH_USER;
463
464         if (!event->attr.exclude_kernel)
465                 b |= PERF_SAMPLE_BRANCH_KERNEL;
466
467         /*
468          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469          */
470
471         return m == b;
472 }
473
474 int x86_pmu_hw_config(struct perf_event *event)
475 {
476         if (event->attr.precise_ip) {
477                 int precise = 0;
478
479                 /* Support for constant skid */
480                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
481                         precise++;
482
483                         /* Support for IP fixup */
484                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
485                                 precise++;
486
487                         if (x86_pmu.pebs_prec_dist)
488                                 precise++;
489                 }
490
491                 if (event->attr.precise_ip > precise)
492                         return -EOPNOTSUPP;
493         }
494         /*
495          * check that PEBS LBR correction does not conflict with
496          * whatever the user is asking with attr->branch_sample_type
497          */
498         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
499                 u64 *br_type = &event->attr.branch_sample_type;
500
501                 if (has_branch_stack(event)) {
502                         if (!precise_br_compat(event))
503                                 return -EOPNOTSUPP;
504
505                         /* branch_sample_type is compatible */
506
507                 } else {
508                         /*
509                          * user did not specify  branch_sample_type
510                          *
511                          * For PEBS fixups, we capture all
512                          * the branches at the priv level of the
513                          * event.
514                          */
515                         *br_type = PERF_SAMPLE_BRANCH_ANY;
516
517                         if (!event->attr.exclude_user)
518                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
519
520                         if (!event->attr.exclude_kernel)
521                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
522                 }
523         }
524
525         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
526                 event->attach_state |= PERF_ATTACH_TASK_DATA;
527
528         /*
529          * Generate PMC IRQs:
530          * (keep 'enabled' bit clear for now)
531          */
532         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
533
534         /*
535          * Count user and OS events unless requested not to
536          */
537         if (!event->attr.exclude_user)
538                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
539         if (!event->attr.exclude_kernel)
540                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
541
542         if (event->attr.type == PERF_TYPE_RAW)
543                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
544
545         if (event->attr.sample_period && x86_pmu.limit_period) {
546                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
547                                 event->attr.sample_period)
548                         return -EINVAL;
549         }
550
551         return x86_setup_perfctr(event);
552 }
553
554 /*
555  * Setup the hardware configuration for a given attr_type
556  */
557 static int __x86_pmu_event_init(struct perf_event *event)
558 {
559         int err;
560
561         if (!x86_pmu_initialized())
562                 return -ENODEV;
563
564         err = x86_reserve_hardware();
565         if (err)
566                 return err;
567
568         atomic_inc(&active_events);
569         event->destroy = hw_perf_event_destroy;
570
571         event->hw.idx = -1;
572         event->hw.last_cpu = -1;
573         event->hw.last_tag = ~0ULL;
574
575         /* mark unused */
576         event->hw.extra_reg.idx = EXTRA_REG_NONE;
577         event->hw.branch_reg.idx = EXTRA_REG_NONE;
578
579         return x86_pmu.hw_config(event);
580 }
581
582 void x86_pmu_disable_all(void)
583 {
584         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585         int idx;
586
587         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
588                 u64 val;
589
590                 if (!test_bit(idx, cpuc->active_mask))
591                         continue;
592                 rdmsrl(x86_pmu_config_addr(idx), val);
593                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
594                         continue;
595                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
596                 wrmsrl(x86_pmu_config_addr(idx), val);
597         }
598 }
599
600 static void x86_pmu_disable(struct pmu *pmu)
601 {
602         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
603
604         if (!x86_pmu_initialized())
605                 return;
606
607         if (!cpuc->enabled)
608                 return;
609
610         cpuc->n_added = 0;
611         cpuc->enabled = 0;
612         barrier();
613
614         x86_pmu.disable_all();
615 }
616
617 void x86_pmu_enable_all(int added)
618 {
619         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
620         int idx;
621
622         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
623                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
624
625                 if (!test_bit(idx, cpuc->active_mask))
626                         continue;
627
628                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
629         }
630 }
631
632 static struct pmu pmu;
633
634 static inline int is_x86_event(struct perf_event *event)
635 {
636         return event->pmu == &pmu;
637 }
638
639 /*
640  * Event scheduler state:
641  *
642  * Assign events iterating over all events and counters, beginning
643  * with events with least weights first. Keep the current iterator
644  * state in struct sched_state.
645  */
646 struct sched_state {
647         int     weight;
648         int     event;          /* event index */
649         int     counter;        /* counter index */
650         int     unassigned;     /* number of events to be assigned left */
651         int     nr_gp;          /* number of GP counters used */
652         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
653 };
654
655 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
656 #define SCHED_STATES_MAX        2
657
658 struct perf_sched {
659         int                     max_weight;
660         int                     max_events;
661         int                     max_gp;
662         int                     saved_states;
663         struct event_constraint **constraints;
664         struct sched_state      state;
665         struct sched_state      saved[SCHED_STATES_MAX];
666 };
667
668 /*
669  * Initialize interator that runs through all events and counters.
670  */
671 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
672                             int num, int wmin, int wmax, int gpmax)
673 {
674         int idx;
675
676         memset(sched, 0, sizeof(*sched));
677         sched->max_events       = num;
678         sched->max_weight       = wmax;
679         sched->max_gp           = gpmax;
680         sched->constraints      = constraints;
681
682         for (idx = 0; idx < num; idx++) {
683                 if (constraints[idx]->weight == wmin)
684                         break;
685         }
686
687         sched->state.event      = idx;          /* start with min weight */
688         sched->state.weight     = wmin;
689         sched->state.unassigned = num;
690 }
691
692 static void perf_sched_save_state(struct perf_sched *sched)
693 {
694         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
695                 return;
696
697         sched->saved[sched->saved_states] = sched->state;
698         sched->saved_states++;
699 }
700
701 static bool perf_sched_restore_state(struct perf_sched *sched)
702 {
703         if (!sched->saved_states)
704                 return false;
705
706         sched->saved_states--;
707         sched->state = sched->saved[sched->saved_states];
708
709         /* continue with next counter: */
710         clear_bit(sched->state.counter++, sched->state.used);
711
712         return true;
713 }
714
715 /*
716  * Select a counter for the current event to schedule. Return true on
717  * success.
