]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kernel/cpu/perf_counter.c
perf_counter: x86: Disallow interval of 1
[mv-sheeva.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2  * Performance counter x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *
10  *  For licencing details see kernel-base/COPYING
11  */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
26
27 static u64 perf_counter_mask __read_mostly;
28
29 struct cpu_hw_counters {
30         struct perf_counter     *counters[X86_PMC_IDX_MAX];
31         unsigned long           used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33         unsigned long           interrupts;
34         int                     enabled;
35 };
36
37 /*
38  * struct x86_pmu - generic x86 pmu
39  */
40 struct x86_pmu {
41         const char      *name;
42         int             version;
43         int             (*handle_irq)(struct pt_regs *, int);
44         void            (*disable_all)(void);
45         void            (*enable_all)(void);
46         void            (*enable)(struct hw_perf_counter *, int);
47         void            (*disable)(struct hw_perf_counter *, int);
48         unsigned        eventsel;
49         unsigned        perfctr;
50         u64             (*event_map)(int);
51         u64             (*raw_event)(u64);
52         int             max_events;
53         int             num_counters;
54         int             num_counters_fixed;
55         int             counter_bits;
56         u64             counter_mask;
57         u64             max_period;
58         u64             intel_ctrl;
59 };
60
61 static struct x86_pmu x86_pmu __read_mostly;
62
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64         .enabled = 1,
65 };
66
67 /*
68  * Intel PerfMon v3. Used on Core2 and later.
69  */
70 static const u64 intel_perfmon_event_map[] =
71 {
72   [PERF_COUNT_CPU_CYCLES]               = 0x003c,
73   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
74   [PERF_COUNT_CACHE_REFERENCES]         = 0x4f2e,
75   [PERF_COUNT_CACHE_MISSES]             = 0x412e,
76   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
77   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
78   [PERF_COUNT_BUS_CYCLES]               = 0x013c,
79 };
80
81 static u64 intel_pmu_event_map(int event)
82 {
83         return intel_perfmon_event_map[event];
84 }
85
86 static u64 intel_pmu_raw_event(u64 event)
87 {
88 #define CORE_EVNTSEL_EVENT_MASK         0x000000FFULL
89 #define CORE_EVNTSEL_UNIT_MASK          0x0000FF00ULL
90 #define CORE_EVNTSEL_COUNTER_MASK       0xFF000000ULL
91
92 #define CORE_EVNTSEL_MASK               \
93         (CORE_EVNTSEL_EVENT_MASK |      \
94          CORE_EVNTSEL_UNIT_MASK  |      \
95          CORE_EVNTSEL_COUNTER_MASK)
96
97         return event & CORE_EVNTSEL_MASK;
98 }
99
100 /*
101  * AMD Performance Monitor K7 and later.
102  */
103 static const u64 amd_perfmon_event_map[] =
104 {
105   [PERF_COUNT_CPU_CYCLES]               = 0x0076,
106   [PERF_COUNT_INSTRUCTIONS]             = 0x00c0,
107   [PERF_COUNT_CACHE_REFERENCES]         = 0x0080,
108   [PERF_COUNT_CACHE_MISSES]             = 0x0081,
109   [PERF_COUNT_BRANCH_INSTRUCTIONS]      = 0x00c4,
110   [PERF_COUNT_BRANCH_MISSES]            = 0x00c5,
111 };
112
113 static u64 amd_pmu_event_map(int event)
114 {
115         return amd_perfmon_event_map[event];
116 }
117
118 static u64 amd_pmu_raw_event(u64 event)
119 {
120 #define K7_EVNTSEL_EVENT_MASK   0x7000000FFULL
121 #define K7_EVNTSEL_UNIT_MASK    0x00000FF00ULL
122 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
123
124 #define K7_EVNTSEL_MASK                 \
125         (K7_EVNTSEL_EVENT_MASK |        \
126          K7_EVNTSEL_UNIT_MASK  |        \
127          K7_EVNTSEL_COUNTER_MASK)
128
129         return event & K7_EVNTSEL_MASK;
130 }
131
132 /*
133  * Propagate counter elapsed time into the generic counter.
134  * Can only be executed on the CPU where the counter is active.
135  * Returns the delta events processed.
