]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/events/core.c
Merge remote-tracking branch 'ovl/for-viro' into for-linus
[karo-tx-linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41
42 #include "perf_event.h"
43
44 struct x86_pmu x86_pmu __read_mostly;
45
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47         .enabled = 1,
48 };
49
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51
52 u64 __read_mostly hw_cache_event_ids
53                                 [PERF_COUNT_HW_CACHE_MAX]
54                                 [PERF_COUNT_HW_CACHE_OP_MAX]
55                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57                                 [PERF_COUNT_HW_CACHE_MAX]
58                                 [PERF_COUNT_HW_CACHE_OP_MAX]
59                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60
61 /*
62  * Propagate event elapsed time into the generic event.
63  * Can only be executed on the CPU where the event is active.
64  * Returns the delta events processed.
65  */
66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68         struct hw_perf_event *hwc = &event->hw;
69         int shift = 64 - x86_pmu.cntval_bits;
70         u64 prev_raw_count, new_raw_count;
71         int idx = hwc->idx;
72         u64 delta;
73
74         if (idx == INTEL_PMC_IDX_FIXED_BTS)
75                 return 0;
76
77         /*
78          * Careful: an NMI might modify the previous event value.
79          *
80          * Our tactic to handle this is to first atomically read and
81          * exchange a new raw count - then add that new-prev delta
82          * count to the generic event atomically:
83          */
84 again:
85         prev_raw_count = local64_read(&hwc->prev_count);
86         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87
88         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89                                         new_raw_count) != prev_raw_count)
90                 goto again;
91
92         /*
93          * Now we have the new raw value and have updated the prev
94          * timestamp already. We can now calculate the elapsed delta
95          * (event-)time and add that to the generic event.
96          *
97          * Careful, not all hw sign-extends above the physical width
98          * of the count.
99          */
100         delta = (new_raw_count << shift) - (prev_raw_count << shift);
101         delta >>= shift;
102
103         local64_add(delta, &event->count);
104         local64_sub(delta, &hwc->period_left);
105
106         return new_raw_count;
107 }
108
109 /*
110  * Find and validate any extra registers to set up.
111  */
112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114         struct hw_perf_event_extra *reg;
115         struct extra_reg *er;
116
117         reg = &event->hw.extra_reg;
118
119         if (!x86_pmu.extra_regs)
120                 return 0;
121
122         for (er = x86_pmu.extra_regs; er->msr; er++) {
123                 if (er->event != (config & er->config_mask))
124                         continue;
125                 if (event->attr.config1 & ~er->valid_mask)
126                         return -EINVAL;
127                 /* Check if the extra msrs can be safely accessed*/
128                 if (!er->extra_msr_access)
129                         return -ENXIO;
130
131                 reg->idx = er->idx;
132                 reg->config = event->attr.config1;
133                 reg->reg = er->msr;
134                 break;
135         }
136         return 0;
137 }
138
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142
143 #ifdef CONFIG_X86_LOCAL_APIC
144
145 static bool reserve_pmc_hardware(void)
146 {
147         int i;
148
149         for (i = 0; i < x86_pmu.num_counters; i++) {
150                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151                         goto perfctr_fail;
152         }
153
154         for (i = 0; i < x86_pmu.num_counters; i++) {
155                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156                         goto eventsel_fail;
157         }
158
159         return true;
160
161 eventsel_fail:
162         for (i--; i >= 0; i--)
163                 release_evntsel_nmi(x86_pmu_config_addr(i));
164
165         i = x86_pmu.num_counters;
166
167 perfctr_fail:
168         for (i--; i >= 0; i--)
169                 release_perfctr_nmi(x86_pmu_event_addr(i));
170
171         return false;
172 }
173
174 static void release_pmc_hardware(void)
175 {
176         int i;
177
178         for (i = 0; i < x86_pmu.num_counters; i++) {
179                 release_perfctr_nmi(x86_pmu_event_addr(i));
180                 release_evntsel_nmi(x86_pmu_config_addr(i));
181         }
182 }
183
184 #else
185
186 static bool reserve_pmc_hardware(void) { return true; }
187 static void release_pmc_hardware(void) {}
188
189 #endif
190
191 static bool check_hw_exists(void)
192 {
193         u64 val, val_fail, val_new= ~0;
194         int i, reg, reg_fail, ret = 0;
195         int bios_fail = 0;
196         int reg_safe = -1;
197
198         /*
199          * Check to see if the BIOS enabled any of the counters, if so
200          * complain and bail.
201          */
202         for (i = 0; i < x86_pmu.num_counters; i++) {
203                 reg = x86_pmu_config_addr(i);
204                 ret = rdmsrl_safe(reg, &val);
205                 if (ret)
206                         goto msr_fail;
207                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208                         bios_fail = 1;
209                         val_fail = val;
210                         reg_fail = reg;
211                 } else {
212                         reg_safe = i;
213                 }
214         }
215
216         if (x86_pmu.num_counters_fixed) {
217                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218                 ret = rdmsrl_safe(reg, &val);
219                 if (ret)
220                         goto msr_fail;
221                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222                         if (val & (0x03 << i*4)) {
223                                 bios_fail = 1;
224                                 val_fail = val;
225                                 reg_fail = reg;
226                         }
227                 }
228         }
229
230         /*
231          * If all the counters are enabled, the below test will always
232          * fail.  The tools will also become useless in this scenario.
233          * Just fail and disable the hardware counters.
234          */
235
236         if (reg_safe == -1) {
237                 reg = reg_safe;
238                 goto msr_fail;
239         }
240
241         /*
242          * Read the current value, change it and read it back to see if it
243          * matches, this is needed to detect certain hardware emulators
244          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245          */
246         reg = x86_pmu_event_addr(reg_safe);
247         if (rdmsrl_safe(reg, &val))
248                 goto msr_fail;
249         val ^= 0xffffUL;
250         ret = wrmsrl_safe(reg, val);
251         ret |= rdmsrl_safe(reg, &val_new);
252         if (ret || val != val_new)
253                 goto msr_fail;
254
255         /*
256          * We still allow the PMU driver to operate:
257          */
258         if (bios_fail) {
259                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261                               reg_fail, val_fail);
262         }
263
264         return true;
265
266 msr_fail:
267         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268                 pr_cont("PMU not available due to virtualization, using software events only.\n");
269         } else {
270                 pr_cont("Broken PMU hardware detected, using software events only.\n");
271                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272                        reg, val_new);
273         }
274
275         return false;
276 }
277
278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280         x86_release_hardware();
281         atomic_dec(&active_events);
282 }
283
284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286         hw_perf_event_destroy(event);
287
288         /* undo the lbr/bts event accounting */
289         x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291
292 static inline int x86_pmu_initialized(void)
293 {
294         return x86_pmu.handle_irq != NULL;
295 }
296
297 static inline int
298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300         struct perf_event_attr *attr = &event->attr;
301         unsigned int cache_type, cache_op, cache_result;
302         u64 config, val;
303
304         config = attr->config;
305
306         cache_type = (config >>  0) & 0xff;
307         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308                 return -EINVAL;
309
310         cache_op = (config >>  8) & 0xff;
311         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312                 return -EINVAL;
313
314         cache_result = (config >> 16) & 0xff;
315         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316                 return -EINVAL;
317
318         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319
320         if (val == 0)
321                 return -ENOENT;
322
323         if (val == -1)
324                 return -EINVAL;
325
326         hwc->config |= val;
327         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328         return x86_pmu_extra_regs(val, event);
329 }
330
331 int x86_reserve_hardware(void)
332 {
333         int err = 0;
334
335         if (!atomic_inc_not_zero(&pmc_refcount)) {
336                 mutex_lock(&pmc_reserve_mutex);
337                 if (atomic_read(&pmc_refcount) == 0) {
338                         if (!reserve_pmc_hardware())
339                                 err = -EBUSY;
340                         else
341                                 reserve_ds_buffers();
342                 }
343                 if (!err)
344                         atomic_inc(&pmc_refcount);
345                 mutex_unlock(&pmc_reserve_mutex);
346         }
347
348         return err;
349 }
350
351 void x86_release_hardware(void)
352 {
353         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354                 release_pmc_hardware();
355                 release_ds_buffers();
356                 mutex_unlock(&pmc_reserve_mutex);
357         }
358 }
359
360 /*
361  * Check if we can create event of a certain type (that no conflicting events
362  * are present).
363  */
364 int x86_add_exclusive(unsigned int what)
365 {
366         int i;
367
368         /*
369          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
370          * LBR and BTS are still mutually exclusive.