718  */
719 static bool __perf_sched_find_counter(struct perf_sched *sched)
720 {
721         struct event_constraint *c;
722         int idx;
723
724         if (!sched->state.unassigned)
725                 return false;
726
727         if (sched->state.event >= sched->max_events)
728                 return false;
729
730         c = sched->constraints[sched->state.event];
731         /* Prefer fixed purpose counters */
732         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
733                 idx = INTEL_PMC_IDX_FIXED;
734                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
735                         if (!__test_and_set_bit(idx, sched->state.used))
736                                 goto done;
737                 }
738         }
739
740         /* Grab the first unused counter starting with idx */
741         idx = sched->state.counter;
742         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
743                 if (!__test_and_set_bit(idx, sched->state.used)) {
744                         if (sched->state.nr_gp++ >= sched->max_gp)
745                                 return false;
746
747                         goto done;
748                 }
749         }
750
751         return false;
752
753 done:
754         sched->state.counter = idx;
755
756         if (c->overlap)
757                 perf_sched_save_state(sched);
758
759         return true;
760 }
761
762 static bool perf_sched_find_counter(struct perf_sched *sched)
763 {
764         while (!__perf_sched_find_counter(sched)) {
765                 if (!perf_sched_restore_state(sched))
766                         return false;
767         }
768
769         return true;
770 }
771
772 /*
773  * Go through all unassigned events and find the next one to schedule.
774  * Take events with the least weight first. Return true on success.
775  */
776 static bool perf_sched_next_event(struct perf_sched *sched)
777 {
778         struct event_constraint *c;
779
780         if (!sched->state.unassigned || !--sched->state.unassigned)
781                 return false;
782
783         do {
784                 /* next event */
785                 sched->state.event++;
786                 if (sched->state.event >= sched->max_events) {
787                         /* next weight */
788                         sched->state.event = 0;
789                         sched->state.weight++;
790                         if (sched->state.weight > sched->max_weight)
791                                 return false;
792                 }
793                 c = sched->constraints[sched->state.event];
794         } while (c->weight != sched->state.weight);
795
796         sched->state.counter = 0;       /* start with first counter */
797
798         return true;
799 }
800
801 /*
802  * Assign a counter for each event.
803  */
804 int perf_assign_events(struct event_constraint **constraints, int n,
805                         int wmin, int wmax, int gpmax, int *assign)
806 {
807         struct perf_sched sched;
808
809         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
810
811         do {
812                 if (!perf_sched_find_counter(&sched))
813                         break;  /* failed */
814                 if (assign)
815                         assign[sched.state.event] = sched.state.counter;
816         } while (perf_sched_next_event(&sched));
817
818         return sched.state.unassigned;
819 }
820 EXPORT_SYMBOL_GPL(perf_assign_events);
821
822 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
823 {
824         struct event_constraint *c;
825         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
826         struct perf_event *e;
827         int i, wmin, wmax, unsched = 0;
828         struct hw_perf_event *hwc;
829
830         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
831
832         if (x86_pmu.start_scheduling)
833                 x86_pmu.start_scheduling(cpuc);
834
835         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
836                 cpuc->event_constraint[i] = NULL;
837                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
838                 cpuc->event_constraint[i] = c;
839
840                 wmin = min(wmin, c->weight);
841                 wmax = max(wmax, c->weight);
842         }
843
844         /*
845          * fastpath, try to reuse previous register
846          */
847         for (i = 0; i < n; i++) {
848                 hwc = &cpuc->event_list[i]->hw;
849                 c = cpuc->event_constraint[i];
850
851                 /* never assigned */
852                 if (hwc->idx == -1)
853                         break;
854
855                 /* constraint still honored */
856                 if (!test_bit(hwc->idx, c->idxmsk))
857                         break;
858
859                 /* not already used */
860                 if (test_bit(hwc->idx, used_mask))
861                         break;
862
863                 __set_bit(hwc->idx, used_mask);
864                 if (assign)
865                         assign[i] = hwc->idx;
866         }
867
868         /* slow path */
869         if (i != n) {
870                 int gpmax = x86_pmu.num_counters;
871
872                 /*
873                  * Do not allow scheduling of more than half the available
874                  * generic counters.
875                  *
876                  * This helps avoid counter starvation of sibling thread by
877                  * ensuring at most half the counters cannot be in exclusive
878                  * mode. There is no designated counters for the limits. Any
879                  * N/2 counters can be used. This helps with events with
880                  * specific counter constraints.
881                  */
882                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
883                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
884                         gpmax /= 2;
885
886                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
887                                              wmax, gpmax, assign);
888         }
889
890         /*
891          * In case of success (unsched = 0), mark events as committed,
892          * so we do not put_constraint() in case new events are added
893          * and fail to be scheduled
894          *
895          * We invoke the lower level commit callback to lock the resource
896          *
897          * We do not need to do all of this in case we are called to
898          * validate an event group (assign == NULL)
899          */
900         if (!unsched && assign) {
901                 for (i = 0; i < n; i++) {
902                         e = cpuc->event_list[i];
903                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
904                         if (x86_pmu.commit_scheduling)
905                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
906                 }
907         } else {
908                 for (i = 0; i < n; i++) {
909                         e = cpuc->event_list[i];
910                         /*
911                          * do not put_constraint() on comitted events,
912                          * because they are good to go
913                          */
914                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
915                                 continue;
916
917                         /*
918                          * release events that failed scheduling
919                          */
920                         if (x86_pmu.put_event_constraints)
921                                 x86_pmu.put_event_constraints(cpuc, e);
922                 }
923         }
924
925         if (x86_pmu.stop_scheduling)
926                 x86_pmu.stop_scheduling(cpuc);
927
928         return unsched ? -EINVAL : 0;
929 }
930
931 /*
932  * dogrp: true if must collect siblings events (group)
933  * returns total number of events and error code
934  */
935 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
936 {
937         struct perf_event *event;
938         int n, max_count;
939
940         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
941
942         /* current number of events already accepted */
943         n = cpuc->n_events;
944
945         if (is_x86_event(leader)) {
946                 if (n >= max_count)
947                         return -EINVAL;
948                 cpuc->event_list[n] = leader;
949                 n++;
950         }
951         if (!dogrp)
952                 return n;
953
954         list_for_each_entry(event, &leader->sibling_list, group_entry) {
955                 if (!is_x86_event(event) ||
956                     event->state <= PERF_EVENT_STATE_OFF)
957                         continue;
958
959                 if (n >= max_count)
960                         return -EINVAL;
961
962                 cpuc->event_list[n] = event;
963                 n++;
964         }
965         return n;
966 }
967
968 static inline void x86_assign_hw_event(struct perf_event *event,
969                                 struct cpu_hw_events *cpuc, int i)
970 {
971         struct hw_perf_event *hwc = &event->hw;
972
973         hwc->idx = cpuc->assign[i];
974         hwc->last_cpu = smp_processor_id();
975         hwc->last_tag = ++cpuc->tags[i];
976
977         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
978                 hwc->config_base = 0;
979                 hwc->event_base = 0;
980         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
981                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
982                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
983                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
984         } else {
985                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
986                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
987                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
988         }
989 }
990
991 static inline int match_prev_assignment(struct hw_perf_event *hwc,
992                                         struct cpu_hw_events *cpuc,
993                                         int i)
994 {
995         return hwc->idx == cpuc->assign[i] &&
996                 hwc->last_cpu == smp_processor_id() &&
997                 hwc->last_tag == cpuc->tags[i];
998 }
999
1000 static void x86_pmu_start(struct perf_event *event, int flags);
1001
1002 static void x86_pmu_enable(struct pmu *pmu)
1003 {
1004         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1005         struct perf_event *event;
1006         struct hw_perf_event *hwc;
1007         int i, added = cpuc->n_added;
1008
1009         if (!x86_pmu_initialized())
1010                 return;
1011
1012         if (cpuc->enabled)
1013                 return;
1014
1015         if (cpuc->n_added) {
1016                 int n_running = cpuc->n_events - cpuc->n_added;
1017                 /*
1018                  * apply assignment obtained either from
1019                  * hw_perf_group_sched_in() or x86_pmu_enable()
1020                  *
1021                  * step1: save events moving to new counters
1022                  */
1023                 for (i = 0; i < n_running; i++) {
1024                         event = cpuc->event_list[i];
1025                         hwc = &event->hw;
1026
1027                         /*
1028                          * we can avoid reprogramming counter if:
1029                          * - assigned same counter as last time
1030                          * - running on same CPU as last time
1031                          * - no other event has used the counter since
1032                          */
1033                         if (hwc->idx == -1 ||
1034                             match_prev_assignment(hwc, cpuc, i))
1035                                 continue;
1036
1037                         /*
1038                          * Ensure we don't accidentally enable a stopped
1039                          * counter simply because we rescheduled.