136  */
137 static u64
138 x86_perf_counter_update(struct perf_counter *counter,
139                         struct hw_perf_counter *hwc, int idx)
140 {
141         int shift = 64 - x86_pmu.counter_bits;
142         u64 prev_raw_count, new_raw_count;
143         s64 delta;
144
145         /*
146          * Careful: an NMI might modify the previous counter value.
147          *
148          * Our tactic to handle this is to first atomically read and
149          * exchange a new raw count - then add that new-prev delta
150          * count to the generic counter atomically:
151          */
152 again:
153         prev_raw_count = atomic64_read(&hwc->prev_count);
154         rdmsrl(hwc->counter_base + idx, new_raw_count);
155
156         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
157                                         new_raw_count) != prev_raw_count)
158                 goto again;
159
160         /*
161          * Now we have the new raw value and have updated the prev
162          * timestamp already. We can now calculate the elapsed delta
163          * (counter-)time and add that to the generic counter.
164          *
165          * Careful, not all hw sign-extends above the physical width
166          * of the count.
167          */
168         delta = (new_raw_count << shift) - (prev_raw_count << shift);
169         delta >>= shift;
170
171         atomic64_add(delta, &counter->count);
172         atomic64_sub(delta, &hwc->period_left);
173
174         return new_raw_count;
175 }
176
177 static atomic_t active_counters;
178 static DEFINE_MUTEX(pmc_reserve_mutex);
179
180 static bool reserve_pmc_hardware(void)
181 {
182         int i;
183
184         if (nmi_watchdog == NMI_LOCAL_APIC)
185                 disable_lapic_nmi_watchdog();
186
187         for (i = 0; i < x86_pmu.num_counters; i++) {
188                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
189                         goto perfctr_fail;
190         }
191
192         for (i = 0; i < x86_pmu.num_counters; i++) {
193                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
194                         goto eventsel_fail;
195         }
196
197         return true;
198
199 eventsel_fail:
200         for (i--; i >= 0; i--)
201                 release_evntsel_nmi(x86_pmu.eventsel + i);
202
203         i = x86_pmu.num_counters;
204
205 perfctr_fail:
206         for (i--; i >= 0; i--)
207                 release_perfctr_nmi(x86_pmu.perfctr + i);
208
209         if (nmi_watchdog == NMI_LOCAL_APIC)
210                 enable_lapic_nmi_watchdog();
211
212         return false;
213 }
214
215 static void release_pmc_hardware(void)
216 {
217         int i;
218
219         for (i = 0; i < x86_pmu.num_counters; i++) {
220                 release_perfctr_nmi(x86_pmu.perfctr + i);
221                 release_evntsel_nmi(x86_pmu.eventsel + i);
222         }
223
224         if (nmi_watchdog == NMI_LOCAL_APIC)
225                 enable_lapic_nmi_watchdog();
226 }
227
228 static void hw_perf_counter_destroy(struct perf_counter *counter)
229 {
230         if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
231                 release_pmc_hardware();
232                 mutex_unlock(&pmc_reserve_mutex);
233         }
234 }
235
236 static inline int x86_pmu_initialized(void)
237 {
238         return x86_pmu.handle_irq != NULL;
239 }
240
241 /*
242  * Setup the hardware configuration for a given hw_event_type
243  */
244 static int __hw_perf_counter_init(struct perf_counter *counter)
245 {
246         struct perf_counter_hw_event *hw_event = &counter->hw_event;
247         struct hw_perf_counter *hwc = &counter->hw;
248         int err;
249
250         if (!x86_pmu_initialized())
251                 return -ENODEV;
252
253         err = 0;
254         if (!atomic_inc_not_zero(&active_counters)) {
255                 mutex_lock(&pmc_reserve_mutex);
256                 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
257                         err = -EBUSY;
258                 else
259                         atomic_inc(&active_counters);
260                 mutex_unlock(&pmc_reserve_mutex);
261         }
262         if (err)
263                 return err;
264
265         /*
266          * Generate PMC IRQs:
267          * (keep 'enabled' bit clear for now)
268          */
269         hwc->config = ARCH_PERFMON_EVENTSEL_INT;
270
271         /*
272          * Count user and OS events unless requested not to.
