]> git.karo-electronics.de Git - linux-beck.git/blob - arch/x86/kernel/cpu/perf_event_intel.c
4187d3f4ed12cf62d6fe1a5c4a43f6dcd7811f48
[linux-beck.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23  * Intel PerfMon, used on Core and later.
24  */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
28         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
29         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
30         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
31         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
32         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
33         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
34         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45         EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63         EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79         EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87         EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99         EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116
117         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
118         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
119         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
120         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
121
122         EVENT_CONSTRAINT_END
123 };
124
125 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
126 {
127         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
128         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
129         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
130         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
131         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
132         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
133         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
134         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
135         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
136         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
139         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
140
141         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
142         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
143         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
144         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
145
146         EVENT_CONSTRAINT_END
147 };
148
149 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
150 {
151         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
152         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
153         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
154         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
155         EVENT_EXTRA_END
156 };
157
158 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
159 {
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
164 {
165         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
166         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
167         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
168         EVENT_CONSTRAINT_END
169 };
170
171 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
172 {
173         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
174         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
175         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
176         EVENT_CONSTRAINT_END
177 };
178
179 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
180         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
181         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
182         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
183         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
184         EVENT_EXTRA_END
185 };
186
187 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
188         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
189         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
190         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
191         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
192         EVENT_EXTRA_END
193 };
194
195 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
196 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
197 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
198
199 struct attribute *nhm_events_attrs[] = {
200         EVENT_PTR(mem_ld_nhm),
201         NULL,
202 };
203
204 struct attribute *snb_events_attrs[] = {
205         EVENT_PTR(mem_ld_snb),
206         EVENT_PTR(mem_st_snb),
207         NULL,
208 };
209
210 static struct event_constraint intel_hsw_event_constraints[] = {
211         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
212         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
213         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
214         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
215         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
216         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
217         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
218         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
219         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
220         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
221         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
222         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
223
224         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
225         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
226         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
227         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
228
229         EVENT_CONSTRAINT_END
230 };
231
232 struct event_constraint intel_bdw_event_constraints[] = {
233         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
234         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
235         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
236         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
237         INTEL_EVENT_CONSTRAINT(0xa3, 0x4),      /* CYCLE_ACTIVITY.* */
238         EVENT_CONSTRAINT_END
239 };
240
241 static u64 intel_pmu_event_map(int hw_event)
242 {
243         return intel_perfmon_event_map[hw_event];
244 }
245
246 #define SNB_DMND_DATA_RD        (1ULL << 0)
247 #define SNB_DMND_RFO            (1ULL << 1)
248 #define SNB_DMND_IFETCH         (1ULL << 2)
249 #define SNB_DMND_WB             (1ULL << 3)
250 #define SNB_PF_DATA_RD          (1ULL << 4)
251 #define SNB_PF_RFO              (1ULL << 5)
252 #define SNB_PF_IFETCH           (1ULL << 6)
253 #define SNB_LLC_DATA_RD         (1ULL << 7)
254 #define SNB_LLC_RFO             (1ULL << 8)
255 #define SNB_LLC_IFETCH          (1ULL << 9)
256 #define SNB_BUS_LOCKS           (1ULL << 10)
257 #define SNB_STRM_ST             (1ULL << 11)
258 #define SNB_OTHER               (1ULL << 15)
259 #define SNB_RESP_ANY            (1ULL << 16)
260 #define SNB_NO_SUPP             (1ULL << 17)
261 #define SNB_LLC_HITM            (1ULL << 18)
262 #define SNB_LLC_HITE            (1ULL << 19)
263 #define SNB_LLC_HITS            (1ULL << 20)
264 #define SNB_LLC_HITF            (1ULL << 21)
265 #define SNB_LOCAL               (1ULL << 22)
266 #define SNB_REMOTE              (0xffULL << 23)
267 #define SNB_SNP_NONE            (1ULL << 31)
268 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
269 #define SNB_SNP_MISS            (1ULL << 33)
270 #define SNB_NO_FWD              (1ULL << 34)
271 #define SNB_SNP_FWD             (1ULL << 35)
272 #define SNB_HITM                (1ULL << 36)
273 #define SNB_NON_DRAM            (1ULL << 37)
274
275 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
276 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
277 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
278
279 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
280                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
281                                  SNB_HITM)
282
283 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
284 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
285
286 #define SNB_L3_ACCESS           SNB_RESP_ANY
287 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
288
289 static __initconst const u64 snb_hw_cache_extra_regs
290                                 [PERF_COUNT_HW_CACHE_MAX]
291                                 [PERF_COUNT_HW_CACHE_OP_MAX]
292                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
293 {
294  [ C(LL  ) ] = {
295         [ C(OP_READ) ] = {
296                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
297                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
298         },
299         [ C(OP_WRITE) ] = {
300                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
301                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
302         },
303         [ C(OP_PREFETCH) ] = {
304                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
305                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
306         },
307  },
308  [ C(NODE) ] = {
309         [ C(OP_READ) ] = {
310                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
311                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
312         },
313         [ C(OP_WRITE) ] = {
314                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
315                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
316         },
317         [ C(OP_PREFETCH) ] = {
318                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
319                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
320         },
321  },
322 };
323
324 static __initconst const u64 snb_hw_cache_event_ids
325                                 [PERF_COUNT_HW_CACHE_MAX]
326                                 [PERF_COUNT_HW_CACHE_OP_MAX]
327                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
328 {
329  [ C(L1D) ] = {
330         [ C(OP_READ) ] = {
331                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
332                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
333         },
334         [ C(OP_WRITE) ] = {
335                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
336                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
337         },
338         [ C(OP_PREFETCH) ] = {
339                 [ C(RESULT_ACCESS) ] = 0x0,
340                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
341         },
342  },
343  [ C(L1I ) ] = {
344         [ C(OP_READ) ] = {
345                 [ C(RESULT_ACCESS) ] = 0x0,
346                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
347         },
348         [ C(OP_WRITE) ] = {
349                 [ C(RESULT_ACCESS) ] = -1,
350                 [ C(RESULT_MISS)   ] = -1,
351         },
352         [ C(OP_PREFETCH) ] = {
353                 [ C(RESULT_ACCESS) ] = 0x0,
354                 [ C(RESULT_MISS)   ] = 0x0,
355         },
356  },
357  [ C(LL  ) ] = {
358         [ C(OP_READ) ] = {
359                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
360                 [ C(RESULT_ACCESS) ] = 0x01b7,
361                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
362                 [ C(RESULT_MISS)   ] = 0x01b7,
363         },
364         [ C(OP_WRITE) ] = {
365                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
366                 [ C(RESULT_ACCESS) ] = 0x01b7,
367                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
368                 [ C(RESULT_MISS)   ] = 0x01b7,
369         },
370         [ C(OP_PREFETCH) ] = {
371                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
372                 [ C(RESULT_ACCESS) ] = 0x01b7,
373                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
374                 [ C(RESULT_MISS)   ] = 0x01b7,
375         },
376  },
377  [ C(DTLB) ] = {
378         [ C(OP_READ) ] = {
379                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
380                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
381         },
382         [ C(OP_WRITE) ] = {
383                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
384                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
385         },
386         [ C(OP_PREFETCH) ] = {
387                 [ C(RESULT_ACCESS) ] = 0x0,
388                 [ C(RESULT_MISS)   ] = 0x0,
389         },
390  },
391  [ C(ITLB) ] = {
392         [ C(OP_READ) ] = {
393                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
394                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
395         },
396         [ C(OP_WRITE) ] = {
397                 [ C(RESULT_ACCESS) ] = -1,
398                 [ C(RESULT_MISS)   ] = -1,
399         },
400         [ C(OP_PREFETCH) ] = {
401                 [ C(RESULT_ACCESS) ] = -1,
402                 [ C(RESULT_MISS)   ] = -1,
403         },
404  },
405  [ C(BPU ) ] = {
406         [ C(OP_READ) ] = {
407                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
408                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
409         },
410         [ C(OP_WRITE) ] = {
411                 [ C(RESULT_ACCESS) ] = -1,
412                 [ C(RESULT_MISS)   ] = -1,
413         },
414         [ C(OP_PREFETCH) ] = {
415                 [ C(RESULT_ACCESS) ] = -1,
416                 [ C(RESULT_MISS)   ] = -1,
417         },
418  },
419  [ C(NODE) ] = {
420         [ C(OP_READ) ] = {
421                 [ C(RESULT_ACCESS) ] = 0x01b7,
422                 [ C(RESULT_MISS)   ] = 0x01b7,
423         },
424         [ C(OP_WRITE) ] = {
425                 [ C(RESULT_ACCESS) ] = 0x01b7,
426                 [ C(RESULT_MISS)   ] = 0x01b7,
427         },
428         [ C(OP_PREFETCH) ] = {
429                 [ C(RESULT_ACCESS) ] = 0x01b7,
430                 [ C(RESULT_MISS)   ] = 0x01b7,
431         },
432  },
433
434 };
435
436 /*
437  * Notes on the events:
438  * - data reads do not include code reads (comparable to earlier tables)
439  * - data counts include speculative execution (except L1 write, dtlb, bpu)
440  * - remote node access includes remote memory, remote cache, remote mmio.
441  * - prefetches are not included in the counts because they are not
442  *   reliably counted.