371          */
372         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
373                 return 0;
374
375         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
376                 mutex_lock(&pmc_reserve_mutex);
377                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
378                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
379                                 goto fail_unlock;
380                 }
381                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
382                 mutex_unlock(&pmc_reserve_mutex);
383         }
384
385         atomic_inc(&active_events);
386         return 0;
387
388 fail_unlock:
389         mutex_unlock(&pmc_reserve_mutex);
390         return -EBUSY;
391 }
392
393 void x86_del_exclusive(unsigned int what)
394 {
395         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
396                 return;
397
398         atomic_dec(&x86_pmu.lbr_exclusive[what]);
399         atomic_dec(&active_events);
400 }
401
402 int x86_setup_perfctr(struct perf_event *event)
403 {
404         struct perf_event_attr *attr = &event->attr;
405         struct hw_perf_event *hwc = &event->hw;
406         u64 config;
407
408         if (!is_sampling_event(event)) {
409                 hwc->sample_period = x86_pmu.max_period;
410                 hwc->last_period = hwc->sample_period;
411                 local64_set(&hwc->period_left, hwc->sample_period);
412         }
413
414         if (attr->type == PERF_TYPE_RAW)
415                 return x86_pmu_extra_regs(event->attr.config, event);
416
417         if (attr->type == PERF_TYPE_HW_CACHE)
418                 return set_ext_hw_attr(hwc, event);
419
420         if (attr->config >= x86_pmu.max_events)
421                 return -EINVAL;
422
423         /*
424          * The generic map:
425          */
426         config = x86_pmu.event_map(attr->config);
427
428         if (config == 0)
429                 return -ENOENT;
430
431         if (config == -1LL)
432                 return -EINVAL;
433
434         /*
435          * Branch tracing:
436          */
437         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
438             !attr->freq && hwc->sample_period == 1) {
439                 /* BTS is not supported by this architecture. */
440                 if (!x86_pmu.bts_active)
441                         return -EOPNOTSUPP;
442
443                 /* BTS is currently only allowed for user-mode. */
444                 if (!attr->exclude_kernel)
445                         return -EOPNOTSUPP;
446
447                 /* disallow bts if conflicting events are present */
448                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
449                         return -EBUSY;
450
451                 event->destroy = hw_perf_lbr_event_destroy;
452         }
453
454         hwc->config |= config;
455
456         return 0;
457 }
458
459 /*
460  * check that branch_sample_type is compatible with
461  * settings needed for precise_ip > 1 which implies
462  * using the LBR to capture ALL taken branches at the
463  * priv levels of the measurement
464  */
465 static inline int precise_br_compat(struct perf_event *event)
466 {
467         u64 m = event->attr.branch_sample_type;
468         u64 b = 0;
469
470         /* must capture all branches */
471         if (!(m & PERF_SAMPLE_BRANCH_ANY))
472                 return 0;
473
474         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
475
476         if (!event->attr.exclude_user)
477                 b |= PERF_SAMPLE_BRANCH_USER;
478
479         if (!event->attr.exclude_kernel)
480                 b |= PERF_SAMPLE_BRANCH_KERNEL;
481
482         /*
483          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
484          */
485
486         return m == b;
487 }
488
489 int x86_pmu_hw_config(struct perf_event *event)
490 {
491         if (event->attr.precise_ip) {
492                 int precise = 0;
493
494                 /* Support for constant skid */
495                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496                         precise++;
497
498                         /* Support for IP fixup */
499                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500                                 precise++;
501
502                         if (x86_pmu.pebs_prec_dist)
503                                 precise++;
504                 }
505
506                 if (event->attr.precise_ip > precise)
507                         return -EOPNOTSUPP;
508
509                 /* There's no sense in having PEBS for non sampling events: */
510                 if (!is_sampling_event(event))
511                         return -EINVAL;
512         }
513         /*
514          * check that PEBS LBR correction does not conflict with
515          * whatever the user is asking with attr->branch_sample_type
516          */
517         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
518                 u64 *br_type = &event->attr.branch_sample_type;
519
520                 if (has_branch_stack(event)) {
521                         if (!precise_br_compat(event))
522                                 return -EOPNOTSUPP;
523
524                         /* branch_sample_type is compatible */
525
526                 } else {
527                         /*
528                          * user did not specify  branch_sample_type
529                          *
530                          * For PEBS fixups, we capture all
531                          * the branches at the priv level of the
532                          * event.
533                          */
534                         *br_type = PERF_SAMPLE_BRANCH_ANY;
535
536                         if (!event->attr.exclude_user)
537                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
538
539                         if (!event->attr.exclude_kernel)
540                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
541                 }
542         }
543
544         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
545                 event->attach_state |= PERF_ATTACH_TASK_DATA;
546
547         /*
548          * Generate PMC IRQs:
549          * (keep 'enabled' bit clear for now)
550          */
551         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
552
553         /*
554          * Count user and OS events unless requested not to
555          */
556         if (!event->attr.exclude_user)
557                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
558         if (!event->attr.exclude_kernel)
559                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
560
561         if (event->attr.type == PERF_TYPE_RAW)
562                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
563
564         if (event->attr.sample_period && x86_pmu.limit_period) {
565                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
566                                 event->attr.sample_period)
567                         return -EINVAL;
568         }
569
570         return x86_setup_perfctr(event);
571 }
572
573 /*
574  * Setup the hardware configuration for a given attr_type
575  */
576 static int __x86_pmu_event_init(struct perf_event *event)
577 {
578         int err;
579
580         if (!x86_pmu_initialized())
581                 return -ENODEV;
582
583         err = x86_reserve_hardware();
584         if (err)
585                 return err;
586
587         atomic_inc(&active_events);
588         event->destroy = hw_perf_event_destroy;
589
590         event->hw.idx = -1;
591         event->hw.last_cpu = -1;
592         event->hw.last_tag = ~0ULL;
593
594         /* mark unused */
595         event->hw.extra_reg.idx = EXTRA_REG_NONE;
596         event->hw.branch_reg.idx = EXTRA_REG_NONE;
597
598         return x86_pmu.hw_config(event);
599 }
600
601 void x86_pmu_disable_all(void)
602 {
603         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
604         int idx;
605
606         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
607                 u64 val;
608
609                 if (!test_bit(idx, cpuc->active_mask))
610                         continue;
611                 rdmsrl(x86_pmu_config_addr(idx), val);
612                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
613                         continue;
614                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
615                 wrmsrl(x86_pmu_config_addr(idx), val);
616         }
617 }
618
619 /*
620  * There may be PMI landing after enabled=0. The PMI hitting could be before or
621  * after disable_all.
622  *
623  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
624  * It will not be re-enabled in the NMI handler again, because enabled=0. After
625  * handling the NMI, disable_all will be called, which will not change the
626  * state either. If PMI hits after disable_all, the PMU is already disabled
627  * before entering NMI handler. The NMI handler will not change the state
628  * either.
629  *
630  * So either situation is harmless.
631  */
632 static void x86_pmu_disable(struct pmu *pmu)
633 {
634         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
635
636         if (!x86_pmu_initialized())
637                 return;
638
639         if (!cpuc->enabled)
640                 return;
641
642         cpuc->n_added = 0;
643         cpuc->enabled = 0;
644         barrier();
645
646         x86_pmu.disable_all();
647 }
648
649 void x86_pmu_enable_all(int added)
650 {
651         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652         int idx;
653
654         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
655                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
656
657                 if (!test_bit(idx, cpuc->active_mask))
658                         continue;
659
660                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
661         }
662 }
663
664 static struct pmu pmu;
665
666 static inline int is_x86_event(struct perf_event *event)
667 {
668         return event->pmu == &pmu;
669 }
670
671 /*
672  * Event scheduler state:
673  *
674  * Assign events iterating over all events and counters, beginning
675  * with events with least weights first. Keep the current iterator
676  * state in struct sched_state.
677  */
678 struct sched_state {
679         int     weight;
680         int     event;          /* event index */
681         int     counter;        /* counter index */
682         int     unassigned;     /* number of events to be assigned left */
683         int     nr_gp;          /* number of GP counters used */
684         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
685 };
686
687 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
688 #define SCHED_STATES_MAX        2
689
690 struct perf_sched {
691         int                     max_weight;
692         int                     max_events;
693         int                     max_gp;
694         int                     saved_states;
695         struct event_constraint **constraints;
696         struct sched_state      state;
697         struct sched_state      saved[SCHED_STATES_MAX];
698 };
699
700 /*
701  * Initialize interator that runs through all events and counters.