273          */
274         if (!hw_event->exclude_user)
275                 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
276         if (!hw_event->exclude_kernel)
277                 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
278
279         /*
280          * If privileged enough, allow NMI events:
281          */
282         hwc->nmi = 0;
283         if (hw_event->nmi) {
284                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
285                         return -EACCES;
286                 hwc->nmi = 1;
287         }
288
289         hwc->irq_period = hw_event->irq_period;
290         if ((s64)hwc->irq_period <= 0 || hwc->irq_period > x86_pmu.max_period)
291                 hwc->irq_period = x86_pmu.max_period;
292
293         atomic64_set(&hwc->period_left, hwc->irq_period);
294
295         /*
296          * Raw event type provide the config in the event structure
297          */
298         if (perf_event_raw(hw_event)) {
299                 hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
300         } else {
301                 if (perf_event_id(hw_event) >= x86_pmu.max_events)
302                         return -EINVAL;
303                 /*
304                  * The generic map:
305                  */
306                 hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
307         }
308
309         counter->destroy = hw_perf_counter_destroy;
310
311         return 0;
312 }
313
314 static void intel_pmu_disable_all(void)
315 {
316         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
317 }
318
319 static void amd_pmu_disable_all(void)
320 {
321         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
322         int idx;
323
324         if (!cpuc->enabled)
325                 return;
326
327         cpuc->enabled = 0;
328         /*
329          * ensure we write the disable before we start disabling the
330          * counters proper, so that amd_pmu_enable_counter() does the
331          * right thing.
332          */
333         barrier();
334
335         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
336                 u64 val;
337
338                 if (!test_bit(idx, cpuc->active_mask))
339                         continue;
340                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
341                 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
342                         continue;
343                 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
344                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
345         }
346 }
347
348 void hw_perf_disable(void)
349 {
350         if (!x86_pmu_initialized())
351                 return;
352         return x86_pmu.disable_all();
353 }
354
355 static void intel_pmu_enable_all(void)
356 {
357         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
358 }
359
360 static void amd_pmu_enable_all(void)
361 {
362         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
363         int idx;
364
365         if (cpuc->enabled)
366                 return;
367
368         cpuc->enabled = 1;
369         barrier();
370
371         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
372                 u64 val;
373
374                 if (!test_bit(idx, cpuc->active_mask))
375                         continue;
376                 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
377                 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
378                         continue;
379                 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
380                 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
381         }
382 }
383
384 void hw_perf_enable(void)
385 {
386         if (!x86_pmu_initialized())
387                 return;
388         x86_pmu.enable_all();
389 }
390
391 static inline u64 intel_pmu_get_status(void)
392 {
393         u64 status;
394
395         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
396
397         return status;
398 }
399
400 static inline void intel_pmu_ack_status(u64 ack)
401 {
402         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
403 }
404
405 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
406 {
407         int err;
408         err = checking_wrmsrl(hwc->config_base + idx,
409                               hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
410 }
411
412 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
413 {
414         int err;
415         err = checking_wrmsrl(hwc->config_base + idx,
416                               hwc->config);
417 }
418
419 static inline void
420 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
421 {
422         int idx = __idx - X86_PMC_IDX_FIXED;
423         u64 ctrl_val, mask;
424         int err;
425
426         mask = 0xfULL << (idx * 4);
427
428         rdmsrl(hwc->config_base, ctrl_val);
429         ctrl_val &= ~mask;
430         err = checking_wrmsrl(hwc->config_base, ctrl_val);
431 }
432
433 static inline void
434 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
435 {
436         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
437                 intel_pmu_disable_fixed(hwc, idx);
438                 return;
439         }
440
441         x86_pmu_disable_counter(hwc, idx);
442 }
443
444 static inline void
445 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
446 {
447         x86_pmu_disable_counter(hwc, idx);
448 }
449
450 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
451
452 /*
453  * Set the next IRQ period, based on the hwc->period_left value.