443  */
444
445 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
446 #define HSW_DEMAND_RFO                  BIT_ULL(1)
447 #define HSW_ANY_RESPONSE                BIT_ULL(16)
448 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
449 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
450 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
451 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
452 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
453 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
454                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
455                                          HSW_L3_MISS_REMOTE_HOP2P)
456 #define HSW_SNOOP_NONE                  BIT_ULL(31)
457 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
458 #define HSW_SNOOP_MISS                  BIT_ULL(33)
459 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
460 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
461 #define HSW_SNOOP_HITM                  BIT_ULL(36)
462 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
463 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
464                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
465                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
466                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
467 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
468 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
469 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
470 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
471                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
472 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
473
474 #define BDW_L3_MISS_LOCAL               BIT(26)
475 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
476                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
477                                          HSW_L3_MISS_REMOTE_HOP2P)
478
479
480 static __initconst const u64 hsw_hw_cache_event_ids
481                                 [PERF_COUNT_HW_CACHE_MAX]
482                                 [PERF_COUNT_HW_CACHE_OP_MAX]
483                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
484 {
485  [ C(L1D ) ] = {
486         [ C(OP_READ) ] = {
487                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
488                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
489         },
490         [ C(OP_WRITE) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
492                 [ C(RESULT_MISS)   ] = 0x0,
493         },
494         [ C(OP_PREFETCH) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x0,
496                 [ C(RESULT_MISS)   ] = 0x0,
497         },
498  },
499  [ C(L1I ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x0,
502                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508         [ C(OP_PREFETCH) ] = {
509                 [ C(RESULT_ACCESS) ] = 0x0,
510                 [ C(RESULT_MISS)   ] = 0x0,
511         },
512  },
513  [ C(LL  ) ] = {
514         [ C(OP_READ) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
516                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
517         },
518         [ C(OP_WRITE) ] = {
519                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
520                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
521         },
522         [ C(OP_PREFETCH) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x0,
524                 [ C(RESULT_MISS)   ] = 0x0,
525         },
526  },
527  [ C(DTLB) ] = {
528         [ C(OP_READ) ] = {
529                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
530                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
531         },
532         [ C(OP_WRITE) ] = {
533                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
534                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
535         },
536         [ C(OP_PREFETCH) ] = {
537                 [ C(RESULT_ACCESS) ] = 0x0,
538                 [ C(RESULT_MISS)   ] = 0x0,
539         },
540  },
541  [ C(ITLB) ] = {
542         [ C(OP_READ) ] = {
543                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
544                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
545         },
546         [ C(OP_WRITE) ] = {
547                 [ C(RESULT_ACCESS) ] = -1,
548                 [ C(RESULT_MISS)   ] = -1,
549         },
550         [ C(OP_PREFETCH) ] = {
551                 [ C(RESULT_ACCESS) ] = -1,
552                 [ C(RESULT_MISS)   ] = -1,
553         },
554  },
555  [ C(BPU ) ] = {
556         [ C(OP_READ) ] = {
557                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
558                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
559         },
560         [ C(OP_WRITE) ] = {
561                 [ C(RESULT_ACCESS) ] = -1,
562                 [ C(RESULT_MISS)   ] = -1,
563         },
564         [ C(OP_PREFETCH) ] = {
565                 [ C(RESULT_ACCESS) ] = -1,
566                 [ C(RESULT_MISS)   ] = -1,
567         },
568  },
569  [ C(NODE) ] = {
570         [ C(OP_READ) ] = {
571                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
572                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
573         },
574         [ C(OP_WRITE) ] = {
575                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
576                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
577         },
578         [ C(OP_PREFETCH) ] = {
579                 [ C(RESULT_ACCESS) ] = 0x0,
580                 [ C(RESULT_MISS)   ] = 0x0,
581         },
582  },
583 };
584
585 static __initconst const u64 hsw_hw_cache_extra_regs
586                                 [PERF_COUNT_HW_CACHE_MAX]
587                                 [PERF_COUNT_HW_CACHE_OP_MAX]
588                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
589 {
590  [ C(LL  ) ] = {
591         [ C(OP_READ) ] = {
592                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
593                                        HSW_LLC_ACCESS,
594                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
595                                        HSW_L3_MISS|HSW_ANY_SNOOP,
596         },
597         [ C(OP_WRITE) ] = {
598                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
599                                        HSW_LLC_ACCESS,
600                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
601                                        HSW_L3_MISS|HSW_ANY_SNOOP,
602         },
603         [ C(OP_PREFETCH) ] = {
604                 [ C(RESULT_ACCESS) ] = 0x0,
605                 [ C(RESULT_MISS)   ] = 0x0,
606         },
607  },
608  [ C(NODE) ] = {
609         [ C(OP_READ) ] = {
610                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
611                                        HSW_L3_MISS_LOCAL_DRAM|
612                                        HSW_SNOOP_DRAM,
613                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
614                                        HSW_L3_MISS_REMOTE|
615                                        HSW_SNOOP_DRAM,
616         },
617         [ C(OP_WRITE) ] = {
618                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
619                                        HSW_L3_MISS_LOCAL_DRAM|
620                                        HSW_SNOOP_DRAM,
621                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
622                                        HSW_L3_MISS_REMOTE|
623                                        HSW_SNOOP_DRAM,
624         },
625         [ C(OP_PREFETCH) ] = {
626                 [ C(RESULT_ACCESS) ] = 0x0,
627                 [ C(RESULT_MISS)   ] = 0x0,
628         },
629  },
630 };
631
632 static __initconst const u64 westmere_hw_cache_event_ids
633                                 [PERF_COUNT_HW_CACHE_MAX]
634                                 [PERF_COUNT_HW_CACHE_OP_MAX]
635                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
636 {
637  [ C(L1D) ] = {
638         [ C(OP_READ) ] = {
639                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
640                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
641         },
642         [ C(OP_WRITE) ] = {
643                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
644                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
645         },
646         [ C(OP_PREFETCH) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
648                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
649         },
650  },
651  [ C(L1I ) ] = {
652         [ C(OP_READ) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
654                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
655         },
656         [ C(OP_WRITE) ] = {
657                 [ C(RESULT_ACCESS) ] = -1,
658                 [ C(RESULT_MISS)   ] = -1,
659         },
660         [ C(OP_PREFETCH) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x0,
662                 [ C(RESULT_MISS)   ] = 0x0,
663         },
664  },
665  [ C(LL  ) ] = {
666         [ C(OP_READ) ] = {
667                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
668                 [ C(RESULT_ACCESS) ] = 0x01b7,
669                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
670                 [ C(RESULT_MISS)   ] = 0x01b7,
671         },
672         /*
673          * Use RFO, not WRITEBACK, because a write miss would typically occur
674          * on RFO.
675          */
676         [ C(OP_WRITE) ] = {
677                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
678                 [ C(RESULT_ACCESS) ] = 0x01b7,
679                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
680                 [ C(RESULT_MISS)   ] = 0x01b7,
681         },
682         [ C(OP_PREFETCH) ] = {
683                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
684                 [ C(RESULT_ACCESS) ] = 0x01b7,
685                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
686                 [ C(RESULT_MISS)   ] = 0x01b7,
687         },
688  },
689  [ C(DTLB) ] = {
690         [ C(OP_READ) ] = {
691                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
692                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
693         },
694         [ C(OP_WRITE) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
696                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
697         },
698         [ C(OP_PREFETCH) ] = {
699                 [ C(RESULT_ACCESS) ] = 0x0,
700                 [ C(RESULT_MISS)   ] = 0x0,
701         },
702  },
703  [ C(ITLB) ] = {
704         [ C(OP_READ) ] = {
705                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
706                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
707         },
708         [ C(OP_WRITE) ] = {
709                 [ C(RESULT_ACCESS) ] = -1,
710                 [ C(RESULT_MISS)   ] = -1,
711         },
712         [ C(OP_PREFETCH) ] = {
713                 [ C(RESULT_ACCESS) ] = -1,
714                 [ C(RESULT_MISS)   ] = -1,
715         },
716  },
717  [ C(BPU ) ] = {
718         [ C(OP_READ) ] = {
719                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
720                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
721         },
722         [ C(OP_WRITE) ] = {
723                 [ C(RESULT_ACCESS) ] = -1,
724                 [ C(RESULT_MISS)   ] = -1,
725         },
726         [ C(OP_PREFETCH) ] = {
727                 [ C(RESULT_ACCESS) ] = -1,
728                 [ C(RESULT_MISS)   ] = -1,
729         },
730  },
731  [ C(NODE) ] = {
732         [ C(OP_READ) ] = {
733                 [ C(RESULT_ACCESS) ] = 0x01b7,
734                 [ C(RESULT_MISS)   ] = 0x01b7,
735         },
736         [ C(OP_WRITE) ] = {
737                 [ C(RESULT_ACCESS) ] = 0x01b7,
738                 [ C(RESULT_MISS)   ] = 0x01b7,
739         },
740         [ C(OP_PREFETCH) ] = {
741                 [ C(RESULT_ACCESS) ] = 0x01b7,
742                 [ C(RESULT_MISS)   ] = 0x01b7,
743         },
744  },
745 };
746
747 /*
748  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
749  * See IA32 SDM Vol 3B 30.6.1.3
750  */
751
752 #define NHM_DMND_DATA_RD        (1 << 0)
753 #define NHM_DMND_RFO            (1 << 1)
754 #define NHM_DMND_IFETCH         (1 << 2)
755 #define NHM_DMND_WB             (1 << 3)
756 #define NHM_PF_DATA_RD          (1 << 4)
757 #define NHM_PF_DATA_RFO         (1 << 5)
758 #define NHM_PF_IFETCH           (1 << 6)
759 #define NHM_OFFCORE_OTHER       (1 << 7)
760 #define NHM_UNCORE_HIT          (1 << 8)
761 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
762 #define NHM_OTHER_CORE_HITM     (1 << 10)
763                                 /* reserved */
764 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
765 #define NHM_REMOTE_DRAM         (1 << 13)
766 #define NHM_LOCAL_DRAM          (1 << 14)
767 #define NHM_NON_DRAM            (1 << 15)
768
769 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
770 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
771
772 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
773 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
774 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
775
776 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
777 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
778 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
779
780 static __initconst const u64 nehalem_hw_cache_extra_regs
781                                 [PERF_COUNT_HW_CACHE_MAX]
782                                 [PERF_COUNT_HW_CACHE_OP_MAX]
783                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
784 {
785  [ C(LL  ) ] = {
786         [ C(OP_READ) ] = {
787                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
788                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
789         },
790         [ C(OP_WRITE) ] = {
791                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
792                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
793         },
794         [ C(OP_PREFETCH) ] = {
795                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
796                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
797         },
798  },
799  [ C(NODE) ] = {
800         [ C(OP_READ) ] = {
801                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
802                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
803         },
804         [ C(OP_WRITE) ] = {
805                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
806                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
807         },
808         [ C(OP_PREFETCH) ] = {
809                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
810                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
811         },
812  },
813 };
814
815 static __initconst const u64 nehalem_hw_cache_event_ids
816                                 [PERF_COUNT_HW_CACHE_MAX]
817                                 [PERF_COUNT_HW_CACHE_OP_MAX]
818                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
819 {
820  [ C(L1D) ] = {
821         [ C(OP_READ) ] = {
822                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
823                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
824         },
825         [ C(OP_WRITE) ] = {
826                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
827                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
828         },
829         [ C(OP_PREFETCH) ] = {
830                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
831                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
832         },
833  },
834  [ C(L1I ) ] = {
835         [ C(OP_READ) ] = {
836                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
837                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
838         },
839         [ C(OP_WRITE) ] = {
840                 [ C(RESULT_ACCESS) ] = -1,
841                 [ C(RESULT_MISS)   ] = -1,
842         },
843         [ C(OP_PREFETCH) ] = {
844                 [ C(RESULT_ACCESS) ] = 0x0,
845                 [ C(RESULT_MISS)   ] = 0x0,
846         },
847  },
848  [ C(LL  ) ] = {
849         [ C(OP_READ) ] = {
850                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
851                 [ C(RESULT_ACCESS) ] = 0x01b7,
852                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
853                 [ C(RESULT_MISS)   ] = 0x01b7,
854         },
855         /*
856          * Use RFO, not WRITEBACK, because a write miss would typically occur
857          * on RFO.