702  */
703 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
704                             int num, int wmin, int wmax, int gpmax)
705 {
706         int idx;
707
708         memset(sched, 0, sizeof(*sched));
709         sched->max_events       = num;
710         sched->max_weight       = wmax;
711         sched->max_gp           = gpmax;
712         sched->constraints      = constraints;
713
714         for (idx = 0; idx < num; idx++) {
715                 if (constraints[idx]->weight == wmin)
716                         break;
717         }
718
719         sched->state.event      = idx;          /* start with min weight */
720         sched->state.weight     = wmin;
721         sched->state.unassigned = num;
722 }
723
724 static void perf_sched_save_state(struct perf_sched *sched)
725 {
726         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
727                 return;
728
729         sched->saved[sched->saved_states] = sched->state;
730         sched->saved_states++;
731 }
732
733 static bool perf_sched_restore_state(struct perf_sched *sched)
734 {
735         if (!sched->saved_states)
736                 return false;
737
738         sched->saved_states--;
739         sched->state = sched->saved[sched->saved_states];
740
741         /* continue with next counter: */
742         clear_bit(sched->state.counter++, sched->state.used);
743
744         return true;
745 }
746
747 /*
748  * Select a counter for the current event to schedule. Return true on
749  * success.
750  */
751 static bool __perf_sched_find_counter(struct perf_sched *sched)
752 {
753         struct event_constraint *c;
754         int idx;
755
756         if (!sched->state.unassigned)
757                 return false;
758
759         if (sched->state.event >= sched->max_events)
760                 return false;
761
762         c = sched->constraints[sched->state.event];
763         /* Prefer fixed purpose counters */
764         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
765                 idx = INTEL_PMC_IDX_FIXED;
766                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
767                         if (!__test_and_set_bit(idx, sched->state.used))
768                                 goto done;
769                 }
770         }
771
772         /* Grab the first unused counter starting with idx */
773         idx = sched->state.counter;
774         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
775                 if (!__test_and_set_bit(idx, sched->state.used)) {
776                         if (sched->state.nr_gp++ >= sched->max_gp)
777                                 return false;
778
779                         goto done;
780                 }
781         }
782
783         return false;
784
785 done:
786         sched->state.counter = idx;
787
788         if (c->overlap)
789                 perf_sched_save_state(sched);
790
791         return true;
792 }
793
794 static bool perf_sched_find_counter(struct perf_sched *sched)
795 {
796         while (!__perf_sched_find_counter(sched)) {
797                 if (!perf_sched_restore_state(sched))
798                         return false;
799         }
800
801         return true;
802 }
803
804 /*
805  * Go through all unassigned events and find the next one to schedule.
806  * Take events with the least weight first. Return true on success.
807  */
808 static bool perf_sched_next_event(struct perf_sched *sched)
809 {
810         struct event_constraint *c;
811
812         if (!sched->state.unassigned || !--sched->state.unassigned)
813                 return false;
814
815         do {
816                 /* next event */
817                 sched->state.event++;
818                 if (sched->state.event >= sched->max_events) {
819                         /* next weight */
820                         sched->state.event = 0;
821                         sched->state.weight++;
822                         if (sched->state.weight > sched->max_weight)
823                                 return false;
824                 }
825                 c = sched->constraints[sched->state.event];
826         } while (c->weight != sched->state.weight);
827
828         sched->state.counter = 0;       /* start with first counter */
829
830         return true;
831 }
832
833 /*
834  * Assign a counter for each event.
835  */
836 int perf_assign_events(struct event_constraint **constraints, int n,
837                         int wmin, int wmax, int gpmax, int *assign)
838 {
839         struct perf_sched sched;
840
841         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
842
843         do {
844                 if (!perf_sched_find_counter(&sched))
845                         break;  /* failed */
846                 if (assign)
847                         assign[sched.state.event] = sched.state.counter;
848         } while (perf_sched_next_event(&sched));
849
850         return sched.state.unassigned;
851 }
852 EXPORT_SYMBOL_GPL(perf_assign_events);
853
854 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
855 {
856         struct event_constraint *c;
857         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
858         struct perf_event *e;
859         int i, wmin, wmax, unsched = 0;
860         struct hw_perf_event *hwc;
861
862         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
863
864         if (x86_pmu.start_scheduling)
865                 x86_pmu.start_scheduling(cpuc);
866
867         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
868                 cpuc->event_constraint[i] = NULL;
869                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
870                 cpuc->event_constraint[i] = c;
871
872                 wmin = min(wmin, c->weight);
873                 wmax = max(wmax, c->weight);
874         }
875
876         /*
877          * fastpath, try to reuse previous register
878          */
879         for (i = 0; i < n; i++) {
880                 hwc = &cpuc->event_list[i]->hw;
881                 c = cpuc->event_constraint[i];
882
883                 /* never assigned */
884                 if (hwc->idx == -1)
885                         break;
886
887                 /* constraint still honored */
888                 if (!test_bit(hwc->idx, c->idxmsk))
889                         break;
890
891                 /* not already used */
892                 if (test_bit(hwc->idx, used_mask))
893                         break;
894
895                 __set_bit(hwc->idx, used_mask);
896                 if (assign)
897                         assign[i] = hwc->idx;
898         }
899
900         /* slow path */
901         if (i != n) {
902                 int gpmax = x86_pmu.num_counters;
903
904                 /*
905                  * Do not allow scheduling of more than half the available
906                  * generic counters.
907                  *
908                  * This helps avoid counter starvation of sibling thread by
909                  * ensuring at most half the counters cannot be in exclusive
910                  * mode. There is no designated counters for the limits. Any
911                  * N/2 counters can be used. This helps with events with
912                  * specific counter constraints.
913                  */
914                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
915                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
916                         gpmax /= 2;
917
918                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
919                                              wmax, gpmax, assign);
920         }
921
922         /*
923          * In case of success (unsched = 0), mark events as committed,
924          * so we do not put_constraint() in case new events are added
925          * and fail to be scheduled
926          *
927          * We invoke the lower level commit callback to lock the resource
928          *
929          * We do not need to do all of this in case we are called to
930          * validate an event group (assign == NULL)
931          */
932         if (!unsched && assign) {
933                 for (i = 0; i < n; i++) {
934                         e = cpuc->event_list[i];
935                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
936                         if (x86_pmu.commit_scheduling)
937                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
938                 }
939         } else {
940                 for (i = 0; i < n; i++) {
941                         e = cpuc->event_list[i];
942                         /*
943                          * do not put_constraint() on comitted events,
944                          * because they are good to go
945                          */
946                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
947                                 continue;
948
949                         /*
950                          * release events that failed scheduling
951                          */
952                         if (x86_pmu.put_event_constraints)
953                                 x86_pmu.put_event_constraints(cpuc, e);
954                 }
955         }
956
957         if (x86_pmu.stop_scheduling)
958                 x86_pmu.stop_scheduling(cpuc);
959
960         return unsched ? -EINVAL : 0;
961 }
962
963 /*
964  * dogrp: true if must collect siblings events (group)
965  * returns total number of events and error code
966  */
967 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
968 {
969         struct perf_event *event;
970         int n, max_count;
971
972         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
973
974         /* current number of events already accepted */
975         n = cpuc->n_events;
976
977         if (is_x86_event(leader)) {
978                 if (n >= max_count)
979                         return -EINVAL;
980                 cpuc->event_list[n] = leader;
981                 n++;
982         }
983         if (!dogrp)
984                 return n;
985
986         list_for_each_entry(event, &leader->sibling_list, group_entry) {
987                 if (!is_x86_event(event) ||
988                     event->state <= PERF_EVENT_STATE_OFF)
989                         continue;
990
991                 if (n >= max_count)
992                         return -EINVAL;
993
994                 cpuc->event_list[n] = event;
995                 n++;
996         }
997         return n;
998 }
999
1000 static inline void x86_assign_hw_event(struct perf_event *event,
1001                                 struct cpu_hw_events *cpuc, int i)
1002 {
1003         struct hw_perf_event *hwc = &event->hw;
1004
1005         hwc->idx = cpuc->assign[i];
1006         hwc->last_cpu = smp_processor_id();
1007         hwc->last_tag = ++cpuc->tags[i];
1008
1009         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1010                 hwc->config_base = 0;
1011                 hwc->event_base = 0;
1012         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1013                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1014                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1015                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1016         } else {
1017                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1018                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1019                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1020         }
1021 }
1022
1023 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1024                                         struct cpu_hw_events *cpuc,
1025                                         int i)
1026 {
1027         return hwc->idx == cpuc->assign[i] &&
1028                 hwc->last_cpu == smp_processor_id() &&
1029                 hwc->last_tag == cpuc->tags[i];
1030 }
1031
1032 static void x86_pmu_start(struct perf_event *event, int flags);
1033
1034 static void x86_pmu_enable(struct pmu *pmu)
1035 {
1036         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037         struct perf_event *event;
1038         struct hw_perf_event *hwc;
1039         int i, added = cpuc->n_added;
1040
1041         if (!x86_pmu_initialized())
1042                 return;
1043
1044         if (cpuc->enabled)
1045                 return;
1046
1047         if (cpuc->n_added) {
1048                 int n_running = cpuc->n_events - cpuc->n_added;
1049                 /*
1050                  * apply assignment obtained either from
1051                  * hw_perf_group_sched_in() or x86_pmu_enable()
1052                  *
1053                  * step1: save events moving to new counters
1054                  */
1055                 for (i = 0; i < n_running; i++) {
1056                         event = cpuc->event_list[i];
1057                         hwc = &event->hw;
1058
1059                         /*
1060                          * we can avoid reprogramming counter if:
1061                          * - assigned same counter as last time
1062                          * - running on same CPU as last time
1063                          * - no other event has used the counter since
1064                          */
1065                         if (hwc->idx == -1 ||
1066                             match_prev_assignment(hwc, cpuc, i))
1067                                 continue;
1068
1069                         /*
1070                          * Ensure we don't accidentally enable a stopped
1071                          * counter simply because we rescheduled.