454  * To be called with the counter disabled in hw:
455  */
456 static void
457 x86_perf_counter_set_period(struct perf_counter *counter,
458                              struct hw_perf_counter *hwc, int idx)
459 {
460         s64 left = atomic64_read(&hwc->period_left);
461         s64 period = hwc->irq_period;
462         int err;
463
464         /*
465          * If we are way outside a reasoable range then just skip forward:
466          */
467         if (unlikely(left <= -period)) {
468                 left = period;
469                 atomic64_set(&hwc->period_left, left);
470         }
471
472         if (unlikely(left <= 0)) {
473                 left += period;
474                 atomic64_set(&hwc->period_left, left);
475         }
476         /*
477          * Quirk: certain CPUs dont like it if just 1 event is left:
478          */
479         if (unlikely(left < 2))
480                 left = 2;
481
482         per_cpu(prev_left[idx], smp_processor_id()) = left;
483
484         /*
485          * The hw counter starts counting from this counter offset,
486          * mark it to be able to extra future deltas:
487          */
488         atomic64_set(&hwc->prev_count, (u64)-left);
489
490         err = checking_wrmsrl(hwc->counter_base + idx,
491                              (u64)(-left) & x86_pmu.counter_mask);
492 }
493
494 static inline void
495 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
496 {
497         int idx = __idx - X86_PMC_IDX_FIXED;
498         u64 ctrl_val, bits, mask;
499         int err;
500
501         /*
502          * Enable IRQ generation (0x8),
503          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
504          * if requested:
505          */
506         bits = 0x8ULL;
507         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
508                 bits |= 0x2;
509         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
510                 bits |= 0x1;
511         bits <<= (idx * 4);
512         mask = 0xfULL << (idx * 4);
513
514         rdmsrl(hwc->config_base, ctrl_val);
515         ctrl_val &= ~mask;
516         ctrl_val |= bits;
517         err = checking_wrmsrl(hwc->config_base, ctrl_val);
518 }
519
520 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
521 {
522         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
523                 intel_pmu_enable_fixed(hwc, idx);
524                 return;
525         }
526
527         x86_pmu_enable_counter(hwc, idx);
528 }
529
530 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
531 {
532         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
533
534         if (cpuc->enabled)
535                 x86_pmu_enable_counter(hwc, idx);
536         else
537                 x86_pmu_disable_counter(hwc, idx);
538 }
539
540 static int
541 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
542 {
543         unsigned int event;
544
545         if (!x86_pmu.num_counters_fixed)
546                 return -1;
547
548         if (unlikely(hwc->nmi))
549                 return -1;
550
551         event = hwc->config & ARCH_PERFMON_EVENT_MASK;
552
553         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
554                 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
555         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
556                 return X86_PMC_IDX_FIXED_CPU_CYCLES;
557         if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
558                 return X86_PMC_IDX_FIXED_BUS_CYCLES;
559
560         return -1;
561 }
562
563 /*
564  * Find a PMC slot for the freshly enabled / scheduled in counter:
565  */
566 static int x86_pmu_enable(struct perf_counter *counter)
567 {
568         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
569         struct hw_perf_counter *hwc = &counter->hw;
570         int idx;
571
572         idx = fixed_mode_idx(counter, hwc);
573         if (idx >= 0) {
574                 /*
575                  * Try to get the fixed counter, if that is already taken
576                  * then try to get a generic counter:
577                  */
578                 if (test_and_set_bit(idx, cpuc->used_mask))
579                         goto try_generic;
580
581                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
582                 /*
583                  * We set it so that counter_base + idx in wrmsr/rdmsr maps to
584                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
585                  */
586                 hwc->counter_base =
587                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
588                 hwc->idx = idx;
589         } else {
590                 idx = hwc->idx;
591                 /* Try to get the previous generic counter again */
592                 if (test_and_set_bit(idx, cpuc->used_mask)) {
593 try_generic:
594                         idx = find_first_zero_bit(cpuc->used_mask,
595                                                   x86_pmu.num_counters);
596                         if (idx == x86_pmu.num_counters)