858          */
859         [ C(OP_WRITE) ] = {
860                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
861                 [ C(RESULT_ACCESS) ] = 0x01b7,
862                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
863                 [ C(RESULT_MISS)   ] = 0x01b7,
864         },
865         [ C(OP_PREFETCH) ] = {
866                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
867                 [ C(RESULT_ACCESS) ] = 0x01b7,
868                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
869                 [ C(RESULT_MISS)   ] = 0x01b7,
870         },
871  },
872  [ C(DTLB) ] = {
873         [ C(OP_READ) ] = {
874                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
875                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
876         },
877         [ C(OP_WRITE) ] = {
878                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
879                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
880         },
881         [ C(OP_PREFETCH) ] = {
882                 [ C(RESULT_ACCESS) ] = 0x0,
883                 [ C(RESULT_MISS)   ] = 0x0,
884         },
885  },
886  [ C(ITLB) ] = {
887         [ C(OP_READ) ] = {
888                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
889                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
890         },
891         [ C(OP_WRITE) ] = {
892                 [ C(RESULT_ACCESS) ] = -1,
893                 [ C(RESULT_MISS)   ] = -1,
894         },
895         [ C(OP_PREFETCH) ] = {
896                 [ C(RESULT_ACCESS) ] = -1,
897                 [ C(RESULT_MISS)   ] = -1,
898         },
899  },
900  [ C(BPU ) ] = {
901         [ C(OP_READ) ] = {
902                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
903                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = -1,
907                 [ C(RESULT_MISS)   ] = -1,
908         },
909         [ C(OP_PREFETCH) ] = {
910                 [ C(RESULT_ACCESS) ] = -1,
911                 [ C(RESULT_MISS)   ] = -1,
912         },
913  },
914  [ C(NODE) ] = {
915         [ C(OP_READ) ] = {
916                 [ C(RESULT_ACCESS) ] = 0x01b7,
917                 [ C(RESULT_MISS)   ] = 0x01b7,
918         },
919         [ C(OP_WRITE) ] = {
920                 [ C(RESULT_ACCESS) ] = 0x01b7,
921                 [ C(RESULT_MISS)   ] = 0x01b7,
922         },
923         [ C(OP_PREFETCH) ] = {
924                 [ C(RESULT_ACCESS) ] = 0x01b7,
925                 [ C(RESULT_MISS)   ] = 0x01b7,
926         },
927  },
928 };
929
930 static __initconst const u64 core2_hw_cache_event_ids
931                                 [PERF_COUNT_HW_CACHE_MAX]
932                                 [PERF_COUNT_HW_CACHE_OP_MAX]
933                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
934 {
935  [ C(L1D) ] = {
936         [ C(OP_READ) ] = {
937                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
938                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
939         },
940         [ C(OP_WRITE) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
942                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
943         },
944         [ C(OP_PREFETCH) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
946                 [ C(RESULT_MISS)   ] = 0,
947         },
948  },
949  [ C(L1I ) ] = {
950         [ C(OP_READ) ] = {
951                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
952                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
953         },
954         [ C(OP_WRITE) ] = {
955                 [ C(RESULT_ACCESS) ] = -1,
956                 [ C(RESULT_MISS)   ] = -1,
957         },
958         [ C(OP_PREFETCH) ] = {
959                 [ C(RESULT_ACCESS) ] = 0,
960                 [ C(RESULT_MISS)   ] = 0,
961         },
962  },
963  [ C(LL  ) ] = {
964         [ C(OP_READ) ] = {
965                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
966                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
967         },
968         [ C(OP_WRITE) ] = {
969                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
970                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
971         },
972         [ C(OP_PREFETCH) ] = {
973                 [ C(RESULT_ACCESS) ] = 0,
974                 [ C(RESULT_MISS)   ] = 0,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
980                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
984                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0,
988                 [ C(RESULT_MISS)   ] = 0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
994                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1008                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019 };
1020
1021 static __initconst const u64 atom_hw_cache_event_ids
1022                                 [PERF_COUNT_HW_CACHE_MAX]
1023                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1024                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1025 {
1026  [ C(L1D) ] = {
1027         [ C(OP_READ) ] = {
1028                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1029                 [ C(RESULT_MISS)   ] = 0,
1030         },
1031         [ C(OP_WRITE) ] = {
1032                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1033                 [ C(RESULT_MISS)   ] = 0,
1034         },
1035         [ C(OP_PREFETCH) ] = {
1036                 [ C(RESULT_ACCESS) ] = 0x0,
1037                 [ C(RESULT_MISS)   ] = 0,
1038         },
1039  },
1040  [ C(L1I ) ] = {
1041         [ C(OP_READ) ] = {
1042                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1043                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1044         },
1045         [ C(OP_WRITE) ] = {
1046                 [ C(RESULT_ACCESS) ] = -1,
1047                 [ C(RESULT_MISS)   ] = -1,
1048         },
1049         [ C(OP_PREFETCH) ] = {
1050                 [ C(RESULT_ACCESS) ] = 0,
1051                 [ C(RESULT_MISS)   ] = 0,
1052         },
1053  },
1054  [ C(LL  ) ] = {
1055         [ C(OP_READ) ] = {
1056                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1057                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1058         },
1059         [ C(OP_WRITE) ] = {
1060                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1061                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1062         },
1063         [ C(OP_PREFETCH) ] = {
1064                 [ C(RESULT_ACCESS) ] = 0,
1065                 [ C(RESULT_MISS)   ] = 0,
1066         },
1067  },
1068  [ C(DTLB) ] = {
1069         [ C(OP_READ) ] = {
1070                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1071                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1072         },
1073         [ C(OP_WRITE) ] = {
1074                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1075                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1076         },
1077         [ C(OP_PREFETCH) ] = {
1078                 [ C(RESULT_ACCESS) ] = 0,
1079                 [ C(RESULT_MISS)   ] = 0,
1080         },
1081  },
1082  [ C(ITLB) ] = {
1083         [ C(OP_READ) ] = {
1084                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1085                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1086         },
1087         [ C(OP_WRITE) ] = {
1088                 [ C(RESULT_ACCESS) ] = -1,
1089                 [ C(RESULT_MISS)   ] = -1,
1090         },
1091         [ C(OP_PREFETCH) ] = {
1092                 [ C(RESULT_ACCESS) ] = -1,
1093                 [ C(RESULT_MISS)   ] = -1,
1094         },
1095  },
1096  [ C(BPU ) ] = {
1097         [ C(OP_READ) ] = {
1098                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1099                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1100         },
1101         [ C(OP_WRITE) ] = {
1102                 [ C(RESULT_ACCESS) ] = -1,
1103                 [ C(RESULT_MISS)   ] = -1,
1104         },
1105         [ C(OP_PREFETCH) ] = {
1106                 [ C(RESULT_ACCESS) ] = -1,
1107                 [ C(RESULT_MISS)   ] = -1,
1108         },
1109  },
1110 };
1111
1112 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1113 {
1114         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1115         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1116         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1117         EVENT_EXTRA_END
1118 };
1119
1120 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1121 #define SLM_DMND_WRITE          SNB_DMND_RFO
1122 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1123
1124 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1125 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1126 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1127
1128 static __initconst const u64 slm_hw_cache_extra_regs
1129                                 [PERF_COUNT_HW_CACHE_MAX]
1130                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1131                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1132 {
1133  [ C(LL  ) ] = {
1134         [ C(OP_READ) ] = {
1135                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1136                 [ C(RESULT_MISS)   ] = SLM_DMND_READ|SLM_LLC_MISS,
1137         },
1138         [ C(OP_WRITE) ] = {
1139                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1140                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1141         },
1142         [ C(OP_PREFETCH) ] = {
1143                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1144                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1145         },
1146  },
1147 };
1148
1149 static __initconst const u64 slm_hw_cache_event_ids
1150                                 [PERF_COUNT_HW_CACHE_MAX]
1151                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1152                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1153 {
1154  [ C(L1D) ] = {
1155         [ C(OP_READ) ] = {
1156                 [ C(RESULT_ACCESS) ] = 0,
1157                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1158         },
1159         [ C(OP_WRITE) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0,
1161                 [ C(RESULT_MISS)   ] = 0,
1162         },
1163         [ C(OP_PREFETCH) ] = {
1164                 [ C(RESULT_ACCESS) ] = 0,
1165                 [ C(RESULT_MISS)   ] = 0,
1166         },
1167  },
1168  [ C(L1I ) ] = {
1169         [ C(OP_READ) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1171                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1172         },
1173         [ C(OP_WRITE) ] = {
1174                 [ C(RESULT_ACCESS) ] = -1,
1175                 [ C(RESULT_MISS)   ] = -1,
1176         },
1177         [ C(OP_PREFETCH) ] = {
1178                 [ C(RESULT_ACCESS) ] = 0,
1179                 [ C(RESULT_MISS)   ] = 0,
1180         },
1181  },
1182  [ C(LL  ) ] = {
1183         [ C(OP_READ) ] = {
1184                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1185                 [ C(RESULT_ACCESS) ] = 0x01b7,
1186                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1187                 [ C(RESULT_MISS)   ] = 0x01b7,
1188         },
1189         [ C(OP_WRITE) ] = {
1190                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1191                 [ C(RESULT_ACCESS) ] = 0x01b7,
1192                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1193                 [ C(RESULT_MISS)   ] = 0x01b7,
1194         },
1195         [ C(OP_PREFETCH) ] = {
1196                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1197                 [ C(RESULT_ACCESS) ] = 0x01b7,
1198                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1199                 [ C(RESULT_MISS)   ] = 0x01b7,
1200         },
1201  },
1202  [ C(DTLB) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0,
1205                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0,
1209                 [ C(RESULT_MISS)   ] = 0,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0,
1213                 [ C(RESULT_MISS)   ] = 0,
1214         },
1215  },
1216  [ C(ITLB) ] = {
1217         [ C(OP_READ) ] = {
1218                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1219                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES */
1220         },
1221         [ C(OP_WRITE) ] = {
1222                 [ C(RESULT_ACCESS) ] = -1,
1223                 [ C(RESULT_MISS)   ] = -1,
1224         },
1225         [ C(OP_PREFETCH) ] = {
1226                 [ C(RESULT_ACCESS) ] = -1,
1227                 [ C(RESULT_MISS)   ] = -1,
1228         },
1229  },
1230  [ C(BPU ) ] = {
1231         [ C(OP_READ) ] = {
1232                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1233                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234         },
1235         [ C(OP_WRITE) ] = {
1236                 [ C(RESULT_ACCESS) ] = -1,
1237                 [ C(RESULT_MISS)   ] = -1,
1238         },
1239         [ C(OP_PREFETCH) ] = {
1240                 [ C(RESULT_ACCESS) ] = -1,
1241                 [ C(RESULT_MISS)   ] = -1,
1242         },
1243  },
1244 };
1245
1246 static void intel_pmu_disable_all(void)
1247 {
1248         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1249
1250         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1251
1252         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1253                 intel_pmu_disable_bts();
1254         else
1255                 intel_bts_disable_local();
1256
1257         intel_pmu_pebs_disable_all();
1258         intel_pmu_lbr_disable_all();
1259 }
1260
1261 static void intel_pmu_enable_all(int added)
1262 {
1263         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1264
1265         intel_pmu_pebs_enable_all();
1266         intel_pmu_lbr_enable_all();
1267         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1268                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1269
1270         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1271                 struct perf_event *event =
1272                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1273
1274                 if (WARN_ON_ONCE(!event))
1275                         return;
1276
1277                 intel_pmu_enable_bts(event->hw.config);
1278         } else
1279                 intel_bts_enable_local();
1280 }
1281
1282 /*
1283  * Workaround for:
1284  *   Intel Errata AAK100 (model 26)
1285  *   Intel Errata AAP53  (model 30)
1286  *   Intel Errata BD53   (model 44)
1287  *
1288  * The official story:
1289  *   These chips need to be 'reset' when adding counters by programming the
1290  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1291  *   in sequence on the same PMC or on different PMCs.