1040                          */
1041                         if (hwc->state & PERF_HES_STOPPED)
1042                                 hwc->state |= PERF_HES_ARCH;
1043
1044                         x86_pmu_stop(event, PERF_EF_UPDATE);
1045                 }
1046
1047                 /*
1048                  * step2: reprogram moved events into new counters
1049                  */
1050                 for (i = 0; i < cpuc->n_events; i++) {
1051                         event = cpuc->event_list[i];
1052                         hwc = &event->hw;
1053
1054                         if (!match_prev_assignment(hwc, cpuc, i))
1055                                 x86_assign_hw_event(event, cpuc, i);
1056                         else if (i < n_running)
1057                                 continue;
1058
1059                         if (hwc->state & PERF_HES_ARCH)
1060                                 continue;
1061
1062                         x86_pmu_start(event, PERF_EF_RELOAD);
1063                 }
1064                 cpuc->n_added = 0;
1065                 perf_events_lapic_init();
1066         }
1067
1068         cpuc->enabled = 1;
1069         barrier();
1070
1071         x86_pmu.enable_all(added);
1072 }
1073
1074 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1075
1076 /*
1077  * Set the next IRQ period, based on the hwc->period_left value.
1078  * To be called with the event disabled in hw:
1079  */
1080 int x86_perf_event_set_period(struct perf_event *event)
1081 {
1082         struct hw_perf_event *hwc = &event->hw;
1083         s64 left = local64_read(&hwc->period_left);
1084         s64 period = hwc->sample_period;
1085         int ret = 0, idx = hwc->idx;
1086
1087         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1088                 return 0;
1089
1090         /*
1091          * If we are way outside a reasonable range then just skip forward:
1092          */
1093         if (unlikely(left <= -period)) {
1094                 left = period;
1095                 local64_set(&hwc->period_left, left);
1096                 hwc->last_period = period;
1097                 ret = 1;
1098         }
1099
1100         if (unlikely(left <= 0)) {
1101                 left += period;
1102                 local64_set(&hwc->period_left, left);
1103                 hwc->last_period = period;
1104                 ret = 1;
1105         }
1106         /*
1107          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1108          */
1109         if (unlikely(left < 2))
1110                 left = 2;
1111
1112         if (left > x86_pmu.max_period)
1113                 left = x86_pmu.max_period;
1114
1115         if (x86_pmu.limit_period)
1116                 left = x86_pmu.limit_period(event, left);
1117
1118         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1119
1120         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1121             local64_read(&hwc->prev_count) != (u64)-left) {
1122                 /*
1123                  * The hw event starts counting from this event offset,
1124                  * mark it to be able to extra future deltas:
1125                  */
1126                 local64_set(&hwc->prev_count, (u64)-left);
1127
1128                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1129         }
1130
1131         /*
1132          * Due to erratum on certan cpu we need
1133          * a second write to be sure the register
1134          * is updated properly
1135          */
1136         if (x86_pmu.perfctr_second_write) {
1137                 wrmsrl(hwc->event_base,
1138                         (u64)(-left) & x86_pmu.cntval_mask);
1139         }
1140
1141         perf_event_update_userpage(event);
1142
1143         return ret;
1144 }
1145
1146 void x86_pmu_enable_event(struct perf_event *event)
1147 {
1148         if (__this_cpu_read(cpu_hw_events.enabled))
1149                 __x86_pmu_enable_event(&event->hw,
1150                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1151 }
1152
1153 /*
1154  * Add a single event to the PMU.
1155  *
1156  * The event is added to the group of enabled events
1157  * but only if it can be scehduled with existing events.
1158  */
1159 static int x86_pmu_add(struct perf_event *event, int flags)
1160 {
1161         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1162         struct hw_perf_event *hwc;
1163         int assign[X86_PMC_IDX_MAX];
1164         int n, n0, ret;
1165
1166         hwc = &event->hw;
1167
1168         n0 = cpuc->n_events;
1169         ret = n = collect_events(cpuc, event, false);
1170         if (ret < 0)
1171                 goto out;
1172
1173         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1174         if (!(flags & PERF_EF_START))
1175                 hwc->state |= PERF_HES_ARCH;
1176
1177         /*
1178          * If group events scheduling transaction was started,
1179          * skip the schedulability test here, it will be performed
1180          * at commit time (->commit_txn) as a whole.
1181          */
1182         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1183                 goto done_collect;
1184
1185         ret = x86_pmu.schedule_events(cpuc, n, assign);
1186         if (ret)
1187                 goto out;
1188         /*
1189          * copy new assignment, now we know it is possible
1190          * will be used by hw_perf_enable()
1191          */
1192         memcpy(cpuc->assign, assign, n*sizeof(int));
1193
1194 done_collect:
1195         /*
1196          * Commit the collect_events() state. See x86_pmu_del() and
1197          * x86_pmu_*_txn().