597                                 return -EAGAIN;
598
599                         set_bit(idx, cpuc->used_mask);
600                         hwc->idx = idx;
601                 }
602                 hwc->config_base  = x86_pmu.eventsel;
603                 hwc->counter_base = x86_pmu.perfctr;
604         }
605
606         perf_counters_lapic_init(hwc->nmi);
607
608         x86_pmu.disable(hwc, idx);
609
610         cpuc->counters[idx] = counter;
611         set_bit(idx, cpuc->active_mask);
612
613         x86_perf_counter_set_period(counter, hwc, idx);
614         x86_pmu.enable(hwc, idx);
615
616         return 0;
617 }
618
619 void perf_counter_print_debug(void)
620 {
621         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
622         struct cpu_hw_counters *cpuc;
623         unsigned long flags;
624         int cpu, idx;
625
626         if (!x86_pmu.num_counters)
627                 return;
628
629         local_irq_save(flags);
630
631         cpu = smp_processor_id();
632         cpuc = &per_cpu(cpu_hw_counters, cpu);
633
634         if (x86_pmu.version >= 2) {
635                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
636                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
637                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
638                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
639
640                 pr_info("\n");
641                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
642                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
643                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
644                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
645         }
646         pr_info("CPU#%d: used:       %016llx\n", cpu, *(u64 *)cpuc->used_mask);
647
648         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
649                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
650                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
651
652                 prev_left = per_cpu(prev_left[idx], cpu);
653
654                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
655                         cpu, idx, pmc_ctrl);
656                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
657                         cpu, idx, pmc_count);
658                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
659                         cpu, idx, prev_left);
660         }
661         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
662                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
663
664                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
665                         cpu, idx, pmc_count);
666         }
667         local_irq_restore(flags);
668 }
669
670 static void x86_pmu_disable(struct perf_counter *counter)
671 {
672         struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
673         struct hw_perf_counter *hwc = &counter->hw;
674         int idx = hwc->idx;
675
676         /*
677          * Must be done before we disable, otherwise the nmi handler
678          * could reenable again:
679          */
680         clear_bit(idx, cpuc->active_mask);
681         x86_pmu.disable(hwc, idx);
682
683         /*
684          * Make sure the cleared pointer becomes visible before we
685          * (potentially) free the counter:
686          */
687         barrier();
688
689         /*
690          * Drain the remaining delta count out of a counter
691          * that we are disabling:
692          */
693         x86_perf_counter_update(counter, hwc, idx);
694         cpuc->counters[idx] = NULL;
695         clear_bit(idx, cpuc->used_mask);
696 }
697
698 /*
699  * Save and restart an expired counter. Called by NMI contexts,
700  * so it has to be careful about preempting normal counter ops:
701  */
702 static void intel_pmu_save_and_restart(struct perf_counter *counter)
703 {
704         struct hw_perf_counter *hwc = &counter->hw;
705         int idx = hwc->idx;
706
707         x86_perf_counter_update(counter, hwc, idx);
708         x86_perf_counter_set_period(counter, hwc, idx);
709
710         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
711                 intel_pmu_enable_counter(hwc, idx);
712 }
713
714 /*
715  * Maximum interrupt frequency of 100KHz per CPU
716  */
717 #define PERFMON_MAX_INTERRUPTS (100000/HZ)
718
719 /*
720  * This handler is triggered by the local APIC, so the APIC IRQ handling
721  * rules apply:
722  */
723 static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
724 {
725         int bit, cpu = smp_processor_id();
726         u64 ack, status;
727         struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
728
729         perf_disable();
730         status = intel_pmu_get_status();
731         if (!status) {
732                 perf_enable();
733                 return 0;
734         }
735
736 again:
737         inc_irq_stat(apic_perf_irqs);
738         ack = status;
739         for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