1292  *
1293  * In practise it appears some of these events do in fact count, and
1294  * we need to programm all 4 events.
1295  */
1296 static void intel_pmu_nhm_workaround(void)
1297 {
1298         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1299         static const unsigned long nhm_magic[4] = {
1300                 0x4300B5,
1301                 0x4300D2,
1302                 0x4300B1,
1303                 0x4300B1
1304         };
1305         struct perf_event *event;
1306         int i;
1307
1308         /*
1309          * The Errata requires below steps:
1310          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1311          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1312          *    the corresponding PMCx;
1313          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1314          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1315          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1316          */
1317
1318         /*
1319          * The real steps we choose are a little different from above.
1320          * A) To reduce MSR operations, we don't run step 1) as they
1321          *    are already cleared before this function is called;
1322          * B) Call x86_perf_event_update to save PMCx before configuring
1323          *    PERFEVTSELx with magic number;
1324          * C) With step 5), we do clear only when the PERFEVTSELx is
1325          *    not used currently.
1326          * D) Call x86_perf_event_set_period to restore PMCx;
1327          */
1328
1329         /* We always operate 4 pairs of PERF Counters */
1330         for (i = 0; i < 4; i++) {
1331                 event = cpuc->events[i];
1332                 if (event)
1333                         x86_perf_event_update(event);
1334         }
1335
1336         for (i = 0; i < 4; i++) {
1337                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1338                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1339         }
1340
1341         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1342         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1343
1344         for (i = 0; i < 4; i++) {
1345                 event = cpuc->events[i];
1346
1347                 if (event) {
1348                         x86_perf_event_set_period(event);
1349                         __x86_pmu_enable_event(&event->hw,
1350                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1351                 } else
1352                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1353         }
1354 }
1355
1356 static void intel_pmu_nhm_enable_all(int added)
1357 {
1358         if (added)
1359                 intel_pmu_nhm_workaround();
1360         intel_pmu_enable_all(added);
1361 }
1362
1363 static inline u64 intel_pmu_get_status(void)
1364 {
1365         u64 status;
1366
1367         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1368
1369         return status;
1370 }
1371
1372 static inline void intel_pmu_ack_status(u64 ack)
1373 {
1374         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1375 }
1376
1377 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1378 {
1379         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1380         u64 ctrl_val, mask;
1381
1382         mask = 0xfULL << (idx * 4);
1383
1384         rdmsrl(hwc->config_base, ctrl_val);
1385         ctrl_val &= ~mask;
1386         wrmsrl(hwc->config_base, ctrl_val);
1387 }
1388
1389 static inline bool event_is_checkpointed(struct perf_event *event)
1390 {
1391         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1392 }
1393
1394 static void intel_pmu_disable_event(struct perf_event *event)
1395 {
1396         struct hw_perf_event *hwc = &event->hw;
1397         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1398
1399         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1400                 intel_pmu_disable_bts();
1401                 intel_pmu_drain_bts_buffer();
1402                 return;
1403         }
1404
1405         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1406         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1407         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1408
1409         /*
1410          * must disable before any actual event
1411          * because any event may be combined with LBR
1412          */
1413         if (needs_branch_stack(event))
1414                 intel_pmu_lbr_disable(event);
1415
1416         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1417                 intel_pmu_disable_fixed(hwc);
1418                 return;
1419         }
1420
1421         x86_pmu_disable_event(event);
1422
1423         if (unlikely(event->attr.precise_ip))
1424                 intel_pmu_pebs_disable(event);
1425 }
1426
1427 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1428 {
1429         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1430         u64 ctrl_val, bits, mask;
1431
1432         /*
1433          * Enable IRQ generation (0x8),
1434          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1435          * if requested:
1436          */
1437         bits = 0x8ULL;
1438         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1439                 bits |= 0x2;
1440         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1441                 bits |= 0x1;
1442
1443         /*
1444          * ANY bit is supported in v3 and up
1445          */
1446         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1447                 bits |= 0x4;
1448
1449         bits <<= (idx * 4);
1450         mask = 0xfULL << (idx * 4);
1451
1452         rdmsrl(hwc->config_base, ctrl_val);
1453         ctrl_val &= ~mask;
1454         ctrl_val |= bits;
1455         wrmsrl(hwc->config_base, ctrl_val);
1456 }
1457
1458 static void intel_pmu_enable_event(struct perf_event *event)
1459 {
1460         struct hw_perf_event *hwc = &event->hw;
1461         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1462
1463         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1464                 if (!__this_cpu_read(cpu_hw_events.enabled))
1465                         return;
1466
1467                 intel_pmu_enable_bts(hwc->config);
1468                 return;
1469         }
1470         /*
1471          * must enabled before any actual event
1472          * because any event may be combined with LBR
1473          */
1474         if (needs_branch_stack(event))
1475                 intel_pmu_lbr_enable(event);
1476
1477         if (event->attr.exclude_host)
1478                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1479         if (event->attr.exclude_guest)
1480                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1481
1482         if (unlikely(event_is_checkpointed(event)))
1483                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1484
1485         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1486                 intel_pmu_enable_fixed(hwc);
1487                 return;
1488         }
1489
1490         if (unlikely(event->attr.precise_ip))
1491                 intel_pmu_pebs_enable(event);
1492
1493         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1494 }
1495
1496 /*
1497  * Save and restart an expired event. Called by NMI contexts,
1498  * so it has to be careful about preempting normal event ops:
1499  */
1500 int intel_pmu_save_and_restart(struct perf_event *event)
1501 {
1502         x86_perf_event_update(event);
1503         /*
1504          * For a checkpointed counter always reset back to 0.  This
1505          * avoids a situation where the counter overflows, aborts the
1506          * transaction and is then set back to shortly before the
1507          * overflow, and overflows and aborts again.
1508          */
1509         if (unlikely(event_is_checkpointed(event))) {
1510                 /* No race with NMIs because the counter should not be armed */
1511                 wrmsrl(event->hw.event_base, 0);
1512                 local64_set(&event->hw.prev_count, 0);
1513         }
1514         return x86_perf_event_set_period(event);
1515 }
1516
1517 static void intel_pmu_reset(void)
1518 {
1519         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1520         unsigned long flags;
1521         int idx;
1522
1523         if (!x86_pmu.num_counters)
1524                 return;
1525
1526         local_irq_save(flags);
1527
1528         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1529
1530         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1531                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1532                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1533         }
1534         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1535                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1536
1537         if (ds)
1538                 ds->bts_index = ds->bts_buffer_base;
1539
1540         local_irq_restore(flags);
1541 }
1542
1543 /*
1544  * This handler is triggered by the local APIC, so the APIC IRQ handling
1545  * rules apply:
1546  */
1547 static int intel_pmu_handle_irq(struct pt_regs *regs)
1548 {
1549         struct perf_sample_data data;
1550         struct cpu_hw_events *cpuc;
1551         int bit, loops;
1552         u64 status;
1553         int handled;
1554
1555         cpuc = this_cpu_ptr(&cpu_hw_events);
1556
1557         /*
1558          * No known reason to not always do late ACK,
1559          * but just in case do it opt-in.
1560          */
1561         if (!x86_pmu.late_ack)
1562                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1563         intel_pmu_disable_all();
1564         handled = intel_pmu_drain_bts_buffer();
1565         handled += intel_bts_interrupt();
1566         status = intel_pmu_get_status();
1567         if (!status)
1568                 goto done;
1569
1570         loops = 0;
1571 again:
1572         intel_pmu_ack_status(status);
1573         if (++loops > 100) {
1574                 static bool warned = false;
1575                 if (!warned) {
1576                         WARN(1, "perfevents: irq loop stuck!\n");
1577                         perf_event_print_debug();
1578                         warned = true;
1579                 }
1580                 intel_pmu_reset();
1581                 goto done;
1582         }
1583
1584         inc_irq_stat(apic_perf_irqs);
1585
1586         intel_pmu_lbr_read();
1587
1588         /*
1589          * CondChgd bit 63 doesn't mean any overflow status. Ignore
1590          * and clear the bit.
1591          */
1592         if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1593                 if (!status)
1594                         goto done;
1595         }
1596
1597         /*
1598          * PEBS overflow sets bit 62 in the global status register
1599          */
1600         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1601                 handled++;
1602                 x86_pmu.drain_pebs(regs);
1603         }
1604
1605         /*
1606          * Intel PT
1607          */
1608         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1609                 handled++;
1610                 intel_pt_interrupt();
1611         }
1612
1613         /*
1614          * Checkpointed counters can lead to 'spurious' PMIs because the
1615          * rollback caused by the PMI will have cleared the overflow status
1616          * bit. Therefore always force probe these counters.
1617          */
1618         status |= cpuc->intel_cp_status;
1619
1620         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1621                 struct perf_event *event = cpuc->events[bit];
1622
1623                 handled++;
1624
1625                 if (!test_bit(bit, cpuc->active_mask))
1626                         continue;
1627
1628                 if (!intel_pmu_save_and_restart(event))
1629                         continue;
1630
1631                 perf_sample_data_init(&data, 0, event->hw.last_period);
1632
1633                 if (has_branch_stack(event))
1634                         data.br_stack = &cpuc->lbr_stack;
1635
1636                 if (perf_event_overflow(event, &data, regs))
1637                         x86_pmu_stop(event, 0);
1638         }
1639
1640         /*
1641          * Repeat if there is more work to be done:
1642          */
1643         status = intel_pmu_get_status();
1644         if (status)
1645                 goto again;
1646
1647 done:
1648         intel_pmu_enable_all(0);
1649         /*
1650          * Only unmask the NMI after the overflow counters
1651          * have been reset. This avoids spurious NMIs on
1652          * Haswell CPUs.