1072                          */
1073                         if (hwc->state & PERF_HES_STOPPED)
1074                                 hwc->state |= PERF_HES_ARCH;
1075
1076                         x86_pmu_stop(event, PERF_EF_UPDATE);
1077                 }
1078
1079                 /*
1080                  * step2: reprogram moved events into new counters
1081                  */
1082                 for (i = 0; i < cpuc->n_events; i++) {
1083                         event = cpuc->event_list[i];
1084                         hwc = &event->hw;
1085
1086                         if (!match_prev_assignment(hwc, cpuc, i))
1087                                 x86_assign_hw_event(event, cpuc, i);
1088                         else if (i < n_running)
1089                                 continue;
1090
1091                         if (hwc->state & PERF_HES_ARCH)
1092                                 continue;
1093
1094                         x86_pmu_start(event, PERF_EF_RELOAD);
1095                 }
1096                 cpuc->n_added = 0;
1097                 perf_events_lapic_init();
1098         }
1099
1100         cpuc->enabled = 1;
1101         barrier();
1102
1103         x86_pmu.enable_all(added);
1104 }
1105
1106 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1107
1108 /*
1109  * Set the next IRQ period, based on the hwc->period_left value.
1110  * To be called with the event disabled in hw:
1111  */
1112 int x86_perf_event_set_period(struct perf_event *event)
1113 {
1114         struct hw_perf_event *hwc = &event->hw;
1115         s64 left = local64_read(&hwc->period_left);
1116         s64 period = hwc->sample_period;
1117         int ret = 0, idx = hwc->idx;
1118
1119         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1120                 return 0;
1121
1122         /*
1123          * If we are way outside a reasonable range then just skip forward:
1124          */
1125         if (unlikely(left <= -period)) {
1126                 left = period;
1127                 local64_set(&hwc->period_left, left);
1128                 hwc->last_period = period;
1129                 ret = 1;
1130         }
1131
1132         if (unlikely(left <= 0)) {
1133                 left += period;
1134                 local64_set(&hwc->period_left, left);
1135                 hwc->last_period = period;
1136                 ret = 1;
1137         }
1138         /*
1139          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1140          */
1141         if (unlikely(left < 2))
1142                 left = 2;
1143
1144         if (left > x86_pmu.max_period)
1145                 left = x86_pmu.max_period;
1146
1147         if (x86_pmu.limit_period)
1148                 left = x86_pmu.limit_period(event, left);
1149
1150         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1151
1152         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1153             local64_read(&hwc->prev_count) != (u64)-left) {
1154                 /*
1155                  * The hw event starts counting from this event offset,
1156                  * mark it to be able to extra future deltas:
1157                  */
1158                 local64_set(&hwc->prev_count, (u64)-left);
1159
1160                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1161         }
1162
1163         /*
1164          * Due to erratum on certan cpu we need
1165          * a second write to be sure the register
1166          * is updated properly
1167          */
1168         if (x86_pmu.perfctr_second_write) {
1169                 wrmsrl(hwc->event_base,
1170                         (u64)(-left) & x86_pmu.cntval_mask);
1171         }
1172
1173         perf_event_update_userpage(event);
1174
1175         return ret;
1176 }
1177
1178 void x86_pmu_enable_event(struct perf_event *event)
1179 {
1180         if (__this_cpu_read(cpu_hw_events.enabled))
1181                 __x86_pmu_enable_event(&event->hw,
1182                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1183 }
1184
1185 /*
1186  * Add a single event to the PMU.
1187  *
1188  * The event is added to the group of enabled events
1189  * but only if it can be scehduled with existing events.
1190  */
1191 static int x86_pmu_add(struct perf_event *event, int flags)
1192 {
1193         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1194         struct hw_perf_event *hwc;
1195         int assign[X86_PMC_IDX_MAX];
1196         int n, n0, ret;
1197
1198         hwc = &event->hw;
1199
1200         n0 = cpuc->n_events;
1201         ret = n = collect_events(cpuc, event, false);
1202         if (ret < 0)
1203                 goto out;
1204
1205         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1206         if (!(flags & PERF_EF_START))
1207                 hwc->state |= PERF_HES_ARCH;
1208
1209         /*
1210          * If group events scheduling transaction was started,
1211          * skip the schedulability test here, it will be performed
1212          * at commit time (->commit_txn) as a whole.
1213          *
1214          * If commit fails, we'll call ->del() on all events
1215          * for which ->add() was called.
1216          */
1217         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1218                 goto done_collect;
1219
1220         ret = x86_pmu.schedule_events(cpuc, n, assign);
1221         if (ret)
1222                 goto out;
1223         /*
1224          * copy new assignment, now we know it is possible
1225          * will be used by hw_perf_enable()
1226          */
1227         memcpy(cpuc->assign, assign, n*sizeof(int));
1228
1229 done_collect:
1230         /*
1231          * Commit the collect_events() state. See x86_pmu_del() and
1232          * x86_pmu_*_txn().
1233          */
1234         cpuc->n_events = n;
1235         cpuc->n_added += n - n0;
1236         cpuc->n_txn += n - n0;
1237
1238         if (x86_pmu.add) {
1239                 /*
1240                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1241                  * so we enable LBRs before an event needs them etc..
1242                  */
1243                 x86_pmu.add(event);
1244         }
1245
1246         ret = 0;
1247 out:
1248         return ret;
1249 }
1250
1251 static void x86_pmu_start(struct perf_event *event, int flags)
1252 {
1253         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1254         int idx = event->hw.idx;
1255
1256         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1257                 return;
1258
1259         if (WARN_ON_ONCE(idx == -1))
1260                 return;
1261
1262         if (flags & PERF_EF_RELOAD) {
1263                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1264                 x86_perf_event_set_period(event);
1265         }
1266
1267         event->hw.state = 0;
1268
1269         cpuc->events[idx] = event;
1270         __set_bit(idx, cpuc->active_mask);
1271         __set_bit(idx, cpuc->running);
1272         x86_pmu.enable(event);
1273         perf_event_update_userpage(event);
1274 }
1275
1276 void perf_event_print_debug(void)
1277 {
1278         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1279         u64 pebs, debugctl;
1280         struct cpu_hw_events *cpuc;
1281         unsigned long flags;
1282         int cpu, idx;
1283
1284         if (!x86_pmu.num_counters)
1285                 return;
1286
1287         local_irq_save(flags);
1288
1289         cpu = smp_processor_id();
1290         cpuc = &per_cpu(cpu_hw_events, cpu);
1291
1292         if (x86_pmu.version >= 2) {
1293                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1294                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1295                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1296                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1297
1298                 pr_info("\n");
1299                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1300                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1301                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1302                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1303                 if (x86_pmu.pebs_constraints) {
1304                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1305                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1306                 }
1307                 if (x86_pmu.lbr_nr) {
1308                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1309                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1310                 }
1311         }
1312         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1313
1314         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1315                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1316                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1317
1318                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1319
1320                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1321                         cpu, idx, pmc_ctrl);
1322                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1323                         cpu, idx, pmc_count);
1324                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1325                         cpu, idx, prev_left);
1326         }
1327         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1328                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1329
1330                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1331                         cpu, idx, pmc_count);
1332         }
1333         local_irq_restore(flags);
1334 }
1335
1336 void x86_pmu_stop(struct perf_event *event, int flags)
1337 {
1338         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1339         struct hw_perf_event *hwc = &event->hw;
1340
1341         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1342                 x86_pmu.disable(event);
1343                 cpuc->events[hwc->idx] = NULL;
1344                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1345                 hwc->state |= PERF_HES_STOPPED;
1346         }
1347
1348         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1349                 /*
1350                  * Drain the remaining delta count out of a event
1351                  * that we are disabling:
1352                  */
1353                 x86_perf_event_update(event);
1354                 hwc->state |= PERF_HES_UPTODATE;
1355         }
1356 }
1357
1358 static void x86_pmu_del(struct perf_event *event, int flags)
1359 {
1360         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361         int i;
1362
1363         /*
1364          * event is descheduled
1365          */
1366         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1367
1368         /*
1369          * If we're called during a txn, we only need to undo x86_pmu.add.