740                 struct perf_counter *counter = cpuc->counters[bit];
741
742                 clear_bit(bit, (unsigned long *) &status);
743                 if (!test_bit(bit, cpuc->active_mask))
744                         continue;
745
746                 intel_pmu_save_and_restart(counter);
747                 if (perf_counter_overflow(counter, nmi, regs, 0))
748                         intel_pmu_disable_counter(&counter->hw, bit);
749         }
750
751         intel_pmu_ack_status(ack);
752
753         /*
754          * Repeat if there is more work to be done:
755          */
756         status = intel_pmu_get_status();
757         if (status)
758                 goto again;
759
760         if (++cpuc->interrupts != PERFMON_MAX_INTERRUPTS)
761                 perf_enable();
762
763         return 1;
764 }
765
766 static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
767 {
768         int cpu = smp_processor_id();
769         struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
770         u64 val;
771         int handled = 0;
772         struct perf_counter *counter;
773         struct hw_perf_counter *hwc;
774         int idx, throttle = 0;
775
776         if (++cpuc->interrupts == PERFMON_MAX_INTERRUPTS) {
777                 throttle = 1;
778                 __perf_disable();
779                 cpuc->enabled = 0;
780                 barrier();
781         }
782
783         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
784                 int disable = 0;
785
786                 if (!test_bit(idx, cpuc->active_mask))
787                         continue;
788
789                 counter = cpuc->counters[idx];
790                 hwc = &counter->hw;
791
792                 if (counter->hw_event.nmi != nmi)
793                         goto next;
794
795                 val = x86_perf_counter_update(counter, hwc, idx);
796                 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
797                         goto next;
798
799                 /* counter overflow */
800                 x86_perf_counter_set_period(counter, hwc, idx);
801                 handled = 1;
802                 inc_irq_stat(apic_perf_irqs);
803                 disable = perf_counter_overflow(counter, nmi, regs, 0);
804
805 next:
806                 if (disable || throttle)
807                         amd_pmu_disable_counter(hwc, idx);
808         }
809
810         return handled;
811 }
812
813 void perf_counter_unthrottle(void)
814 {
815         struct cpu_hw_counters *cpuc;
816
817         if (!x86_pmu_initialized())
818                 return;
819
820         cpuc = &__get_cpu_var(cpu_hw_counters);
821         if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) {
822                 /*
823                  * Clear them before re-enabling irqs/NMIs again:
824                  */
825                 cpuc->interrupts = 0;
826                 perf_enable();
827         } else {
828                 cpuc->interrupts = 0;
829         }
830 }
831
832 void smp_perf_counter_interrupt(struct pt_regs *regs)
833 {
834         irq_enter();
835         apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
836         ack_APIC_irq();
837         x86_pmu.handle_irq(regs, 0);
838         irq_exit();
839 }
840
841 void smp_perf_pending_interrupt(struct pt_regs *regs)
842 {
843         irq_enter();
844         ack_APIC_irq();
845         inc_irq_stat(apic_pending_irqs);
846         perf_counter_do_pending();
847         irq_exit();
848 }
849
850 void set_perf_counter_pending(void)
851 {
852         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
853 }
854
855 void perf_counters_lapic_init(int nmi)
856 {
857         u32 apic_val;
858
859         if (!x86_pmu_initialized())
860                 return;
861
862         /*
863          * Enable the performance counter vector in the APIC LVT:
864          */
865         apic_val = apic_read(APIC_LVTERR);
866
867         apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
868         if (nmi)
869                 apic_write(APIC_LVTPC, APIC_DM_NMI);
870         else
871                 apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
872         apic_write(APIC_LVTERR, apic_val);
873 }
874
875 static int __kprobes
876 perf_counter_nmi_handler(struct notifier_block *self,
877                          unsigned long cmd, void *__args)
878 {
879         struct die_args *args = __args;
880         struct pt_regs *regs;
881
882         if (!atomic_read(&active_counters))
883                 return NOTIFY_DONE;
884
885         switch (cmd) {
886         case DIE_NMI:
887         case DIE_NMI_IPI:
888                 break;
889
890         default:
891                 return NOTIFY_DONE;
892         }
893
894         regs = args->regs;
895
896         apic_write(APIC_LVTPC, APIC_DM_NMI);
897         /*
898          * Can't rely on the handled return value to say it was our NMI, two
899          * counters could trigger 'simultaneously' raising two back-to-back NMIs.
900          *
901          * If the first NMI handles both, the latter will be empty and daze
902          * the CPU.