1198          */
1199         cpuc->n_events = n;
1200         cpuc->n_added += n - n0;
1201         cpuc->n_txn += n - n0;
1202
1203         ret = 0;
1204 out:
1205         return ret;
1206 }
1207
1208 static void x86_pmu_start(struct perf_event *event, int flags)
1209 {
1210         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1211         int idx = event->hw.idx;
1212
1213         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1214                 return;
1215
1216         if (WARN_ON_ONCE(idx == -1))
1217                 return;
1218
1219         if (flags & PERF_EF_RELOAD) {
1220                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1221                 x86_perf_event_set_period(event);
1222         }
1223
1224         event->hw.state = 0;
1225
1226         cpuc->events[idx] = event;
1227         __set_bit(idx, cpuc->active_mask);
1228         __set_bit(idx, cpuc->running);
1229         x86_pmu.enable(event);
1230         perf_event_update_userpage(event);
1231 }
1232
1233 void perf_event_print_debug(void)
1234 {
1235         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1236         u64 pebs, debugctl;
1237         struct cpu_hw_events *cpuc;
1238         unsigned long flags;
1239         int cpu, idx;
1240
1241         if (!x86_pmu.num_counters)
1242                 return;
1243
1244         local_irq_save(flags);
1245
1246         cpu = smp_processor_id();
1247         cpuc = &per_cpu(cpu_hw_events, cpu);
1248
1249         if (x86_pmu.version >= 2) {
1250                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1251                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1252                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1253                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1254
1255                 pr_info("\n");
1256                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1257                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1258                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1259                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1260                 if (x86_pmu.pebs_constraints) {
1261                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1262                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1263                 }
1264                 if (x86_pmu.lbr_nr) {
1265                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1266                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1267                 }
1268         }
1269         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1270
1271         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1272                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1273                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1274
1275                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1276
1277                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1278                         cpu, idx, pmc_ctrl);
1279                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1280                         cpu, idx, pmc_count);
1281                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1282                         cpu, idx, prev_left);
1283         }
1284         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1285                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1286
1287                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1288                         cpu, idx, pmc_count);
1289         }
1290         local_irq_restore(flags);
1291 }
1292
1293 void x86_pmu_stop(struct perf_event *event, int flags)
1294 {
1295         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1296         struct hw_perf_event *hwc = &event->hw;
1297
1298         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1299                 x86_pmu.disable(event);
1300                 cpuc->events[hwc->idx] = NULL;
1301                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1302                 hwc->state |= PERF_HES_STOPPED;
1303         }
1304
1305         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1306                 /*
1307                  * Drain the remaining delta count out of a event
1308                  * that we are disabling:
1309                  */
1310                 x86_perf_event_update(event);
1311                 hwc->state |= PERF_HES_UPTODATE;
1312         }
1313 }
1314
1315 static void x86_pmu_del(struct perf_event *event, int flags)
1316 {
1317         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318         int i;
1319
1320         /*
1321          * event is descheduled
1322          */
1323         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1324
1325         /*
1326          * If we're called during a txn, we don't need to do anything.
1327          * The events never got scheduled and ->cancel_txn will truncate
1328          * the event_list.
1329          *
1330          * XXX assumes any ->del() called during a TXN will only be on
1331          * an event added during that same TXN.
1332          */
1333         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1334                 return;
1335
1336         /*
1337          * Not a TXN, therefore cleanup properly.
1338          */
1339         x86_pmu_stop(event, PERF_EF_UPDATE);
1340
1341         for (i = 0; i < cpuc->n_events; i++) {
1342                 if (event == cpuc->event_list[i])
1343                         break;
1344         }
1345
1346         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1347                 return;
1348
1349         /* If we have a newly added event; make sure to decrease n_added. */
1350         if (i >= cpuc->n_events - cpuc->n_added)
1351                 --cpuc->n_added;
1352
1353         if (x86_pmu.put_event_constraints)
1354                 x86_pmu.put_event_constraints(cpuc, event);
1355
1356         /* Delete the array entry. */
1357         while (++i < cpuc->n_events) {
1358                 cpuc->event_list[i-1] = cpuc->event_list[i];
1359                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1360         }
1361         --cpuc->n_events;
1362
1363         perf_event_update_userpage(event);
1364 }
1365
1366 int x86_pmu_handle_irq(struct pt_regs *regs)
1367 {
1368         struct perf_sample_data data;
1369         struct cpu_hw_events *cpuc;
1370         struct perf_event *event;
1371         int idx, handled = 0;
1372         u64 val;
1373
1374         cpuc = this_cpu_ptr(&cpu_hw_events);
1375
1376         /*
1377          * Some chipsets need to unmask the LVTPC in a particular spot
1378          * inside the nmi handler.  As a result, the unmasking was pushed
1379          * into all the nmi handlers.
1380          *
1381          * This generic handler doesn't seem to have any issues where the
1382          * unmasking occurs so it was left at the top.
1383          */
1384         apic_write(APIC_LVTPC, APIC_DM_NMI);
1385
1386         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1387                 if (!test_bit(idx, cpuc->active_mask)) {
1388                         /*
1389                          * Though we deactivated the counter some cpus
1390                          * might still deliver spurious interrupts still
1391                          * in flight. Catch them:
1392                          */
1393                         if (__test_and_clear_bit(idx, cpuc->running))
1394                                 handled++;
1395                         continue;
1396                 }
1397
1398                 event = cpuc->events[idx];
1399
1400                 val = x86_perf_event_update(event);
1401                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1402                         continue;
1403
1404                 /*
1405                  * event overflow
1406                  */
1407                 handled++;
1408                 perf_sample_data_init(&data, 0, event->hw.last_period);
1409
1410                 if (!x86_perf_event_set_period(event))
1411                         continue;
1412
1413                 if (perf_event_overflow(event, &data, regs))
1414                         x86_pmu_stop(event, 0);
1415         }
1416
1417         if (handled)
1418                 inc_irq_stat(apic_perf_irqs);
1419
1420         return handled;
1421 }
1422
1423 void perf_events_lapic_init(void)
1424 {
1425         if (!x86_pmu.apic || !x86_pmu_initialized())
1426                 return;
1427
1428         /*
1429          * Always use NMI for PMU
1430          */
1431         apic_write(APIC_LVTPC, APIC_DM_NMI);
1432 }
1433
1434 static int
1435 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1436 {
1437         u64 start_clock;
1438         u64 finish_clock;
1439         int ret;
1440
1441         /*
1442          * All PMUs/events that share this PMI handler should make sure to
1443          * increment active_events for their events.