1653          */
1654         if (x86_pmu.late_ack)
1655                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1656         return handled;
1657 }
1658
1659 static struct event_constraint *
1660 intel_bts_constraints(struct perf_event *event)
1661 {
1662         struct hw_perf_event *hwc = &event->hw;
1663         unsigned int hw_event, bts_event;
1664
1665         if (event->attr.freq)
1666                 return NULL;
1667
1668         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1669         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1670
1671         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1672                 return &bts_constraint;
1673
1674         return NULL;
1675 }
1676
1677 static int intel_alt_er(int idx)
1678 {
1679         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1680                 return idx;
1681
1682         if (idx == EXTRA_REG_RSP_0)
1683                 return EXTRA_REG_RSP_1;
1684
1685         if (idx == EXTRA_REG_RSP_1)
1686                 return EXTRA_REG_RSP_0;
1687
1688         return idx;
1689 }
1690
1691 static void intel_fixup_er(struct perf_event *event, int idx)
1692 {
1693         event->hw.extra_reg.idx = idx;
1694
1695         if (idx == EXTRA_REG_RSP_0) {
1696                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1697                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1698                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1699         } else if (idx == EXTRA_REG_RSP_1) {
1700                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1701                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1702                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1703         }
1704 }
1705
1706 /*
1707  * manage allocation of shared extra msr for certain events
1708  *
1709  * sharing can be:
1710  * per-cpu: to be shared between the various events on a single PMU
1711  * per-core: per-cpu + shared by HT threads
1712  */
1713 static struct event_constraint *
1714 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1715                                    struct perf_event *event,
1716                                    struct hw_perf_event_extra *reg)
1717 {
1718         struct event_constraint *c = &emptyconstraint;
1719         struct er_account *era;
1720         unsigned long flags;
1721         int idx = reg->idx;
1722
1723         /*
1724          * reg->alloc can be set due to existing state, so for fake cpuc we
1725          * need to ignore this, otherwise we might fail to allocate proper fake
1726          * state for this extra reg constraint. Also see the comment below.
1727          */
1728         if (reg->alloc && !cpuc->is_fake)
1729                 return NULL; /* call x86_get_event_constraint() */
1730
1731 again:
1732         era = &cpuc->shared_regs->regs[idx];
1733         /*
1734          * we use spin_lock_irqsave() to avoid lockdep issues when
1735          * passing a fake cpuc
1736          */
1737         raw_spin_lock_irqsave(&era->lock, flags);
1738
1739         if (!atomic_read(&era->ref) || era->config == reg->config) {
1740
1741                 /*
1742                  * If its a fake cpuc -- as per validate_{group,event}() we
1743                  * shouldn't touch event state and we can avoid doing so
1744                  * since both will only call get_event_constraints() once
1745                  * on each event, this avoids the need for reg->alloc.
1746                  *
1747                  * Not doing the ER fixup will only result in era->reg being
1748                  * wrong, but since we won't actually try and program hardware
1749                  * this isn't a problem either.
1750                  */
1751                 if (!cpuc->is_fake) {
1752                         if (idx != reg->idx)
1753                                 intel_fixup_er(event, idx);
1754
1755                         /*
1756                          * x86_schedule_events() can call get_event_constraints()
1757                          * multiple times on events in the case of incremental
1758                          * scheduling(). reg->alloc ensures we only do the ER
1759                          * allocation once.
1760                          */
1761                         reg->alloc = 1;
1762                 }
1763
1764                 /* lock in msr value */
1765                 era->config = reg->config;
1766                 era->reg = reg->reg;
1767
1768                 /* one more user */
1769                 atomic_inc(&era->ref);
1770
1771                 /*
1772                  * need to call x86_get_event_constraint()
1773                  * to check if associated event has constraints
1774                  */
1775                 c = NULL;
1776         } else {
1777                 idx = intel_alt_er(idx);
1778                 if (idx != reg->idx) {
1779                         raw_spin_unlock_irqrestore(&era->lock, flags);
1780                         goto again;
1781                 }
1782         }
1783         raw_spin_unlock_irqrestore(&era->lock, flags);
1784
1785         return c;
1786 }
1787
1788 static void
1789 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1790                                    struct hw_perf_event_extra *reg)
1791 {
1792         struct er_account *era;
1793
1794         /*
1795          * Only put constraint if extra reg was actually allocated. Also takes
1796          * care of event which do not use an extra shared reg.
1797          *
1798          * Also, if this is a fake cpuc we shouldn't touch any event state
1799          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1800          * either since it'll be thrown out.
1801          */
1802         if (!reg->alloc || cpuc->is_fake)
1803                 return;
1804
1805         era = &cpuc->shared_regs->regs[reg->idx];
1806
1807         /* one fewer user */
1808         atomic_dec(&era->ref);
1809
1810         /* allocate again next time */
1811         reg->alloc = 0;
1812 }
1813
1814 static struct event_constraint *
1815 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1816                               struct perf_event *event)
1817 {
1818         struct event_constraint *c = NULL, *d;
1819         struct hw_perf_event_extra *xreg, *breg;
1820
1821         xreg = &event->hw.extra_reg;
1822         if (xreg->idx != EXTRA_REG_NONE) {
1823                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1824                 if (c == &emptyconstraint)
1825                         return c;
1826         }
1827         breg = &event->hw.branch_reg;
1828         if (breg->idx != EXTRA_REG_NONE) {
1829                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1830                 if (d == &emptyconstraint) {
1831                         __intel_shared_reg_put_constraints(cpuc, xreg);
1832                         c = d;
1833                 }
1834         }
1835         return c;
1836 }
1837
1838 struct event_constraint *
1839 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1840                           struct perf_event *event)
1841 {
1842         struct event_constraint *c;
1843
1844         if (x86_pmu.event_constraints) {
1845                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1846                         if ((event->hw.config & c->cmask) == c->code) {
1847                                 event->hw.flags |= c->flags;
1848                                 return c;
1849                         }
1850                 }
1851         }
1852
1853         return &unconstrained;
1854 }
1855
1856 static struct event_constraint *
1857 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1858                             struct perf_event *event)
1859 {
1860         struct event_constraint *c;
1861
1862         c = intel_bts_constraints(event);
1863         if (c)
1864                 return c;
1865
1866         c = intel_shared_regs_constraints(cpuc, event);
1867         if (c)
1868                 return c;
1869
1870         c = intel_pebs_constraints(event);
1871         if (c)
1872                 return c;
1873
1874         return x86_get_event_constraints(cpuc, idx, event);
1875 }
1876
1877 static void
1878 intel_start_scheduling(struct cpu_hw_events *cpuc)
1879 {
1880         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1881         struct intel_excl_states *xl, *xlo;
1882         int tid = cpuc->excl_thread_id;
1883         int o_tid = 1 - tid; /* sibling thread */
1884
1885         /*
1886          * nothing needed if in group validation mode
1887          */
1888         if (cpuc->is_fake)
1889                 return;
1890         /*
1891          * no exclusion needed
1892          */
1893         if (!excl_cntrs)
1894                 return;
1895
1896         xlo = &excl_cntrs->states[o_tid];
1897         xl = &excl_cntrs->states[tid];
1898
1899         xl->sched_started = true;
1900         xl->num_alloc_cntrs = 0;
1901         /*
1902          * lock shared state until we are done scheduling
1903          * in stop_event_scheduling()
1904          * makes scheduling appear as a transaction
1905          */
1906         WARN_ON_ONCE(!irqs_disabled());
1907         raw_spin_lock(&excl_cntrs->lock);
1908
1909         /*
1910          * save initial state of sibling thread
1911          */
1912         memcpy(xlo->init_state, xlo->state, sizeof(xlo->init_state));
1913 }
1914
1915 static void
1916 intel_stop_scheduling(struct cpu_hw_events *cpuc)
1917 {
1918         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1919         struct intel_excl_states *xl, *xlo;
1920         int tid = cpuc->excl_thread_id;
1921         int o_tid = 1 - tid; /* sibling thread */
1922
1923         /*
1924          * nothing needed if in group validation mode
1925          */
1926         if (cpuc->is_fake)
1927                 return;
1928         /*
1929          * no exclusion needed
1930          */
1931         if (!excl_cntrs)
1932                 return;
1933
1934         xlo = &excl_cntrs->states[o_tid];
1935         xl = &excl_cntrs->states[tid];
1936
1937         /*
1938          * make new sibling thread state visible
1939          */
1940         memcpy(xlo->state, xlo->init_state, sizeof(xlo->state));
1941
1942         xl->sched_started = false;
1943         /*
1944          * release shared state lock (acquired in intel_start_scheduling())
1945          */
1946         raw_spin_unlock(&excl_cntrs->lock);
1947 }
1948
1949 static struct event_constraint *
1950 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1951                            int idx, struct event_constraint *c)
1952 {
1953         struct event_constraint *cx;
1954         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1955         struct intel_excl_states *xl, *xlo;
1956         int is_excl, i;
1957         int tid = cpuc->excl_thread_id;
1958         int o_tid = 1 - tid; /* alternate */
1959
1960         /*
1961          * validating a group does not require
1962          * enforcing cross-thread  exclusion
1963          */
1964         if (cpuc->is_fake)
1965                 return c;
1966         /*
1967          * event requires exclusive counter access
1968          * across HT threads
1969          */
1970         is_excl = c->flags & PERF_X86_EVENT_EXCL;
1971
1972         /*
1973          * xl = state of current HT
1974          * xlo = state of sibling HT
1975          */
1976         xl = &excl_cntrs->states[tid];
1977         xlo = &excl_cntrs->states[o_tid];
1978
1979         /*
1980          * do not allow scheduling of more than max_alloc_cntrs
1981          * which is set to half the available generic counters.
1982          * this helps avoid counter starvation of sibling thread
1983          * by ensuring at most half the counters cannot be in
1984          * exclusive mode. There is not designated counters for the
1985          * limits. Any N/2 counters can be used. This helps with
1986          * events with specifix counter constraints
1987          */
1988         if (xl->num_alloc_cntrs++ == xl->max_alloc_cntrs)
1989                 return &emptyconstraint;
1990
1991         cx = c;
1992
1993         /*
1994          * because we modify the constraint, we need
1995          * to make a copy. Static constraints come
1996          * from static const tables.
1997          *
1998          * only needed when constraint has not yet
1999          * been cloned (marked dynamic)
2000          */
2001         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2002
2003                 /* sanity check */
2004                 if (idx < 0)
2005                         return &emptyconstraint;
2006
2007                 /*
2008                  * grab pre-allocated constraint entry
2009                  */
2010                 cx = &cpuc->constraint_list[idx];
2011
2012                 /*
2013                  * initialize dynamic constraint
2014                  * with static constraint
2015                  */
2016                 memcpy(cx, c, sizeof(*cx));
2017
2018                 /*
2019                  * mark constraint as dynamic, so we
2020                  * can free it later on
2021                  */
2022                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2023         }
2024
2025         /*
2026          * From here on, the constraint is dynamic.