903          */
904         x86_pmu.handle_irq(regs, 1);
905
906         return NOTIFY_STOP;
907 }
908
909 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
910         .notifier_call          = perf_counter_nmi_handler,
911         .next                   = NULL,
912         .priority               = 1
913 };
914
915 static struct x86_pmu intel_pmu = {
916         .name                   = "Intel",
917         .handle_irq             = intel_pmu_handle_irq,
918         .disable_all            = intel_pmu_disable_all,
919         .enable_all             = intel_pmu_enable_all,
920         .enable                 = intel_pmu_enable_counter,
921         .disable                = intel_pmu_disable_counter,
922         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
923         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
924         .event_map              = intel_pmu_event_map,
925         .raw_event              = intel_pmu_raw_event,
926         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
927         /*
928          * Intel PMCs cannot be accessed sanely above 32 bit width,
929          * so we install an artificial 1<<31 period regardless of
930          * the generic counter period:
931          */
932         .max_period             = (1ULL << 31) - 1,
933 };
934
935 static struct x86_pmu amd_pmu = {
936         .name                   = "AMD",
937         .handle_irq             = amd_pmu_handle_irq,
938         .disable_all            = amd_pmu_disable_all,
939         .enable_all             = amd_pmu_enable_all,
940         .enable                 = amd_pmu_enable_counter,
941         .disable                = amd_pmu_disable_counter,
942         .eventsel               = MSR_K7_EVNTSEL0,
943         .perfctr                = MSR_K7_PERFCTR0,
944         .event_map              = amd_pmu_event_map,
945         .raw_event              = amd_pmu_raw_event,
946         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
947         .num_counters           = 4,
948         .counter_bits           = 48,
949         .counter_mask           = (1ULL << 48) - 1,
950         /* use highest bit to detect overflow */
951         .max_period             = (1ULL << 47) - 1,
952 };
953
954 static int intel_pmu_init(void)
955 {
956         union cpuid10_edx edx;
957         union cpuid10_eax eax;
958         unsigned int unused;
959         unsigned int ebx;
960         int version;
961
962         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
963                 return -ENODEV;
964
965         /*
966          * Check whether the Architectural PerfMon supports
967          * Branch Misses Retired Event or not.
968          */
969         cpuid(10, &eax.full, &ebx, &unused, &edx.full);
970         if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
971                 return -ENODEV;
972
973         version = eax.split.version_id;
974         if (version < 2)
975                 return -ENODEV;
976
977         x86_pmu = intel_pmu;
978         x86_pmu.version = version;
979         x86_pmu.num_counters = eax.split.num_counters;
980
981         /*
982          * Quirk: v2 perfmon does not report fixed-purpose counters, so
983          * assume at least 3 counters:
984          */
985         x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
986
987         x86_pmu.counter_bits = eax.split.bit_width;
988         x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
989
990         rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
991
992         return 0;
993 }
994
995 static int amd_pmu_init(void)
996 {
997         x86_pmu = amd_pmu;
998         return 0;
999 }
1000
1001 void __init init_hw_perf_counters(void)
1002 {
1003         int err;
1004
1005         switch (boot_cpu_data.x86_vendor) {
1006         case X86_VENDOR_INTEL:
1007                 err = intel_pmu_init();
1008                 break;
1009         case X86_VENDOR_AMD:
1010                 err = amd_pmu_init();
1011                 break;
1012         default:
1013                 return;
1014         }
1015         if (err != 0)
1016                 return;
1017
1018         pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
1019         pr_info("... version:         %d\n", x86_pmu.version);
1020         pr_info("... bit width:       %d\n", x86_pmu.counter_bits);
1021
1022         pr_info("... num counters:    %d\n", x86_pmu.num_counters);
1023         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1024                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1025                 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1026                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1027         }
1028         perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1029         perf_max_counters = x86_pmu.num_counters;
1030
1031         pr_info("... value mask:      %016Lx\n", x86_pmu.counter_mask);
1032         pr_info("... max period:      %016Lx\n", x86_pmu.max_period);
1033
1034         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1035                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1036                 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1037                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1038         }