1444          */
1445         if (!atomic_read(&active_events))
1446                 return NMI_DONE;
1447
1448         start_clock = sched_clock();
1449         ret = x86_pmu.handle_irq(regs);
1450         finish_clock = sched_clock();
1451
1452         perf_sample_event_took(finish_clock - start_clock);
1453
1454         return ret;
1455 }
1456 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1457
1458 struct event_constraint emptyconstraint;
1459 struct event_constraint unconstrained;
1460
1461 static int
1462 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1463 {
1464         unsigned int cpu = (long)hcpu;
1465         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1466         int i, ret = NOTIFY_OK;
1467
1468         switch (action & ~CPU_TASKS_FROZEN) {
1469         case CPU_UP_PREPARE:
1470                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1471                         cpuc->kfree_on_online[i] = NULL;
1472                 if (x86_pmu.cpu_prepare)
1473                         ret = x86_pmu.cpu_prepare(cpu);
1474                 break;
1475
1476         case CPU_STARTING:
1477                 if (x86_pmu.cpu_starting)
1478                         x86_pmu.cpu_starting(cpu);
1479                 break;
1480
1481         case CPU_ONLINE:
1482                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1483                         kfree(cpuc->kfree_on_online[i]);
1484                         cpuc->kfree_on_online[i] = NULL;
1485                 }
1486                 break;
1487
1488         case CPU_DYING:
1489                 if (x86_pmu.cpu_dying)
1490                         x86_pmu.cpu_dying(cpu);
1491                 break;
1492
1493         case CPU_UP_CANCELED:
1494         case CPU_DEAD:
1495                 if (x86_pmu.cpu_dead)
1496                         x86_pmu.cpu_dead(cpu);
1497                 break;
1498
1499         default:
1500                 break;
1501         }
1502
1503         return ret;
1504 }
1505
1506 static void __init pmu_check_apic(void)
1507 {
1508         if (cpu_has_apic)
1509                 return;
1510
1511         x86_pmu.apic = 0;
1512         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1513         pr_info("no hardware sampling interrupt available.\n");
1514
1515         /*
1516          * If we have a PMU initialized but no APIC
1517          * interrupts, we cannot sample hardware
1518          * events (user-space has to fall back and
1519          * sample via a hrtimer based software event):
1520          */
1521         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1522
1523 }
1524
1525 static struct attribute_group x86_pmu_format_group = {
1526         .name = "format",
1527         .attrs = NULL,
1528 };
1529
1530 /*
1531  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1532  * out of events_attr attributes.
1533  */
1534 static void __init filter_events(struct attribute **attrs)
1535 {
1536         struct device_attribute *d;
1537         struct perf_pmu_events_attr *pmu_attr;
1538         int offset = 0;
1539         int i, j;
1540
1541         for (i = 0; attrs[i]; i++) {
1542                 d = (struct device_attribute *)attrs[i];
1543                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1544                 /* str trumps id */
1545                 if (pmu_attr->event_str)
1546                         continue;
1547                 if (x86_pmu.event_map(i + offset))
1548                         continue;
1549
1550                 for (j = i; attrs[j]; j++)
1551                         attrs[j] = attrs[j + 1];
1552
1553                 /* Check the shifted attr. */
1554                 i--;
1555
1556                 /*
1557                  * event_map() is index based, the attrs array is organized
1558                  * by increasing event index. If we shift the events, then
1559                  * we need to compensate for the event_map(), otherwise
1560                  * we are looking up the wrong event in the map
1561                  */
1562                 offset++;
1563         }
1564 }
1565
1566 /* Merge two pointer arrays */
1567 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1568 {
1569         struct attribute **new;
1570         int j, i;
1571
1572         for (j = 0; a[j]; j++)
1573                 ;
1574         for (i = 0; b[i]; i++)
1575                 j++;
1576         j++;
1577
1578         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1579         if (!new)
1580                 return NULL;
1581
1582         j = 0;
1583         for (i = 0; a[i]; i++)
1584                 new[j++] = a[i];
1585         for (i = 0; b[i]; i++)
1586                 new[j++] = b[i];
1587         new[j] = NULL;
1588
1589         return new;
1590 }
1591
1592 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1593                           char *page)
1594 {
1595         struct perf_pmu_events_attr *pmu_attr = \
1596                 container_of(attr, struct perf_pmu_events_attr, attr);
1597         u64 config = x86_pmu.event_map(pmu_attr->id);
1598
1599         /* string trumps id */
1600         if (pmu_attr->event_str)
1601                 return sprintf(page, "%s", pmu_attr->event_str);
1602
1603         return x86_pmu.events_sysfs_show(page, config);
1604 }
1605
1606 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1607 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1608 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1609 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1610 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1611 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1612 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1613 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1614 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1615 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1616
1617 static struct attribute *empty_attrs;
1618
1619 static struct attribute *events_attr[] = {
1620         EVENT_PTR(CPU_CYCLES),
1621         EVENT_PTR(INSTRUCTIONS),
1622         EVENT_PTR(CACHE_REFERENCES),
1623         EVENT_PTR(CACHE_MISSES),
1624         EVENT_PTR(BRANCH_INSTRUCTIONS),
1625         EVENT_PTR(BRANCH_MISSES),
1626         EVENT_PTR(BUS_CYCLES),
1627         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1628         EVENT_PTR(STALLED_CYCLES_BACKEND),
1629         EVENT_PTR(REF_CPU_CYCLES),
1630         NULL,
1631 };
1632
1633 static struct attribute_group x86_pmu_events_group = {
1634         .name = "events",
1635         .attrs = events_attr,
1636 };
1637
1638 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1639 {
1640         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1641         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1642         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1643         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1644         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1645         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1646         ssize_t ret;
1647
1648         /*
1649         * We have whole page size to spend and just little data
1650         * to write, so we can safely use sprintf.
1651         */
1652         ret = sprintf(page, "event=0x%02llx", event);
1653
1654         if (umask)
1655                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1656
1657         if (edge)
1658                 ret += sprintf(page + ret, ",edge");
1659
1660         if (pc)
1661                 ret += sprintf(page + ret, ",pc");
1662
1663         if (any)
1664                 ret += sprintf(page + ret, ",any");
1665
1666         if (inv)
1667                 ret += sprintf(page + ret, ",inv");
1668
1669         if (cmask)
1670                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1671
1672         ret += sprintf(page + ret, "\n");
1673
1674         return ret;
1675 }
1676
1677 static int __init init_hw_perf_events(void)
1678 {
1679         struct x86_pmu_quirk *quirk;
1680         int err;
1681
1682         pr_info("Performance Events: ");
1683
1684         switch (boot_cpu_data.x86_vendor) {
1685         case X86_VENDOR_INTEL:
1686                 err = intel_pmu_init();
1687                 break;
1688         case X86_VENDOR_AMD:
1689                 err = amd_pmu_init();
1690                 break;
1691         default:
1692                 err = -ENOTSUPP;
1693         }
1694         if (err != 0) {
1695                 pr_cont("no PMU driver, software events only.\n");
1696                 return 0;
1697         }
1698
1699         pmu_check_apic();
1700
1701         /* sanity check that the hardware exists or is emulated */
1702         if (!check_hw_exists())
1703                 return 0;
1704
1705         pr_cont("%s PMU driver.\n", x86_pmu.name);
1706
1707         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1708
1709         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1710                 quirk->func();
1711
1712         if (!x86_pmu.intel_ctrl)
1713                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1714
1715         perf_events_lapic_init();
1716         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1717
1718         unconstrained = (struct event_constraint)
1719                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1720                                    0, x86_pmu.num_counters, 0, 0);
1721
1722         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1723
1724         if (x86_pmu.event_attrs)
1725                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1726
1727         if (!x86_pmu.events_sysfs_show)
1728                 x86_pmu_events_group.attrs = &empty_attrs;
1729         else
1730                 filter_events(x86_pmu_events_group.attrs);
1731
1732         if (x86_pmu.cpu_events) {
1733                 struct attribute **tmp;
1734
1735                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1736                 if (!WARN_ON(!tmp))
1737                         x86_pmu_events_group.attrs = tmp;
1738         }
1739
1740         pr_info("... version:                %d\n",     x86_pmu.version);
1741         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1742         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1743         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1744         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1745         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1746         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1747
1748         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1749         perf_cpu_notifier(x86_pmu_notifier);
1750
1751         return 0;
1752 }
1753 early_initcall(init_hw_perf_events);
1754
1755 static inline void x86_pmu_read(struct perf_event *event)
1756 {
1757         x86_perf_event_update(event);
1758 }
1759
1760 /*
1761  * Start group events scheduling transaction
1762  * Set the flag to make pmu::enable() not perform the
1763  * schedulability test, it will be performed at commit time
1764  *
1765  * We only support PERF_PMU_TXN_ADD transactions. Save the
1766  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1767  * transactions.