1370          * The events never got scheduled and ->cancel_txn will truncate
1371          * the event_list.
1372          *
1373          * XXX assumes any ->del() called during a TXN will only be on
1374          * an event added during that same TXN.
1375          */
1376         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1377                 goto do_del;
1378
1379         /*
1380          * Not a TXN, therefore cleanup properly.
1381          */
1382         x86_pmu_stop(event, PERF_EF_UPDATE);
1383
1384         for (i = 0; i < cpuc->n_events; i++) {
1385                 if (event == cpuc->event_list[i])
1386                         break;
1387         }
1388
1389         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1390                 return;
1391
1392         /* If we have a newly added event; make sure to decrease n_added. */
1393         if (i >= cpuc->n_events - cpuc->n_added)
1394                 --cpuc->n_added;
1395
1396         if (x86_pmu.put_event_constraints)
1397                 x86_pmu.put_event_constraints(cpuc, event);
1398
1399         /* Delete the array entry. */
1400         while (++i < cpuc->n_events) {
1401                 cpuc->event_list[i-1] = cpuc->event_list[i];
1402                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1403         }
1404         --cpuc->n_events;
1405
1406         perf_event_update_userpage(event);
1407
1408 do_del:
1409         if (x86_pmu.del) {
1410                 /*
1411                  * This is after x86_pmu_stop(); so we disable LBRs after any
1412                  * event can need them etc..
1413                  */
1414                 x86_pmu.del(event);
1415         }
1416 }
1417
1418 int x86_pmu_handle_irq(struct pt_regs *regs)
1419 {
1420         struct perf_sample_data data;
1421         struct cpu_hw_events *cpuc;
1422         struct perf_event *event;
1423         int idx, handled = 0;
1424         u64 val;
1425
1426         cpuc = this_cpu_ptr(&cpu_hw_events);
1427
1428         /*
1429          * Some chipsets need to unmask the LVTPC in a particular spot
1430          * inside the nmi handler.  As a result, the unmasking was pushed
1431          * into all the nmi handlers.
1432          *
1433          * This generic handler doesn't seem to have any issues where the
1434          * unmasking occurs so it was left at the top.
1435          */
1436         apic_write(APIC_LVTPC, APIC_DM_NMI);
1437
1438         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1439                 if (!test_bit(idx, cpuc->active_mask)) {
1440                         /*
1441                          * Though we deactivated the counter some cpus
1442                          * might still deliver spurious interrupts still
1443                          * in flight. Catch them:
1444                          */
1445                         if (__test_and_clear_bit(idx, cpuc->running))
1446                                 handled++;
1447                         continue;
1448                 }
1449
1450                 event = cpuc->events[idx];
1451
1452                 val = x86_perf_event_update(event);
1453                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1454                         continue;
1455
1456                 /*
1457                  * event overflow
1458                  */
1459                 handled++;
1460                 perf_sample_data_init(&data, 0, event->hw.last_period);
1461
1462                 if (!x86_perf_event_set_period(event))
1463                         continue;
1464
1465                 if (perf_event_overflow(event, &data, regs))
1466                         x86_pmu_stop(event, 0);
1467         }
1468
1469         if (handled)
1470                 inc_irq_stat(apic_perf_irqs);
1471
1472         return handled;
1473 }
1474
1475 void perf_events_lapic_init(void)
1476 {
1477         if (!x86_pmu.apic || !x86_pmu_initialized())
1478                 return;
1479
1480         /*
1481          * Always use NMI for PMU
1482          */
1483         apic_write(APIC_LVTPC, APIC_DM_NMI);
1484 }
1485
1486 static int
1487 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1488 {
1489         u64 start_clock;
1490         u64 finish_clock;
1491         int ret;
1492
1493         /*
1494          * All PMUs/events that share this PMI handler should make sure to
1495          * increment active_events for their events.
1496          */
1497         if (!atomic_read(&active_events))
1498                 return NMI_DONE;
1499
1500         start_clock = sched_clock();
1501         ret = x86_pmu.handle_irq(regs);
1502         finish_clock = sched_clock();
1503
1504         perf_sample_event_took(finish_clock - start_clock);
1505
1506         return ret;
1507 }
1508 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1509
1510 struct event_constraint emptyconstraint;
1511 struct event_constraint unconstrained;
1512
1513 static int x86_pmu_prepare_cpu(unsigned int cpu)
1514 {
1515         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1516         int i;
1517
1518         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1519                 cpuc->kfree_on_online[i] = NULL;
1520         if (x86_pmu.cpu_prepare)
1521                 return x86_pmu.cpu_prepare(cpu);
1522         return 0;
1523 }
1524
1525 static int x86_pmu_dead_cpu(unsigned int cpu)
1526 {
1527         if (x86_pmu.cpu_dead)
1528                 x86_pmu.cpu_dead(cpu);
1529         return 0;
1530 }
1531
1532 static int x86_pmu_online_cpu(unsigned int cpu)
1533 {
1534         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1535         int i;
1536
1537         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1538                 kfree(cpuc->kfree_on_online[i]);
1539                 cpuc->kfree_on_online[i] = NULL;
1540         }
1541         return 0;
1542 }
1543
1544 static int x86_pmu_starting_cpu(unsigned int cpu)
1545 {
1546         if (x86_pmu.cpu_starting)
1547                 x86_pmu.cpu_starting(cpu);
1548         return 0;
1549 }
1550
1551 static int x86_pmu_dying_cpu(unsigned int cpu)
1552 {
1553         if (x86_pmu.cpu_dying)
1554                 x86_pmu.cpu_dying(cpu);
1555         return 0;
1556 }
1557
1558 static void __init pmu_check_apic(void)
1559 {
1560         if (boot_cpu_has(X86_FEATURE_APIC))
1561                 return;
1562
1563         x86_pmu.apic = 0;
1564         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1565         pr_info("no hardware sampling interrupt available.\n");
1566
1567         /*
1568          * If we have a PMU initialized but no APIC
1569          * interrupts, we cannot sample hardware
1570          * events (user-space has to fall back and
1571          * sample via a hrtimer based software event):
1572          */
1573         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1574
1575 }
1576
1577 static struct attribute_group x86_pmu_format_group = {
1578         .name = "format",
1579         .attrs = NULL,
1580 };
1581
1582 /*
1583  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1584  * out of events_attr attributes.