2027          * Either it was just allocated above, or it
2028          * was allocated during a earlier invocation
2029          * of this function
2030          */
2031
2032         /*
2033          * Modify static constraint with current dynamic
2034          * state of thread
2035          *
2036          * EXCLUSIVE: sibling counter measuring exclusive event
2037          * SHARED   : sibling counter measuring non-exclusive event
2038          * UNUSED   : sibling counter unused
2039          */
2040         for_each_set_bit(i, cx->idxmsk, X86_PMC_IDX_MAX) {
2041                 /*
2042                  * exclusive event in sibling counter
2043                  * our corresponding counter cannot be used
2044                  * regardless of our event
2045                  */
2046                 if (xl->state[i] == INTEL_EXCL_EXCLUSIVE)
2047                         __clear_bit(i, cx->idxmsk);
2048                 /*
2049                  * if measuring an exclusive event, sibling
2050                  * measuring non-exclusive, then counter cannot
2051                  * be used
2052                  */
2053                 if (is_excl && xl->state[i] == INTEL_EXCL_SHARED)
2054                         __clear_bit(i, cx->idxmsk);
2055         }
2056
2057         /*
2058          * recompute actual bit weight for scheduling algorithm
2059          */
2060         cx->weight = hweight64(cx->idxmsk64);
2061
2062         /*
2063          * if we return an empty mask, then switch
2064          * back to static empty constraint to avoid
2065          * the cost of freeing later on
2066          */
2067         if (cx->weight == 0)
2068                 cx = &emptyconstraint;
2069
2070         return cx;
2071 }
2072
2073 static struct event_constraint *
2074 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2075                             struct perf_event *event)
2076 {
2077         struct event_constraint *c1 = event->hw.constraint;
2078         struct event_constraint *c2;
2079
2080         /*
2081          * first time only
2082          * - static constraint: no change across incremental scheduling calls
2083          * - dynamic constraint: handled by intel_get_excl_constraints()
2084          */
2085         c2 = __intel_get_event_constraints(cpuc, idx, event);
2086         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2087                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2088                 c1->weight = c2->weight;
2089                 c2 = c1;
2090         }
2091
2092         if (cpuc->excl_cntrs)
2093                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2094
2095         return c2;
2096 }
2097
2098 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2099                 struct perf_event *event)
2100 {
2101         struct hw_perf_event *hwc = &event->hw;
2102         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2103         struct intel_excl_states *xlo, *xl;
2104         unsigned long flags = 0; /* keep compiler happy */
2105         int tid = cpuc->excl_thread_id;
2106         int o_tid = 1 - tid;
2107
2108         /*
2109          * nothing needed if in group validation mode
2110          */
2111         if (cpuc->is_fake)
2112                 return;
2113
2114         WARN_ON_ONCE(!excl_cntrs);
2115
2116         if (!excl_cntrs)
2117                 return;
2118
2119         xl = &excl_cntrs->states[tid];
2120         xlo = &excl_cntrs->states[o_tid];
2121
2122         /*
2123          * put_constraint may be called from x86_schedule_events()
2124          * which already has the lock held so here make locking
2125          * conditional
2126          */
2127         if (!xl->sched_started)
2128                 raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
2129
2130         /*
2131          * if event was actually assigned, then mark the
2132          * counter state as unused now
2133          */
2134         if (hwc->idx >= 0)
2135                 xlo->state[hwc->idx] = INTEL_EXCL_UNUSED;
2136
2137         if (!xl->sched_started)
2138                 raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
2139 }
2140
2141 static void
2142 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2143                                         struct perf_event *event)
2144 {
2145         struct hw_perf_event_extra *reg;
2146
2147         reg = &event->hw.extra_reg;
2148         if (reg->idx != EXTRA_REG_NONE)
2149                 __intel_shared_reg_put_constraints(cpuc, reg);
2150
2151         reg = &event->hw.branch_reg;
2152         if (reg->idx != EXTRA_REG_NONE)
2153                 __intel_shared_reg_put_constraints(cpuc, reg);
2154 }
2155
2156 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2157                                         struct perf_event *event)
2158 {
2159         struct event_constraint *c = event->hw.constraint;
2160
2161         intel_put_shared_regs_event_constraints(cpuc, event);
2162
2163         /*
2164          * is PMU has exclusive counter restrictions, then
2165          * all events are subject to and must call the
2166          * put_excl_constraints() routine
2167          */
2168         if (c && cpuc->excl_cntrs)
2169                 intel_put_excl_constraints(cpuc, event);
2170
2171         /* cleanup dynamic constraint */
2172         if (c && (c->flags & PERF_X86_EVENT_DYNAMIC))
2173                 event->hw.constraint = NULL;
2174 }
2175
2176 static void intel_commit_scheduling(struct cpu_hw_events *cpuc,
2177                                     struct perf_event *event, int cntr)
2178 {
2179         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2180         struct event_constraint *c = event->hw.constraint;
2181         struct intel_excl_states *xlo, *xl;
2182         int tid = cpuc->excl_thread_id;
2183         int o_tid = 1 - tid;
2184         int is_excl;
2185
2186         if (cpuc->is_fake || !c)
2187                 return;
2188
2189         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2190
2191         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2192                 return;
2193
2194         WARN_ON_ONCE(!excl_cntrs);
2195
2196         if (!excl_cntrs)
2197                 return;
2198
2199         xl = &excl_cntrs->states[tid];
2200         xlo = &excl_cntrs->states[o_tid];
2201
2202         WARN_ON_ONCE(!raw_spin_is_locked(&excl_cntrs->lock));
2203
2204         if (cntr >= 0) {
2205                 if (is_excl)
2206                         xlo->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
2207                 else
2208                         xlo->init_state[cntr] = INTEL_EXCL_SHARED;
2209         }
2210 }
2211
2212 static void intel_pebs_aliases_core2(struct perf_event *event)
2213 {
2214         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2215                 /*
2216                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2217                  * (0x003c) so that we can use it with PEBS.
2218                  *
2219                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2220                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2221                  * (0x00c0), which is a PEBS capable event, to get the same
2222                  * count.
2223                  *
2224                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2225                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2226                  * larger than the maximum number of instructions that can be
2227                  * retired per cycle (4) and then inverting the condition, we
2228                  * count all cycles that retire 16 or less instructions, which
2229                  * is every cycle.
2230                  *
2231                  * Thereby we gain a PEBS capable cycle counter.
2232                  */
2233                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2234
2235                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2236                 event->hw.config = alt_config;
2237         }
2238 }
2239
2240 static void intel_pebs_aliases_snb(struct perf_event *event)
2241 {
2242         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2243                 /*
2244                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2245                  * (0x003c) so that we can use it with PEBS.
2246                  *
2247                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2248                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2249                  * (0x01c2), which is a PEBS capable event, to get the same
2250                  * count.
2251                  *
2252                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2253                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2254                  * larger than the maximum number of micro-ops that can be
2255                  * retired per cycle (4) and then inverting the condition, we
2256                  * count all cycles that retire 16 or less micro-ops, which
2257                  * is every cycle.
2258                  *
2259                  * Thereby we gain a PEBS capable cycle counter.
2260                  */
2261                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2262
2263                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2264                 event->hw.config = alt_config;
2265         }
2266 }
2267
2268 static int intel_pmu_hw_config(struct perf_event *event)
2269 {
2270         int ret = x86_pmu_hw_config(event);
2271
2272         if (ret)
2273                 return ret;
2274
2275         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
2276                 x86_pmu.pebs_aliases(event);
2277
2278         if (needs_branch_stack(event)) {
2279                 ret = intel_pmu_setup_lbr_filter(event);
2280                 if (ret)
2281                         return ret;
2282
2283                 /*
2284                  * BTS is set up earlier in this path, so don't account twice
2285                  */
2286                 if (!intel_pmu_has_bts(event)) {
2287                         /* disallow lbr if conflicting events are present */
2288                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2289                                 return -EBUSY;
2290
2291                         event->destroy = hw_perf_lbr_event_destroy;
2292                 }
2293         }
2294
2295         if (event->attr.type != PERF_TYPE_RAW)
2296                 return 0;
2297
2298         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2299                 return 0;
2300
2301         if (x86_pmu.version < 3)
2302                 return -EINVAL;
2303
2304         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2305                 return -EACCES;
2306
2307         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2308
2309         return 0;
2310 }
2311
2312 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2313 {
2314         if (x86_pmu.guest_get_msrs)
2315                 return x86_pmu.guest_get_msrs(nr);
2316         *nr = 0;
2317         return NULL;
2318 }
2319 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2320
2321 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2322 {
2323         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2324         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2325
2326         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2327         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2328         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2329         /*
2330          * If PMU counter has PEBS enabled it is not enough to disable counter
2331          * on a guest entry since PEBS memory write can overshoot guest entry
2332          * and corrupt guest memory. Disabling PEBS solves the problem.
2333          */
2334         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2335         arr[1].host = cpuc->pebs_enabled;
2336         arr[1].guest = 0;
2337
2338         *nr = 2;
2339         return arr;
2340 }
2341
2342 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2343 {
2344         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2345         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2346         int idx;
2347
2348         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2349                 struct perf_event *event = cpuc->events[idx];
2350
2351                 arr[idx].msr = x86_pmu_config_addr(idx);
2352                 arr[idx].host = arr[idx].guest = 0;
2353
2354                 if (!test_bit(idx, cpuc->active_mask))
2355                         continue;
2356
2357                 arr[idx].host = arr[idx].guest =
2358                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2359
2360                 if (event->attr.exclude_host)
2361                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2362                 else if (event->attr.exclude_guest)
2363                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2364         }
2365
2366         *nr = x86_pmu.num_counters;
2367         return arr;
2368 }
2369
2370 static void core_pmu_enable_event(struct perf_event *event)
2371 {
2372         if (!event->attr.exclude_host)
2373                 x86_pmu_enable_event(event);
2374 }
2375
2376 static void core_pmu_enable_all(int added)
2377 {
2378         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2379         int idx;
2380
2381         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2382                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2383
2384                 if (!test_bit(idx, cpuc->active_mask) ||
2385                                 cpuc->events[idx]->attr.exclude_host)
2386                         continue;
2387
2388                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2389         }
2390 }
2391
2392 static int hsw_hw_config(struct perf_event *event)
2393 {
2394         int ret = intel_pmu_hw_config(event);
2395
2396         if (ret)
2397                 return ret;
2398         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2399                 return 0;
2400         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2401
2402         /*
2403          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2404          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2405          * this combination.
2406          */
2407         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2408              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2409               event->attr.precise_ip > 0))
2410                 return -EOPNOTSUPP;
2411
2412         if (event_is_checkpointed(event)) {
2413                 /*
2414                  * Sampling of checkpointed events can cause situations where
2415                  * the CPU constantly aborts because of a overflow, which is
2416                  * then checkpointed back and ignored. Forbid checkpointing
2417                  * for sampling.
2418                  *
2419                  * But still allow a long sampling period, so that perf stat
2420                  * from KVM works.