1768  */
1769 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1770 {
1771         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772
1773         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1774
1775         cpuc->txn_flags = txn_flags;
1776         if (txn_flags & ~PERF_PMU_TXN_ADD)
1777                 return;
1778
1779         perf_pmu_disable(pmu);
1780         __this_cpu_write(cpu_hw_events.n_txn, 0);
1781 }
1782
1783 /*
1784  * Stop group events scheduling transaction
1785  * Clear the flag and pmu::enable() will perform the
1786  * schedulability test.
1787  */
1788 static void x86_pmu_cancel_txn(struct pmu *pmu)
1789 {
1790         unsigned int txn_flags;
1791         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792
1793         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1794
1795         txn_flags = cpuc->txn_flags;
1796         cpuc->txn_flags = 0;
1797         if (txn_flags & ~PERF_PMU_TXN_ADD)
1798                 return;
1799
1800         /*
1801          * Truncate collected array by the number of events added in this
1802          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1803          */
1804         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1805         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1806         perf_pmu_enable(pmu);
1807 }
1808
1809 /*
1810  * Commit group events scheduling transaction
1811  * Perform the group schedulability test as a whole
1812  * Return 0 if success
1813  *
1814  * Does not cancel the transaction on failure; expects the caller to do this.
1815  */
1816 static int x86_pmu_commit_txn(struct pmu *pmu)
1817 {
1818         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1819         int assign[X86_PMC_IDX_MAX];
1820         int n, ret;
1821
1822         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1823
1824         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1825                 cpuc->txn_flags = 0;
1826                 return 0;
1827         }
1828
1829         n = cpuc->n_events;
1830
1831         if (!x86_pmu_initialized())
1832                 return -EAGAIN;
1833
1834         ret = x86_pmu.schedule_events(cpuc, n, assign);
1835         if (ret)
1836                 return ret;
1837
1838         /*
1839          * copy new assignment, now we know it is possible
1840          * will be used by hw_perf_enable()
1841          */
1842         memcpy(cpuc->assign, assign, n*sizeof(int));
1843
1844         cpuc->txn_flags = 0;
1845         perf_pmu_enable(pmu);
1846         return 0;
1847 }
1848 /*
1849  * a fake_cpuc is used to validate event groups. Due to
1850  * the extra reg logic, we need to also allocate a fake
1851  * per_core and per_cpu structure. Otherwise, group events
1852  * using extra reg may conflict without the kernel being
1853  * able to catch this when the last event gets added to
1854  * the group.
1855  */
1856 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1857 {
1858         kfree(cpuc->shared_regs);
1859         kfree(cpuc);
1860 }
1861
1862 static struct cpu_hw_events *allocate_fake_cpuc(void)
1863 {
1864         struct cpu_hw_events *cpuc;
1865         int cpu = raw_smp_processor_id();
1866
1867         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1868         if (!cpuc)
1869                 return ERR_PTR(-ENOMEM);
1870
1871         /* only needed, if we have extra_regs */
1872         if (x86_pmu.extra_regs) {
1873                 cpuc->shared_regs = allocate_shared_regs(cpu);
1874                 if (!cpuc->shared_regs)
1875                         goto error;
1876         }
1877         cpuc->is_fake = 1;
1878         return cpuc;
1879 error:
1880         free_fake_cpuc(cpuc);
1881         return ERR_PTR(-ENOMEM);
1882 }
1883
1884 /*
1885  * validate that we can schedule this event
1886  */
1887 static int validate_event(struct perf_event *event)
1888 {
1889         struct cpu_hw_events *fake_cpuc;
1890         struct event_constraint *c;
1891         int ret = 0;
1892
1893         fake_cpuc = allocate_fake_cpuc();
1894         if (IS_ERR(fake_cpuc))
1895                 return PTR_ERR(fake_cpuc);
1896
1897         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1898
1899         if (!c || !c->weight)
1900                 ret = -EINVAL;
1901
1902         if (x86_pmu.put_event_constraints)
1903                 x86_pmu.put_event_constraints(fake_cpuc, event);
1904
1905         free_fake_cpuc(fake_cpuc);
1906
1907         return ret;
1908 }
1909
1910 /*
1911  * validate a single event group
1912  *
1913  * validation include:
1914  *      - check events are compatible which each other
1915  *      - events do not compete for the same counter
1916  *      - number of events <= number of counters
1917  *
1918  * validation ensures the group can be loaded onto the
1919  * PMU if it was the only group available.