1585  */
1586 static void __init filter_events(struct attribute **attrs)
1587 {
1588         struct device_attribute *d;
1589         struct perf_pmu_events_attr *pmu_attr;
1590         int offset = 0;
1591         int i, j;
1592
1593         for (i = 0; attrs[i]; i++) {
1594                 d = (struct device_attribute *)attrs[i];
1595                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1596                 /* str trumps id */
1597                 if (pmu_attr->event_str)
1598                         continue;
1599                 if (x86_pmu.event_map(i + offset))
1600                         continue;
1601
1602                 for (j = i; attrs[j]; j++)
1603                         attrs[j] = attrs[j + 1];
1604
1605                 /* Check the shifted attr. */
1606                 i--;
1607
1608                 /*
1609                  * event_map() is index based, the attrs array is organized
1610                  * by increasing event index. If we shift the events, then
1611                  * we need to compensate for the event_map(), otherwise
1612                  * we are looking up the wrong event in the map
1613                  */
1614                 offset++;
1615         }
1616 }
1617
1618 /* Merge two pointer arrays */
1619 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1620 {
1621         struct attribute **new;
1622         int j, i;
1623
1624         for (j = 0; a[j]; j++)
1625                 ;
1626         for (i = 0; b[i]; i++)
1627                 j++;
1628         j++;
1629
1630         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1631         if (!new)
1632                 return NULL;
1633
1634         j = 0;
1635         for (i = 0; a[i]; i++)
1636                 new[j++] = a[i];
1637         for (i = 0; b[i]; i++)
1638                 new[j++] = b[i];
1639         new[j] = NULL;
1640
1641         return new;
1642 }
1643
1644 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1645 {
1646         struct perf_pmu_events_attr *pmu_attr = \
1647                 container_of(attr, struct perf_pmu_events_attr, attr);
1648         u64 config = x86_pmu.event_map(pmu_attr->id);
1649
1650         /* string trumps id */
1651         if (pmu_attr->event_str)
1652                 return sprintf(page, "%s", pmu_attr->event_str);
1653
1654         return x86_pmu.events_sysfs_show(page, config);
1655 }
1656 EXPORT_SYMBOL_GPL(events_sysfs_show);
1657
1658 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1659                           char *page)
1660 {
1661         struct perf_pmu_events_ht_attr *pmu_attr =
1662                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1663
1664         /*
1665          * Report conditional events depending on Hyper-Threading.
1666          *
1667          * This is overly conservative as usually the HT special
1668          * handling is not needed if the other CPU thread is idle.
1669          *
1670          * Note this does not (and cannot) handle the case when thread
1671          * siblings are invisible, for example with virtualization
1672          * if they are owned by some other guest.  The user tool
1673          * has to re-read when a thread sibling gets onlined later.
1674          */
1675         return sprintf(page, "%s",
1676                         topology_max_smt_threads() > 1 ?
1677                         pmu_attr->event_str_ht :
1678                         pmu_attr->event_str_noht);
1679 }
1680
1681 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1682 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1683 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1684 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1685 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1686 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1687 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1688 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1689 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1690 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1691
1692 static struct attribute *empty_attrs;
1693
1694 static struct attribute *events_attr[] = {
1695         EVENT_PTR(CPU_CYCLES),
1696         EVENT_PTR(INSTRUCTIONS),
1697         EVENT_PTR(CACHE_REFERENCES),
1698         EVENT_PTR(CACHE_MISSES),
1699         EVENT_PTR(BRANCH_INSTRUCTIONS),
1700         EVENT_PTR(BRANCH_MISSES),
1701         EVENT_PTR(BUS_CYCLES),
1702         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1703         EVENT_PTR(STALLED_CYCLES_BACKEND),
1704         EVENT_PTR(REF_CPU_CYCLES),
1705         NULL,
1706 };
1707
1708 static struct attribute_group x86_pmu_events_group = {
1709         .name = "events",
1710         .attrs = events_attr,
1711 };
1712
1713 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1714 {
1715         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1716         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1717         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1718         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1719         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1720         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1721         ssize_t ret;
1722
1723         /*
1724         * We have whole page size to spend and just little data
1725         * to write, so we can safely use sprintf.
1726         */
1727         ret = sprintf(page, "event=0x%02llx", event);
1728
1729         if (umask)
1730                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1731
1732         if (edge)
1733                 ret += sprintf(page + ret, ",edge");
1734
1735         if (pc)
1736                 ret += sprintf(page + ret, ",pc");
1737
1738         if (any)
1739                 ret += sprintf(page + ret, ",any");
1740
1741         if (inv)
1742                 ret += sprintf(page + ret, ",inv");
1743
1744         if (cmask)
1745                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1746
1747         ret += sprintf(page + ret, "\n");
1748
1749         return ret;
1750 }
1751
1752 static int __init init_hw_perf_events(void)
1753 {
1754         struct x86_pmu_quirk *quirk;
1755         int err;
1756
1757         pr_info("Performance Events: ");
1758
1759         switch (boot_cpu_data.x86_vendor) {
1760         case X86_VENDOR_INTEL:
1761                 err = intel_pmu_init();
1762                 break;
1763         case X86_VENDOR_AMD:
1764                 err = amd_pmu_init();
1765                 break;
1766         default:
1767                 err = -ENOTSUPP;
1768         }
1769         if (err != 0) {
1770                 pr_cont("no PMU driver, software events only.\n");
1771                 return 0;
1772         }
1773
1774         pmu_check_apic();
1775
1776         /* sanity check that the hardware exists or is emulated */
1777         if (!check_hw_exists())
1778                 return 0;
1779
1780         pr_cont("%s PMU driver.\n", x86_pmu.name);
1781
1782         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1783
1784         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1785                 quirk->func();
1786
1787         if (!x86_pmu.intel_ctrl)
1788                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1789
1790         perf_events_lapic_init();
1791         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1792
1793         unconstrained = (struct event_constraint)
1794                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1795                                    0, x86_pmu.num_counters, 0, 0);
1796
1797         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1798
1799         if (x86_pmu.event_attrs)
1800                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1801
1802         if (!x86_pmu.events_sysfs_show)
1803                 x86_pmu_events_group.attrs = &empty_attrs;
1804         else
1805                 filter_events(x86_pmu_events_group.attrs);
1806
1807         if (x86_pmu.cpu_events) {
1808                 struct attribute **tmp;
1809
1810                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1811                 if (!WARN_ON(!tmp))
1812                         x86_pmu_events_group.attrs = tmp;
1813         }
1814
1815         pr_info("... version:                %d\n",     x86_pmu.version);
1816         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1817         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1818         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1819         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1820         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1821         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1822
1823         /*
1824          * Install callbacks. Core will call them for each online
1825          * cpu.
1826          */
1827         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1828                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1829         if (err)
1830                 return err;
1831
1832         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1833                                 "perf/x86:starting", x86_pmu_starting_cpu,
1834                                 x86_pmu_dying_cpu);
1835         if (err)
1836                 goto out;
1837
1838         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1839                                 x86_pmu_online_cpu, NULL);
1840         if (err)
1841                 goto out1;
1842
1843         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1844         if (err)
1845                 goto out2;
1846
1847         return 0;
1848
1849 out2:
1850         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1851 out1:
1852         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1853 out:
1854         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1855         return err;
1856 }
1857 early_initcall(init_hw_perf_events);
1858
1859 static inline void x86_pmu_read(struct perf_event *event)
1860 {
1861         x86_perf_event_update(event);
1862 }
1863
1864 /*
1865  * Start group events scheduling transaction
1866  * Set the flag to make pmu::enable() not perform the
1867  * schedulability test, it will be performed at commit time
1868  *
1869  * We only support PERF_PMU_TXN_ADD transactions. Save the
1870  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1871  * transactions.
1872  */
1873 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1874 {
1875         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1876
1877         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1878
1879         cpuc->txn_flags = txn_flags;
1880         if (txn_flags & ~PERF_PMU_TXN_ADD)
1881                 return;
1882
1883         perf_pmu_disable(pmu);
1884         __this_cpu_write(cpu_hw_events.n_txn, 0);
1885 }
1886
1887 /*
1888  * Stop group events scheduling transaction
1889  * Clear the flag and pmu::enable() will perform the
1890  * schedulability test.
1891  */
1892 static void x86_pmu_cancel_txn(struct pmu *pmu)
1893 {
1894         unsigned int txn_flags;
1895         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1896
1897         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1898
1899         txn_flags = cpuc->txn_flags;
1900         cpuc->txn_flags = 0;
1901         if (txn_flags & ~PERF_PMU_TXN_ADD)
1902                 return;
1903
1904         /*
1905          * Truncate collected array by the number of events added in this
1906          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1907          */
1908         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1909         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1910         perf_pmu_enable(pmu);
1911 }
1912
1913 /*
1914  * Commit group events scheduling transaction
1915  * Perform the group schedulability test as a whole
1916  * Return 0 if success
1917  *
1918  * Does not cancel the transaction on failure; expects the caller to do this.