2421                  */
2422                 if (event->attr.sample_period > 0 &&
2423                     event->attr.sample_period < 0x7fffffff)
2424                         return -EOPNOTSUPP;
2425         }
2426         return 0;
2427 }
2428
2429 static struct event_constraint counter2_constraint =
2430                         EVENT_CONSTRAINT(0, 0x4, 0);
2431
2432 static struct event_constraint *
2433 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2434                           struct perf_event *event)
2435 {
2436         struct event_constraint *c;
2437
2438         c = intel_get_event_constraints(cpuc, idx, event);
2439
2440         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2441         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2442                 if (c->idxmsk64 & (1U << 2))
2443                         return &counter2_constraint;
2444                 return &emptyconstraint;
2445         }
2446
2447         return c;
2448 }
2449
2450 /*
2451  * Broadwell:
2452  *
2453  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2454  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2455  * the two to enforce a minimum period of 128 (the smallest value that has bits
2456  * 0-5 cleared and >= 100).
2457  *
2458  * Because of how the code in x86_perf_event_set_period() works, the truncation
2459  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2460  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2461  *
2462  * Therefore the effective (average) period matches the requested period,
2463  * despite coarser hardware granularity.
2464  */
2465 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2466 {
2467         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2468                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2469                 if (left < 128)
2470                         left = 128;
2471                 left &= ~0x3fu;
2472         }
2473         return left;
2474 }
2475
2476 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2477 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2478 PMU_FORMAT_ATTR(edge,   "config:18"     );
2479 PMU_FORMAT_ATTR(pc,     "config:19"     );
2480 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2481 PMU_FORMAT_ATTR(inv,    "config:23"     );
2482 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2483 PMU_FORMAT_ATTR(in_tx,  "config:32");
2484 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2485
2486 static struct attribute *intel_arch_formats_attr[] = {
2487         &format_attr_event.attr,
2488         &format_attr_umask.attr,
2489         &format_attr_edge.attr,
2490         &format_attr_pc.attr,
2491         &format_attr_inv.attr,
2492         &format_attr_cmask.attr,
2493         NULL,
2494 };
2495
2496 ssize_t intel_event_sysfs_show(char *page, u64 config)
2497 {
2498         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2499
2500         return x86_event_sysfs_show(page, config, event);
2501 }
2502
2503 static __initconst const struct x86_pmu core_pmu = {
2504         .name                   = "core",
2505         .handle_irq             = x86_pmu_handle_irq,
2506         .disable_all            = x86_pmu_disable_all,
2507         .enable_all             = core_pmu_enable_all,
2508         .enable                 = core_pmu_enable_event,
2509         .disable                = x86_pmu_disable_event,
2510         .hw_config              = x86_pmu_hw_config,
2511         .schedule_events        = x86_schedule_events,
2512         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2513         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2514         .event_map              = intel_pmu_event_map,
2515         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2516         .apic                   = 1,
2517         /*
2518          * Intel PMCs cannot be accessed sanely above 32 bit width,
2519          * so we install an artificial 1<<31 period regardless of
2520          * the generic event period:
2521          */
2522         .max_period             = (1ULL << 31) - 1,
2523         .get_event_constraints  = intel_get_event_constraints,
2524         .put_event_constraints  = intel_put_event_constraints,
2525         .event_constraints      = intel_core_event_constraints,
2526         .guest_get_msrs         = core_guest_get_msrs,
2527         .format_attrs           = intel_arch_formats_attr,
2528         .events_sysfs_show      = intel_event_sysfs_show,
2529 };
2530
2531 struct intel_shared_regs *allocate_shared_regs(int cpu)
2532 {
2533         struct intel_shared_regs *regs;
2534         int i;
2535
2536         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2537                             GFP_KERNEL, cpu_to_node(cpu));
2538         if (regs) {
2539                 /*
2540                  * initialize the locks to keep lockdep happy
2541                  */
2542                 for (i = 0; i < EXTRA_REG_MAX; i++)
2543                         raw_spin_lock_init(&regs->regs[i].lock);
2544
2545                 regs->core_id = -1;
2546         }
2547         return regs;
2548 }
2549
2550 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2551 {
2552         struct intel_excl_cntrs *c;
2553         int i;
2554
2555         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2556                          GFP_KERNEL, cpu_to_node(cpu));
2557         if (c) {
2558                 raw_spin_lock_init(&c->lock);
2559                 for (i = 0; i < X86_PMC_IDX_MAX; i++) {
2560                         c->states[0].state[i] = INTEL_EXCL_UNUSED;
2561                         c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
2562
2563                         c->states[1].state[i] = INTEL_EXCL_UNUSED;
2564                         c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
2565                 }
2566                 c->core_id = -1;
2567         }
2568         return c;
2569 }
2570
2571 static int intel_pmu_cpu_prepare(int cpu)
2572 {
2573         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2574
2575         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2576                 cpuc->shared_regs = allocate_shared_regs(cpu);
2577                 if (!cpuc->shared_regs)
2578                         return NOTIFY_BAD;
2579         }
2580
2581         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2582                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2583
2584                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2585                 if (!cpuc->constraint_list)
2586                         return NOTIFY_BAD;
2587
2588                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2589                 if (!cpuc->excl_cntrs) {
2590                         kfree(cpuc->constraint_list);
2591                         kfree(cpuc->shared_regs);
2592                         return NOTIFY_BAD;
2593                 }
2594                 cpuc->excl_thread_id = 0;
2595         }
2596
2597         return NOTIFY_OK;
2598 }
2599
2600 static void intel_pmu_cpu_starting(int cpu)
2601 {
2602         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2603         int core_id = topology_core_id(cpu);
2604         int i;
2605
2606         init_debug_store_on_cpu(cpu);
2607         /*
2608          * Deal with CPUs that don't clear their LBRs on power-up.
2609          */
2610         intel_pmu_lbr_reset();
2611
2612         cpuc->lbr_sel = NULL;
2613
2614         if (!cpuc->shared_regs)
2615                 return;
2616
2617         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2618                 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2619
2620                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2621                         struct intel_shared_regs *pc;
2622
2623                         pc = per_cpu(cpu_hw_events, i).shared_regs;
2624                         if (pc && pc->core_id == core_id) {
2625                                 *onln = cpuc->shared_regs;
2626                                 cpuc->shared_regs = pc;
2627                                 break;
2628                         }
2629                 }
2630                 cpuc->shared_regs->core_id = core_id;
2631                 cpuc->shared_regs->refcnt++;
2632         }
2633
2634         if (x86_pmu.lbr_sel_map)
2635                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2636
2637         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2638                 int h = x86_pmu.num_counters >> 1;
2639
2640                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2641                         struct intel_excl_cntrs *c;
2642
2643                         c = per_cpu(cpu_hw_events, i).excl_cntrs;
2644                         if (c && c->core_id == core_id) {
2645                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2646                                 cpuc->excl_cntrs = c;
2647                                 cpuc->excl_thread_id = 1;
2648                                 break;
2649                         }
2650                 }
2651                 cpuc->excl_cntrs->core_id = core_id;
2652                 cpuc->excl_cntrs->refcnt++;
2653                 /*
2654                  * set hard limit to half the number of generic counters
2655                  */
2656                 cpuc->excl_cntrs->states[0].max_alloc_cntrs = h;
2657                 cpuc->excl_cntrs->states[1].max_alloc_cntrs = h;
2658         }
2659 }
2660
2661 static void intel_pmu_cpu_dying(int cpu)
2662 {
2663         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2664         struct intel_shared_regs *pc;
2665         struct intel_excl_cntrs *c;
2666
2667         pc = cpuc->shared_regs;
2668         if (pc) {
2669                 if (pc->core_id == -1 || --pc->refcnt == 0)
2670                         kfree(pc);
2671                 cpuc->shared_regs = NULL;
2672         }
2673         c = cpuc->excl_cntrs;
2674         if (c) {
2675                 if (c->core_id == -1 || --c->refcnt == 0)
2676                         kfree(c);
2677                 cpuc->excl_cntrs = NULL;
2678                 kfree(cpuc->constraint_list);
2679                 cpuc->constraint_list = NULL;
2680         }
2681
2682         c = cpuc->excl_cntrs;
2683         if (c) {
2684                 if (c->core_id == -1 || --c->refcnt == 0)
2685                         kfree(c);
2686                 cpuc->excl_cntrs = NULL;
2687         }
2688
2689         fini_debug_store_on_cpu(cpu);
2690 }
2691
2692 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2693
2694 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2695
2696 static struct attribute *intel_arch3_formats_attr[] = {
2697         &format_attr_event.attr,
2698         &format_attr_umask.attr,
2699         &format_attr_edge.attr,
2700         &format_attr_pc.attr,
2701         &format_attr_any.attr,
2702         &format_attr_inv.attr,
2703         &format_attr_cmask.attr,
2704         &format_attr_in_tx.attr,
2705         &format_attr_in_tx_cp.attr,
2706
2707         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2708         &format_attr_ldlat.attr, /* PEBS load latency */
2709         NULL,
2710 };
2711
2712 static __initconst const struct x86_pmu intel_pmu = {
2713         .name                   = "Intel",
2714         .handle_irq             = intel_pmu_handle_irq,
2715         .disable_all            = intel_pmu_disable_all,
2716         .enable_all             = intel_pmu_enable_all,
2717         .enable                 = intel_pmu_enable_event,
2718         .disable                = intel_pmu_disable_event,
2719         .hw_config              = intel_pmu_hw_config,
2720         .schedule_events        = x86_schedule_events,
2721         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2722         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2723         .event_map              = intel_pmu_event_map,
2724         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2725         .apic                   = 1,
2726         /*
2727          * Intel PMCs cannot be accessed sanely above 32 bit width,
2728          * so we install an artificial 1<<31 period regardless of
2729          * the generic event period:
2730          */
2731         .max_period             = (1ULL << 31) - 1,
2732         .get_event_constraints  = intel_get_event_constraints,
2733         .put_event_constraints  = intel_put_event_constraints,
2734         .pebs_aliases           = intel_pebs_aliases_core2,
2735
2736         .format_attrs           = intel_arch3_formats_attr,
2737         .events_sysfs_show      = intel_event_sysfs_show,
2738
2739         .cpu_prepare            = intel_pmu_cpu_prepare,
2740         .cpu_starting           = intel_pmu_cpu_starting,
2741         .cpu_dying              = intel_pmu_cpu_dying,
2742         .guest_get_msrs         = intel_guest_get_msrs,
2743         .sched_task             = intel_pmu_lbr_sched_task,
2744 };
2745
2746 static __init void intel_clovertown_quirk(void)
2747 {
2748         /*
2749          * PEBS is unreliable due to:
2750          *
2751          *   AJ67  - PEBS may experience CPL leaks
2752          *   AJ68  - PEBS PMI may be delayed by one event
2753          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2754          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2755          *
2756          * AJ67 could be worked around by restricting the OS/USR flags.
2757          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2758          *
2759          * AJ106 could possibly be worked around by not allowing LBR
2760          *       usage from PEBS, including the fixup.
2761          * AJ68  could possibly be worked around by always programming
2762          *       a pebs_event_reset[0] value and coping with the lost events.
2763          *
2764          * But taken together it might just make sense to not enable PEBS on
2765          * these chips.