1039         pr_info("... fixed counters:  %d\n", x86_pmu.num_counters_fixed);
1040
1041         perf_counter_mask |=
1042                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1043
1044         pr_info("... counter mask:    %016Lx\n", perf_counter_mask);
1045
1046         perf_counters_lapic_init(0);
1047         register_die_notifier(&perf_counter_nmi_notifier);
1048 }
1049
1050 static inline void x86_pmu_read(struct perf_counter *counter)
1051 {
1052         x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1053 }
1054
1055 static const struct pmu pmu = {
1056         .enable         = x86_pmu_enable,
1057         .disable        = x86_pmu_disable,
1058         .read           = x86_pmu_read,
1059 };
1060
1061 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1062 {
1063         int err;
1064
1065         err = __hw_perf_counter_init(counter);
1066         if (err)
1067                 return ERR_PTR(err);
1068
1069         return &pmu;
1070 }
1071
1072 /*
1073  * callchain support
1074  */
1075
1076 static inline
1077 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1078 {
1079         if (entry->nr < MAX_STACK_DEPTH)
1080                 entry->ip[entry->nr++] = ip;
1081 }
1082
1083 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1084 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1085
1086
1087 static void
1088 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1089 {
1090         /* Ignore warnings */
1091 }
1092
1093 static void backtrace_warning(void *data, char *msg)
1094 {
1095         /* Ignore warnings */
1096 }
1097
1098 static int backtrace_stack(void *data, char *name)
1099 {
1100         /* Don't bother with IRQ stacks for now */
1101         return -1;
1102 }
1103
1104 static void backtrace_address(void *data, unsigned long addr, int reliable)
1105 {
1106         struct perf_callchain_entry *entry = data;
1107
1108         if (reliable)
1109                 callchain_store(entry, addr);
1110 }
1111
1112 static const struct stacktrace_ops backtrace_ops = {
1113         .warning                = backtrace_warning,
1114         .warning_symbol         = backtrace_warning_symbol,
1115         .stack                  = backtrace_stack,
1116         .address                = backtrace_address,
1117 };
1118
1119 static void
1120 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1121 {
1122         unsigned long bp;
1123         char *stack;
1124         int nr = entry->nr;
1125
1126         callchain_store(entry, instruction_pointer(regs));
1127
1128         stack = ((char *)regs + sizeof(struct pt_regs));
1129 #ifdef CONFIG_FRAME_POINTER
1130         bp = frame_pointer(regs);
1131 #else
1132         bp = 0;
1133 #endif
1134
1135         dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1136
1137         entry->kernel = entry->nr - nr;
1138 }
1139
1140
1141 struct stack_frame {
1142         const void __user       *next_fp;
1143         unsigned long           return_address;
1144 };
1145
1146 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1147 {
1148         int ret;
1149
1150         if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1151                 return 0;
1152
1153         ret = 1;
1154         pagefault_disable();
1155         if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1156                 ret = 0;
1157         pagefault_enable();
1158
1159         return ret;
1160 }
1161
1162 static void
1163 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1164 {
1165         struct stack_frame frame;
1166         const void __user *fp;
1167         int nr = entry->nr;
1168
1169         regs = (struct pt_regs *)current->thread.sp0 - 1;
1170         fp   = (void __user *)regs->bp;
1171
1172         callchain_store(entry, regs->ip);
1173
1174         while (entry->nr < MAX_STACK_DEPTH) {
1175                 frame.next_fp        = NULL;
1176                 frame.return_address = 0;
1177
1178                 if (!copy_stack_frame(fp, &frame))
1179                         break;
1180
1181                 if ((unsigned long)fp < user_stack_pointer(regs))
1182                         break;
1183
1184                 callchain_store(entry, frame.return_address);
1185                 fp = frame.next_fp;
1186         }
1187
1188         entry->user = entry->nr - nr;
1189 }
1190
1191 static void
1192 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1193 {
1194         int is_user;
1195
1196         if (!regs)
1197                 return;
1198
1199         is_user = user_mode(regs);
1200
1201         if (!current || current->pid == 0)
1202                 return;
1203
1204         if (is_user && current->state != TASK_RUNNING)
1205                 return;
1206
1207         if (!is_user)
1208                 perf_callchain_kernel(regs, entry);
1209
1210         if (current->mm)
1211                 perf_callchain_user(regs, entry);
1212 }
1213
1214 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1215 {
1216         struct perf_callchain_entry *entry;
1217
1218         if (in_nmi())
1219                 entry = &__get_cpu_var(nmi_entry);
1220         else
1221                 entry = &__get_cpu_var(irq_entry);
1222
1223         entry->nr = 0;
1224         entry->hv = 0;
1225         entry->kernel = 0;
1226         entry->user = 0;
1227
1228         perf_do_callchain(regs, entry);
1229
1230         return entry;
1231 }