1919  */
1920 static int x86_pmu_commit_txn(struct pmu *pmu)
1921 {
1922         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1923         int assign[X86_PMC_IDX_MAX];
1924         int n, ret;
1925
1926         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1927
1928         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1929                 cpuc->txn_flags = 0;
1930                 return 0;
1931         }
1932
1933         n = cpuc->n_events;
1934
1935         if (!x86_pmu_initialized())
1936                 return -EAGAIN;
1937
1938         ret = x86_pmu.schedule_events(cpuc, n, assign);
1939         if (ret)
1940                 return ret;
1941
1942         /*
1943          * copy new assignment, now we know it is possible
1944          * will be used by hw_perf_enable()
1945          */
1946         memcpy(cpuc->assign, assign, n*sizeof(int));
1947
1948         cpuc->txn_flags = 0;
1949         perf_pmu_enable(pmu);
1950         return 0;
1951 }
1952 /*
1953  * a fake_cpuc is used to validate event groups. Due to
1954  * the extra reg logic, we need to also allocate a fake
1955  * per_core and per_cpu structure. Otherwise, group events
1956  * using extra reg may conflict without the kernel being
1957  * able to catch this when the last event gets added to
1958  * the group.
1959  */
1960 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1961 {
1962         kfree(cpuc->shared_regs);
1963         kfree(cpuc);
1964 }
1965
1966 static struct cpu_hw_events *allocate_fake_cpuc(void)
1967 {
1968         struct cpu_hw_events *cpuc;
1969         int cpu = raw_smp_processor_id();
1970
1971         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1972         if (!cpuc)
1973                 return ERR_PTR(-ENOMEM);
1974
1975         /* only needed, if we have extra_regs */
1976         if (x86_pmu.extra_regs) {
1977                 cpuc->shared_regs = allocate_shared_regs(cpu);
1978                 if (!cpuc->shared_regs)
1979                         goto error;
1980         }
1981         cpuc->is_fake = 1;
1982         return cpuc;
1983 error:
1984         free_fake_cpuc(cpuc);
1985         return ERR_PTR(-ENOMEM);
1986 }
1987
1988 /*
1989  * validate that we can schedule this event
1990  */
1991 static int validate_event(struct perf_event *event)
1992 {
1993         struct cpu_hw_events *fake_cpuc;
1994         struct event_constraint *c;
1995         int ret = 0;
1996
1997         fake_cpuc = allocate_fake_cpuc();
1998         if (IS_ERR(fake_cpuc))
1999                 return PTR_ERR(fake_cpuc);
2000
2001         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2002
2003         if (!c || !c->weight)
2004                 ret = -EINVAL;
2005
2006         if (x86_pmu.put_event_constraints)
2007                 x86_pmu.put_event_constraints(fake_cpuc, event);
2008
2009         free_fake_cpuc(fake_cpuc);
2010
2011         return ret;
2012 }
2013
2014 /*
2015  * validate a single event group
2016  *
2017  * validation include:
2018  *      - check events are compatible which each other
2019  *      - events do not compete for the same counter
2020  *      - number of events <= number of counters
2021  *
2022  * validation ensures the group can be loaded onto the
2023  * PMU if it was the only group available.
2024  */
2025 static int validate_group(struct perf_event *event)
2026 {
2027         struct perf_event *leader = event->group_leader;
2028         struct cpu_hw_events *fake_cpuc;
2029         int ret = -EINVAL, n;
2030
2031         fake_cpuc = allocate_fake_cpuc();
2032         if (IS_ERR(fake_cpuc))
2033                 return PTR_ERR(fake_cpuc);
2034         /*
2035          * the event is not yet connected with its
2036          * siblings therefore we must first collect
2037          * existing siblings, then add the new event
2038          * before we can simulate the scheduling
2039          */
2040         n = collect_events(fake_cpuc, leader, true);
2041         if (n < 0)
2042                 goto out;
2043
2044         fake_cpuc->n_events = n;
2045         n = collect_events(fake_cpuc, event, false);
2046         if (n < 0)
2047                 goto out;
2048
2049         fake_cpuc->n_events = n;
2050
2051         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2052
2053 out:
2054         free_fake_cpuc(fake_cpuc);
2055         return ret;
2056 }
2057
2058 static int x86_pmu_event_init(struct perf_event *event)
2059 {
2060         struct pmu *tmp;
2061         int err;
2062
2063         switch (event->attr.type) {
2064         case PERF_TYPE_RAW:
2065         case PERF_TYPE_HARDWARE:
2066         case PERF_TYPE_HW_CACHE:
2067                 break;
2068
2069         default:
2070                 return -ENOENT;
2071         }
2072
2073         err = __x86_pmu_event_init(event);
2074         if (!err) {
2075                 /*
2076                  * we temporarily connect event to its pmu
2077                  * such that validate_group() can classify
2078                  * it as an x86 event using is_x86_event()
2079                  */
2080                 tmp = event->pmu;
2081                 event->pmu = &pmu;
2082
2083                 if (event->group_leader != event)
2084                         err = validate_group(event);
2085                 else
2086                         err = validate_event(event);
2087
2088                 event->pmu = tmp;
2089         }
2090         if (err) {
2091                 if (event->destroy)
2092                         event->destroy(event);
2093         }
2094
2095         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2096                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2097
2098         return err;
2099 }
2100
2101 static void refresh_pce(void *ignored)
2102 {
2103         if (current->mm)
2104                 load_mm_cr4(current->mm);
2105 }
2106
2107 static void x86_pmu_event_mapped(struct perf_event *event)
2108 {
2109         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2110                 return;
2111
2112         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2113                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2114 }
2115
2116 static void x86_pmu_event_unmapped(struct perf_event *event)
2117 {
2118         if (!current->mm)
2119                 return;
2120
2121         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2122                 return;
2123
2124         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2125                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2126 }
2127
2128 static int x86_pmu_event_idx(struct perf_event *event)
2129 {
2130         int idx = event->hw.idx;
2131
2132         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2133                 return 0;
2134
2135         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2136                 idx -= INTEL_PMC_IDX_FIXED;
2137                 idx |= 1 << 30;
2138         }
2139
2140         return idx + 1;
2141 }
2142
2143 static ssize_t get_attr_rdpmc(struct device *cdev,
2144                               struct device_attribute *attr,
2145                               char *buf)
2146 {
2147         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2148 }
2149
2150 static ssize_t set_attr_rdpmc(struct device *cdev,
2151                               struct device_attribute *attr,
2152                               const char *buf, size_t count)
2153 {
2154         unsigned long val;
2155         ssize_t ret;
2156
2157         ret = kstrtoul(buf, 0, &val);
2158         if (ret)
2159                 return ret;
2160
2161         if (val > 2)
2162                 return -EINVAL;
2163
2164         if (x86_pmu.attr_rdpmc_broken)
2165                 return -ENOTSUPP;
2166
2167         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2168                 /*
2169                  * Changing into or out of always available, aka
2170                  * perf-event-bypassing mode.  This path is extremely slow,
2171                  * but only root can trigger it, so it's okay.
2172                  */
2173                 if (val == 2)
2174                         static_key_slow_inc(&rdpmc_always_available);
2175                 else
2176                         static_key_slow_dec(&rdpmc_always_available);
2177                 on_each_cpu(refresh_pce, NULL, 1);
2178         }
2179
2180         x86_pmu.attr_rdpmc = val;
2181
2182         return count;
2183 }
2184
2185 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2186
2187 static struct attribute *x86_pmu_attrs[] = {
2188         &dev_attr_rdpmc.attr,
2189         NULL,
2190 };
2191
2192 static struct attribute_group x86_pmu_attr_group = {
2193         .attrs = x86_pmu_attrs,
2194 };
2195
2196 static const struct attribute_group *x86_pmu_attr_groups[] = {
2197         &x86_pmu_attr_group,
2198         &x86_pmu_format_group,
2199         &x86_pmu_events_group,
2200         NULL,
2201 };
2202
2203 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2204 {
2205         if (x86_pmu.sched_task)
2206                 x86_pmu.sched_task(ctx, sched_in);
2207 }
2208
2209 void perf_check_microcode(void)
2210 {
2211         if (x86_pmu.check_microcode)
2212                 x86_pmu.check_microcode();
2213 }
2214 EXPORT_SYMBOL_GPL(perf_check_microcode);
2215
2216 static struct pmu pmu = {
2217         .pmu_enable             = x86_pmu_enable,
2218         .pmu_disable            = x86_pmu_disable,
2219
2220         .attr_groups            = x86_pmu_attr_groups,
2221
2222         .event_init             = x86_pmu_event_init,
2223
2224         .event_mapped           = x86_pmu_event_mapped,
2225         .event_unmapped         = x86_pmu_event_unmapped,
2226
2227         .add                    = x86_pmu_add,
2228         .del                    = x86_pmu_del,
2229         .start                  = x86_pmu_start,
2230         .stop                   = x86_pmu_stop,
2231         .read                   = x86_pmu_read,
2232
2233         .start_txn              = x86_pmu_start_txn,
2234         .cancel_txn             = x86_pmu_cancel_txn,
2235         .commit_txn             = x86_pmu_commit_txn,
2236
2237         .event_idx              = x86_pmu_event_idx,
2238         .sched_task             = x86_pmu_sched_task,
2239         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2240 };
2241
2242 void arch_perf_update_userpage(struct perf_event *event,
2243                                struct perf_event_mmap_page *userpg, u64 now)
2244 {
2245         struct cyc2ns_data *data;
2246
2247         userpg->cap_user_time = 0;
2248         userpg->cap_user_time_zero = 0;
2249         userpg->cap_user_rdpmc =
2250                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2251         userpg->pmc_width = x86_pmu.cntval_bits;
2252
2253         if (!sched_clock_stable())
2254                 return;
2255
2256         data = cyc2ns_read_begin();
2257
2258         /*
2259          * Internal timekeeping for enabled/running/stopped times
2260          * is always in the local_clock domain.