1920  */
1921 static int validate_group(struct perf_event *event)
1922 {
1923         struct perf_event *leader = event->group_leader;
1924         struct cpu_hw_events *fake_cpuc;
1925         int ret = -EINVAL, n;
1926
1927         fake_cpuc = allocate_fake_cpuc();
1928         if (IS_ERR(fake_cpuc))
1929                 return PTR_ERR(fake_cpuc);
1930         /*
1931          * the event is not yet connected with its
1932          * siblings therefore we must first collect
1933          * existing siblings, then add the new event
1934          * before we can simulate the scheduling
1935          */
1936         n = collect_events(fake_cpuc, leader, true);
1937         if (n < 0)
1938                 goto out;
1939
1940         fake_cpuc->n_events = n;
1941         n = collect_events(fake_cpuc, event, false);
1942         if (n < 0)
1943                 goto out;
1944
1945         fake_cpuc->n_events = n;
1946
1947         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1948
1949 out:
1950         free_fake_cpuc(fake_cpuc);
1951         return ret;
1952 }
1953
1954 static int x86_pmu_event_init(struct perf_event *event)
1955 {
1956         struct pmu *tmp;
1957         int err;
1958
1959         switch (event->attr.type) {
1960         case PERF_TYPE_RAW:
1961         case PERF_TYPE_HARDWARE:
1962         case PERF_TYPE_HW_CACHE:
1963                 break;
1964
1965         default:
1966                 return -ENOENT;
1967         }
1968
1969         err = __x86_pmu_event_init(event);
1970         if (!err) {
1971                 /*
1972                  * we temporarily connect event to its pmu
1973                  * such that validate_group() can classify
1974                  * it as an x86 event using is_x86_event()
1975                  */
1976                 tmp = event->pmu;
1977                 event->pmu = &pmu;
1978
1979                 if (event->group_leader != event)
1980                         err = validate_group(event);
1981                 else
1982                         err = validate_event(event);
1983
1984                 event->pmu = tmp;
1985         }
1986         if (err) {
1987                 if (event->destroy)
1988                         event->destroy(event);
1989         }
1990
1991         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1992                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1993
1994         return err;
1995 }
1996
1997 static void refresh_pce(void *ignored)
1998 {
1999         if (current->mm)
2000                 load_mm_cr4(current->mm);
2001 }
2002
2003 static void x86_pmu_event_mapped(struct perf_event *event)
2004 {
2005         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2006                 return;
2007
2008         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2009                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2010 }
2011
2012 static void x86_pmu_event_unmapped(struct perf_event *event)
2013 {
2014         if (!current->mm)
2015                 return;
2016
2017         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2018                 return;
2019
2020         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2021                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2022 }
2023
2024 static int x86_pmu_event_idx(struct perf_event *event)
2025 {
2026         int idx = event->hw.idx;
2027
2028         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2029                 return 0;
2030
2031         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2032                 idx -= INTEL_PMC_IDX_FIXED;
2033                 idx |= 1 << 30;
2034         }
2035
2036         return idx + 1;
2037 }
2038
2039 static ssize_t get_attr_rdpmc(struct device *cdev,
2040                               struct device_attribute *attr,
2041                               char *buf)
2042 {
2043         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2044 }
2045
2046 static ssize_t set_attr_rdpmc(struct device *cdev,
2047                               struct device_attribute *attr,
2048                               const char *buf, size_t count)
2049 {
2050         unsigned long val;
2051         ssize_t ret;
2052
2053         ret = kstrtoul(buf, 0, &val);
2054         if (ret)
2055                 return ret;
2056
2057         if (val > 2)
2058                 return -EINVAL;
2059
2060         if (x86_pmu.attr_rdpmc_broken)
2061                 return -ENOTSUPP;
2062
2063         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2064                 /*
2065                  * Changing into or out of always available, aka
2066                  * perf-event-bypassing mode.  This path is extremely slow,
2067                  * but only root can trigger it, so it's okay.
2068                  */
2069                 if (val == 2)
2070                         static_key_slow_inc(&rdpmc_always_available);
2071                 else
2072                         static_key_slow_dec(&rdpmc_always_available);
2073                 on_each_cpu(refresh_pce, NULL, 1);
2074         }
2075
2076         x86_pmu.attr_rdpmc = val;
2077
2078         return count;
2079 }
2080
2081 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2082
2083 static struct attribute *x86_pmu_attrs[] = {
2084         &dev_attr_rdpmc.attr,
2085         NULL,
2086 };
2087
2088 static struct attribute_group x86_pmu_attr_group = {
2089         .attrs = x86_pmu_attrs,
2090 };
2091
2092 static const struct attribute_group *x86_pmu_attr_groups[] = {
2093         &x86_pmu_attr_group,
2094         &x86_pmu_format_group,
2095         &x86_pmu_events_group,
2096         NULL,
2097 };
2098
2099 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2100 {
2101         if (x86_pmu.sched_task)
2102                 x86_pmu.sched_task(ctx, sched_in);
2103 }
2104
2105 void perf_check_microcode(void)
2106 {
2107         if (x86_pmu.check_microcode)
2108                 x86_pmu.check_microcode();
2109 }
2110 EXPORT_SYMBOL_GPL(perf_check_microcode);
2111
2112 static struct pmu pmu = {
2113         .pmu_enable             = x86_pmu_enable,
2114         .pmu_disable            = x86_pmu_disable,
2115
2116         .attr_groups            = x86_pmu_attr_groups,
2117
2118         .event_init             = x86_pmu_event_init,
2119
2120         .event_mapped           = x86_pmu_event_mapped,
2121         .event_unmapped         = x86_pmu_event_unmapped,
2122
2123         .add                    = x86_pmu_add,
2124         .del                    = x86_pmu_del,
2125         .start                  = x86_pmu_start,
2126         .stop                   = x86_pmu_stop,
2127         .read                   = x86_pmu_read,
2128
2129         .start_txn              = x86_pmu_start_txn,
2130         .cancel_txn             = x86_pmu_cancel_txn,
2131         .commit_txn             = x86_pmu_commit_txn,
2132
2133         .event_idx              = x86_pmu_event_idx,
2134         .sched_task             = x86_pmu_sched_task,
2135         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2136 };
2137
2138 void arch_perf_update_userpage(struct perf_event *event,
2139                                struct perf_event_mmap_page *userpg, u64 now)
2140 {
2141         struct cyc2ns_data *data;
2142
2143         userpg->cap_user_time = 0;
2144         userpg->cap_user_time_zero = 0;
2145         userpg->cap_user_rdpmc =
2146                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2147         userpg->pmc_width = x86_pmu.cntval_bits;
2148
2149         if (!sched_clock_stable())
2150                 return;
2151
2152         data = cyc2ns_read_begin();
2153
2154         /*
2155          * Internal timekeeping for enabled/running/stopped times
2156          * is always in the local_clock domain.
2157          */
2158         userpg->cap_user_time = 1;
2159         userpg->time_mult = data->cyc2ns_mul;
2160         userpg->time_shift = data->cyc2ns_shift;
2161         userpg->time_offset = data->cyc2ns_offset - now;
2162
2163         /*
2164          * cap_user_time_zero doesn't make sense when we're using a different
2165          * time base for the records.