2261          */
2262         userpg->cap_user_time = 1;
2263         userpg->time_mult = data->cyc2ns_mul;
2264         userpg->time_shift = data->cyc2ns_shift;
2265         userpg->time_offset = data->cyc2ns_offset - now;
2266
2267         /*
2268          * cap_user_time_zero doesn't make sense when we're using a different
2269          * time base for the records.
2270          */
2271         if (!event->attr.use_clockid) {
2272                 userpg->cap_user_time_zero = 1;
2273                 userpg->time_zero = data->cyc2ns_offset;
2274         }
2275
2276         cyc2ns_read_end(data);
2277 }
2278
2279 void
2280 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2281 {
2282         struct unwind_state state;
2283         unsigned long addr;
2284
2285         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2286                 /* TODO: We don't support guest os callchain now */
2287                 return;
2288         }
2289
2290         if (perf_callchain_store(entry, regs->ip))
2291                 return;
2292
2293         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2294              unwind_next_frame(&state)) {
2295                 addr = unwind_get_return_address(&state);
2296                 if (!addr || perf_callchain_store(entry, addr))
2297                         return;
2298         }
2299 }
2300
2301 static inline int
2302 valid_user_frame(const void __user *fp, unsigned long size)
2303 {
2304         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2305 }
2306
2307 static unsigned long get_segment_base(unsigned int segment)
2308 {
2309         struct desc_struct *desc;
2310         unsigned int idx = segment >> 3;
2311
2312         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2313 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2314                 struct ldt_struct *ldt;
2315
2316                 if (idx > LDT_ENTRIES)
2317                         return 0;
2318
2319                 /* IRQs are off, so this synchronizes with smp_store_release */
2320                 ldt = lockless_dereference(current->active_mm->context.ldt);
2321                 if (!ldt || idx > ldt->size)
2322                         return 0;
2323
2324                 desc = &ldt->entries[idx];
2325 #else
2326                 return 0;
2327 #endif
2328         } else {
2329                 if (idx > GDT_ENTRIES)
2330                         return 0;
2331
2332                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2333         }
2334
2335         return get_desc_base(desc);
2336 }
2337
2338 #ifdef CONFIG_IA32_EMULATION
2339
2340 #include <asm/compat.h>
2341
2342 static inline int
2343 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2344 {
2345         /* 32-bit process in 64-bit kernel. */
2346         unsigned long ss_base, cs_base;
2347         struct stack_frame_ia32 frame;
2348         const void __user *fp;
2349
2350         if (!test_thread_flag(TIF_IA32))
2351                 return 0;
2352
2353         cs_base = get_segment_base(regs->cs);
2354         ss_base = get_segment_base(regs->ss);
2355
2356         fp = compat_ptr(ss_base + regs->bp);
2357         pagefault_disable();
2358         while (entry->nr < entry->max_stack) {
2359                 unsigned long bytes;
2360                 frame.next_frame     = 0;
2361                 frame.return_address = 0;
2362
2363                 if (!valid_user_frame(fp, sizeof(frame)))
2364                         break;
2365
2366                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2367                 if (bytes != 0)
2368                         break;
2369                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2370                 if (bytes != 0)
2371                         break;
2372
2373                 perf_callchain_store(entry, cs_base + frame.return_address);
2374                 fp = compat_ptr(ss_base + frame.next_frame);
2375         }
2376         pagefault_enable();
2377         return 1;
2378 }
2379 #else
2380 static inline int
2381 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2382 {
2383     return 0;
2384 }
2385 #endif
2386
2387 void
2388 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2389 {
2390         struct stack_frame frame;
2391         const unsigned long __user *fp;
2392
2393         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2394                 /* TODO: We don't support guest os callchain now */
2395                 return;
2396         }
2397
2398         /*
2399          * We don't know what to do with VM86 stacks.. ignore them for now.
2400          */
2401         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2402                 return;
2403
2404         fp = (unsigned long __user *)regs->bp;
2405
2406         perf_callchain_store(entry, regs->ip);
2407
2408         if (!current->mm)
2409                 return;
2410
2411         if (perf_callchain_user32(regs, entry))
2412                 return;
2413
2414         pagefault_disable();
2415         while (entry->nr < entry->max_stack) {
2416                 unsigned long bytes;
2417
2418                 frame.next_frame             = NULL;
2419                 frame.return_address = 0;
2420
2421                 if (!valid_user_frame(fp, sizeof(frame)))
2422                         break;
2423
2424                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2425                 if (bytes != 0)
2426                         break;
2427                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2428                 if (bytes != 0)
2429                         break;
2430
2431                 perf_callchain_store(entry, frame.return_address);
2432                 fp = (void __user *)frame.next_frame;
2433         }
2434         pagefault_enable();
2435 }
2436
2437 /*
2438  * Deal with code segment offsets for the various execution modes:
2439  *
2440  *   VM86 - the good olde 16 bit days, where the linear address is
2441  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2442  *
2443  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2444  *          to figure out what the 32bit base address is.
2445  *
2446  *    X32 - has TIF_X32 set, but is running in x86_64
2447  *
2448  * X86_64 - CS,DS,SS,ES are all zero based.
2449  */
2450 static unsigned long code_segment_base(struct pt_regs *regs)
2451 {
2452         /*
2453          * For IA32 we look at the GDT/LDT segment base to convert the
2454          * effective IP to a linear address.
2455          */
2456
2457 #ifdef CONFIG_X86_32
2458         /*
2459          * If we are in VM86 mode, add the segment offset to convert to a
2460          * linear address.
2461          */
2462         if (regs->flags & X86_VM_MASK)
2463                 return 0x10 * regs->cs;
2464
2465         if (user_mode(regs) && regs->cs != __USER_CS)
2466                 return get_segment_base(regs->cs);
2467 #else
2468         if (user_mode(regs) && !user_64bit_mode(regs) &&
2469             regs->cs != __USER32_CS)
2470                 return get_segment_base(regs->cs);
2471 #endif
2472         return 0;
2473 }
2474
2475 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2476 {
2477         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2478                 return perf_guest_cbs->get_guest_ip();
2479
2480         return regs->ip + code_segment_base(regs);
2481 }
2482
2483 unsigned long perf_misc_flags(struct pt_regs *regs)
2484 {
2485         int misc = 0;
2486
2487         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2488                 if (perf_guest_cbs->is_user_mode())
2489                         misc |= PERF_RECORD_MISC_GUEST_USER;
2490                 else
2491                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2492         } else {
2493                 if (user_mode(regs))
2494                         misc |= PERF_RECORD_MISC_USER;
2495                 else
2496                         misc |= PERF_RECORD_MISC_KERNEL;
2497         }
2498
2499         if (regs->flags & PERF_EFLAGS_EXACT)
2500                 misc |= PERF_RECORD_MISC_EXACT_IP;
2501
2502         return misc;
2503 }
2504
2505 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2506 {
2507         cap->version            = x86_pmu.version;
2508         cap->num_counters_gp    = x86_pmu.num_counters;
2509         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2510         cap->bit_width_gp       = x86_pmu.cntval_bits;
2511         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2512         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2513         cap->events_mask_len    = x86_pmu.events_mask_len;
2514 }
2515 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);