2166          */
2167         if (event->clock == &local_clock) {
2168                 userpg->cap_user_time_zero = 1;
2169                 userpg->time_zero = data->cyc2ns_offset;
2170         }
2171
2172         cyc2ns_read_end(data);
2173 }
2174
2175 /*
2176  * callchain support
2177  */
2178
2179 static int backtrace_stack(void *data, char *name)
2180 {
2181         return 0;
2182 }
2183
2184 static void backtrace_address(void *data, unsigned long addr, int reliable)
2185 {
2186         struct perf_callchain_entry *entry = data;
2187
2188         perf_callchain_store(entry, addr);
2189 }
2190
2191 static const struct stacktrace_ops backtrace_ops = {
2192         .stack                  = backtrace_stack,
2193         .address                = backtrace_address,
2194         .walk_stack             = print_context_stack_bp,
2195 };
2196
2197 void
2198 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2199 {
2200         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2201                 /* TODO: We don't support guest os callchain now */
2202                 return;
2203         }
2204
2205         perf_callchain_store(entry, regs->ip);
2206
2207         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2208 }
2209
2210 static inline int
2211 valid_user_frame(const void __user *fp, unsigned long size)
2212 {
2213         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2214 }
2215
2216 static unsigned long get_segment_base(unsigned int segment)
2217 {
2218         struct desc_struct *desc;
2219         int idx = segment >> 3;
2220
2221         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2222 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2223                 struct ldt_struct *ldt;
2224
2225                 if (idx > LDT_ENTRIES)
2226                         return 0;
2227
2228                 /* IRQs are off, so this synchronizes with smp_store_release */
2229                 ldt = lockless_dereference(current->active_mm->context.ldt);
2230                 if (!ldt || idx > ldt->size)
2231                         return 0;
2232
2233                 desc = &ldt->entries[idx];
2234 #else
2235                 return 0;
2236 #endif
2237         } else {
2238                 if (idx > GDT_ENTRIES)
2239                         return 0;
2240
2241                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2242         }
2243
2244         return get_desc_base(desc);
2245 }
2246
2247 #ifdef CONFIG_IA32_EMULATION
2248
2249 #include <asm/compat.h>
2250
2251 static inline int
2252 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2253 {
2254         /* 32-bit process in 64-bit kernel. */
2255         unsigned long ss_base, cs_base;
2256         struct stack_frame_ia32 frame;
2257         const void __user *fp;
2258
2259         if (!test_thread_flag(TIF_IA32))
2260                 return 0;
2261
2262         cs_base = get_segment_base(regs->cs);
2263         ss_base = get_segment_base(regs->ss);
2264
2265         fp = compat_ptr(ss_base + regs->bp);
2266         pagefault_disable();
2267         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2268                 unsigned long bytes;
2269                 frame.next_frame     = 0;
2270                 frame.return_address = 0;
2271
2272                 if (!access_ok(VERIFY_READ, fp, 8))
2273                         break;
2274
2275                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2276                 if (bytes != 0)
2277                         break;
2278                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2279                 if (bytes != 0)
2280                         break;
2281
2282                 if (!valid_user_frame(fp, sizeof(frame)))
2283                         break;
2284
2285                 perf_callchain_store(entry, cs_base + frame.return_address);
2286                 fp = compat_ptr(ss_base + frame.next_frame);
2287         }
2288         pagefault_enable();
2289         return 1;
2290 }
2291 #else
2292 static inline int
2293 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2294 {
2295     return 0;
2296 }
2297 #endif
2298
2299 void
2300 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2301 {
2302         struct stack_frame frame;
2303         const void __user *fp;
2304
2305         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2306                 /* TODO: We don't support guest os callchain now */
2307                 return;
2308         }
2309
2310         /*
2311          * We don't know what to do with VM86 stacks.. ignore them for now.
2312          */
2313         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2314                 return;
2315
2316         fp = (void __user *)regs->bp;
2317
2318         perf_callchain_store(entry, regs->ip);
2319
2320         if (!current->mm)
2321                 return;
2322
2323         if (perf_callchain_user32(regs, entry))
2324                 return;
2325
2326         pagefault_disable();
2327         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2328                 unsigned long bytes;
2329                 frame.next_frame             = NULL;
2330                 frame.return_address = 0;
2331
2332                 if (!access_ok(VERIFY_READ, fp, 16))
2333                         break;
2334
2335                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2336                 if (bytes != 0)
2337                         break;
2338                 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2339                 if (bytes != 0)
2340                         break;
2341
2342                 if (!valid_user_frame(fp, sizeof(frame)))
2343                         break;
2344
2345                 perf_callchain_store(entry, frame.return_address);
2346                 fp = (void __user *)frame.next_frame;
2347         }
2348         pagefault_enable();
2349 }
2350
2351 /*
2352  * Deal with code segment offsets for the various execution modes:
2353  *
2354  *   VM86 - the good olde 16 bit days, where the linear address is
2355  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2356  *
2357  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2358  *          to figure out what the 32bit base address is.
2359  *
2360  *    X32 - has TIF_X32 set, but is running in x86_64
2361  *
2362  * X86_64 - CS,DS,SS,ES are all zero based.
2363  */
2364 static unsigned long code_segment_base(struct pt_regs *regs)
2365 {
2366         /*
2367          * For IA32 we look at the GDT/LDT segment base to convert the
2368          * effective IP to a linear address.
2369          */
2370
2371 #ifdef CONFIG_X86_32
2372         /*
2373          * If we are in VM86 mode, add the segment offset to convert to a
2374          * linear address.
2375          */
2376         if (regs->flags & X86_VM_MASK)
2377                 return 0x10 * regs->cs;
2378
2379         if (user_mode(regs) && regs->cs != __USER_CS)
2380                 return get_segment_base(regs->cs);
2381 #else
2382         if (user_mode(regs) && !user_64bit_mode(regs) &&
2383             regs->cs != __USER32_CS)
2384                 return get_segment_base(regs->cs);
2385 #endif
2386         return 0;
2387 }
2388
2389 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2390 {
2391         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2392                 return perf_guest_cbs->get_guest_ip();
2393
2394         return regs->ip + code_segment_base(regs);
2395 }
2396
2397 unsigned long perf_misc_flags(struct pt_regs *regs)
2398 {
2399         int misc = 0;
2400
2401         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2402                 if (perf_guest_cbs->is_user_mode())
2403                         misc |= PERF_RECORD_MISC_GUEST_USER;
2404                 else
2405                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2406         } else {
2407                 if (user_mode(regs))
2408                         misc |= PERF_RECORD_MISC_USER;
2409                 else
2410                         misc |= PERF_RECORD_MISC_KERNEL;
2411         }
2412
2413         if (regs->flags & PERF_EFLAGS_EXACT)
2414                 misc |= PERF_RECORD_MISC_EXACT_IP;
2415
2416         return misc;
2417 }
2418
2419 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2420 {
2421         cap->version            = x86_pmu.version;
2422         cap->num_counters_gp    = x86_pmu.num_counters;
2423         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2424         cap->bit_width_gp       = x86_pmu.cntval_bits;
2425         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2426         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2427         cap->events_mask_len    = x86_pmu.events_mask_len;
2428 }
2429 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);