2766          */
2767         pr_warn("PEBS disabled due to CPU errata\n");
2768         x86_pmu.pebs = 0;
2769         x86_pmu.pebs_constraints = NULL;
2770 }
2771
2772 static int intel_snb_pebs_broken(int cpu)
2773 {
2774         u32 rev = UINT_MAX; /* default to broken for unknown models */
2775
2776         switch (cpu_data(cpu).x86_model) {
2777         case 42: /* SNB */
2778                 rev = 0x28;
2779                 break;
2780
2781         case 45: /* SNB-EP */
2782                 switch (cpu_data(cpu).x86_mask) {
2783                 case 6: rev = 0x618; break;
2784                 case 7: rev = 0x70c; break;
2785                 }
2786         }
2787
2788         return (cpu_data(cpu).microcode < rev);
2789 }
2790
2791 static void intel_snb_check_microcode(void)
2792 {
2793         int pebs_broken = 0;
2794         int cpu;
2795
2796         get_online_cpus();
2797         for_each_online_cpu(cpu) {
2798                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2799                         break;
2800         }
2801         put_online_cpus();
2802
2803         if (pebs_broken == x86_pmu.pebs_broken)
2804                 return;
2805
2806         /*
2807          * Serialized by the microcode lock..
2808          */
2809         if (x86_pmu.pebs_broken) {
2810                 pr_info("PEBS enabled due to microcode update\n");
2811                 x86_pmu.pebs_broken = 0;
2812         } else {
2813                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2814                 x86_pmu.pebs_broken = 1;
2815         }
2816 }
2817
2818 /*
2819  * Under certain circumstances, access certain MSR may cause #GP.
2820  * The function tests if the input MSR can be safely accessed.
2821  */
2822 static bool check_msr(unsigned long msr, u64 mask)
2823 {
2824         u64 val_old, val_new, val_tmp;
2825
2826         /*
2827          * Read the current value, change it and read it back to see if it
2828          * matches, this is needed to detect certain hardware emulators
2829          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2830          */
2831         if (rdmsrl_safe(msr, &val_old))
2832                 return false;
2833
2834         /*
2835          * Only change the bits which can be updated by wrmsrl.
2836          */
2837         val_tmp = val_old ^ mask;
2838         if (wrmsrl_safe(msr, val_tmp) ||
2839             rdmsrl_safe(msr, &val_new))
2840                 return false;
2841
2842         if (val_new != val_tmp)
2843                 return false;
2844
2845         /* Here it's sure that the MSR can be safely accessed.
2846          * Restore the old value and return.
2847          */
2848         wrmsrl(msr, val_old);
2849
2850         return true;
2851 }
2852
2853 static __init void intel_sandybridge_quirk(void)
2854 {
2855         x86_pmu.check_microcode = intel_snb_check_microcode;
2856         intel_snb_check_microcode();
2857 }
2858
2859 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2860         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2861         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2862         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2863         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2864         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2865         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2866         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2867 };
2868
2869 static __init void intel_arch_events_quirk(void)
2870 {
2871         int bit;
2872
2873         /* disable event that reported as not presend by cpuid */
2874         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2875                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2876                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2877                         intel_arch_events_map[bit].name);
2878         }
2879 }
2880
2881 static __init void intel_nehalem_quirk(void)
2882 {
2883         union cpuid10_ebx ebx;
2884
2885         ebx.full = x86_pmu.events_maskl;
2886         if (ebx.split.no_branch_misses_retired) {
2887                 /*
2888                  * Erratum AAJ80 detected, we work it around by using
2889                  * the BR_MISP_EXEC.ANY event. This will over-count
2890                  * branch-misses, but it's still much better than the
2891                  * architectural event which is often completely bogus:
2892                  */
2893                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2894                 ebx.split.no_branch_misses_retired = 0;
2895                 x86_pmu.events_maskl = ebx.full;
2896                 pr_info("CPU erratum AAJ80 worked around\n");
2897         }
2898 }
2899
2900 /*
2901  * enable software workaround for errata:
2902  * SNB: BJ122
2903  * IVB: BV98
2904  * HSW: HSD29
2905  *
2906  * Only needed when HT is enabled. However detecting
2907  * this is too difficult and model specific so we enable
2908  * it even with HT off for now.
2909  */
2910 static __init void intel_ht_bug(void)
2911 {
2912         x86_pmu.flags |= PMU_FL_EXCL_CNTRS;
2913
2914         x86_pmu.commit_scheduling = intel_commit_scheduling;
2915         x86_pmu.start_scheduling = intel_start_scheduling;
2916         x86_pmu.stop_scheduling = intel_stop_scheduling;
2917
2918         pr_info("CPU erratum BJ122, BV98, HSD29 worked around\n");
2919 }
2920
2921 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2922 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
2923
2924 /* Haswell special events */
2925 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
2926 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
2927 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
2928 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
2929 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
2930 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
2931 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
2932 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
2933 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
2934 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
2935 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
2936 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
2937
2938 static struct attribute *hsw_events_attrs[] = {
2939         EVENT_PTR(tx_start),
2940         EVENT_PTR(tx_commit),
2941         EVENT_PTR(tx_abort),
2942         EVENT_PTR(tx_capacity),
2943         EVENT_PTR(tx_conflict),
2944         EVENT_PTR(el_start),
2945         EVENT_PTR(el_commit),
2946         EVENT_PTR(el_abort),
2947         EVENT_PTR(el_capacity),
2948         EVENT_PTR(el_conflict),
2949         EVENT_PTR(cycles_t),
2950         EVENT_PTR(cycles_ct),
2951         EVENT_PTR(mem_ld_hsw),
2952         EVENT_PTR(mem_st_hsw),
2953         NULL
2954 };
2955
2956 __init int intel_pmu_init(void)
2957 {
2958         union cpuid10_edx edx;
2959         union cpuid10_eax eax;
2960         union cpuid10_ebx ebx;
2961         struct event_constraint *c;
2962         unsigned int unused;
2963         struct extra_reg *er;
2964         int version, i;
2965
2966         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2967                 switch (boot_cpu_data.x86) {
2968                 case 0x6:
2969                         return p6_pmu_init();
2970                 case 0xb:
2971                         return knc_pmu_init();
2972                 case 0xf:
2973                         return p4_pmu_init();
2974                 }
2975                 return -ENODEV;
2976         }
2977
2978         /*
2979          * Check whether the Architectural PerfMon supports
2980          * Branch Misses Retired hw_event or not.
2981          */
2982         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2983         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2984                 return -ENODEV;
2985
2986         version = eax.split.version_id;
2987         if (version < 2)
2988                 x86_pmu = core_pmu;
2989         else
2990                 x86_pmu = intel_pmu;
2991
2992         x86_pmu.version                 = version;
2993         x86_pmu.num_counters            = eax.split.num_counters;
2994         x86_pmu.cntval_bits             = eax.split.bit_width;
2995         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2996
2997         x86_pmu.events_maskl            = ebx.full;
2998         x86_pmu.events_mask_len         = eax.split.mask_length;
2999
3000         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3001
3002         /*
3003          * Quirk: v2 perfmon does not report fixed-purpose events, so
3004          * assume at least 3 events:
3005          */
3006         if (version > 1)
3007                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3008
3009         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3010                 u64 capabilities;
3011
3012                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3013                 x86_pmu.intel_cap.capabilities = capabilities;
3014         }
3015
3016         intel_ds_init();
3017
3018         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3019
3020         /*
3021          * Install the hw-cache-events table:
3022          */
3023         switch (boot_cpu_data.x86_model) {
3024         case 14: /* 65nm Core "Yonah" */
3025                 pr_cont("Core events, ");
3026                 break;
3027
3028         case 15: /* 65nm Core2 "Merom"          */
3029                 x86_add_quirk(intel_clovertown_quirk);
3030         case 22: /* 65nm Core2 "Merom-L"        */
3031         case 23: /* 45nm Core2 "Penryn"         */
3032         case 29: /* 45nm Core2 "Dunnington (MP) */
3033                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3034                        sizeof(hw_cache_event_ids));
3035
3036                 intel_pmu_lbr_init_core();
3037
3038                 x86_pmu.event_constraints = intel_core2_event_constraints;
3039                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3040                 pr_cont("Core2 events, ");
3041                 break;
3042
3043         case 30: /* 45nm Nehalem    */
3044         case 26: /* 45nm Nehalem-EP */
3045         case 46: /* 45nm Nehalem-EX */
3046                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3047                        sizeof(hw_cache_event_ids));
3048                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3049                        sizeof(hw_cache_extra_regs));
3050
3051                 intel_pmu_lbr_init_nhm();
3052
3053                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3054                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3055                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3056                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3057
3058                 x86_pmu.cpu_events = nhm_events_attrs;
3059
3060                 /* UOPS_ISSUED.STALLED_CYCLES */
3061                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3062                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3063                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3064                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3065                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3066
3067                 x86_add_quirk(intel_nehalem_quirk);
3068
3069                 pr_cont("Nehalem events, ");
3070                 break;
3071
3072         case 28: /* 45nm Atom "Pineview"   */
3073         case 38: /* 45nm Atom "Lincroft"   */
3074         case 39: /* 32nm Atom "Penwell"    */
3075         case 53: /* 32nm Atom "Cloverview" */
3076         case 54: /* 32nm Atom "Cedarview"  */
3077                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3078                        sizeof(hw_cache_event_ids));
3079
3080                 intel_pmu_lbr_init_atom();
3081
3082                 x86_pmu.event_constraints = intel_gen_event_constraints;
3083                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3084                 pr_cont("Atom events, ");
3085                 break;
3086
3087         case 55: /* 22nm Atom "Silvermont"                */
3088         case 76: /* 14nm Atom "Airmont"                   */
3089         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3090                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3091                         sizeof(hw_cache_event_ids));
3092                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3093                        sizeof(hw_cache_extra_regs));
3094
3095                 intel_pmu_lbr_init_atom();
3096
3097                 x86_pmu.event_constraints = intel_slm_event_constraints;
3098                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3099                 x86_pmu.extra_regs = intel_slm_extra_regs;
3100                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3101                 pr_cont("Silvermont events, ");
3102                 break;
3103
3104         case 37: /* 32nm Westmere    */
3105         case 44: /* 32nm Westmere-EP */
3106         case 47: /* 32nm Westmere-EX */
3107                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3108                        sizeof(hw_cache_event_ids));
3109                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3110                        sizeof(hw_cache_extra_regs));
3111
3112                 intel_pmu_lbr_init_nhm();
3113
3114                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3115                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3116                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3117                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3118                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3119
3120                 x86_pmu.cpu_events = nhm_events_attrs;
3121
3122                 /* UOPS_ISSUED.STALLED_CYCLES */
3123                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3124                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3125                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3126                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3127                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3128
3129                 pr_cont("Westmere events, ");
3130                 break;
3131
3132         case 42: /* 32nm SandyBridge         */
3133         case 45: /* 32nm SandyBridge-E/EN/EP */
3134                 x86_add_quirk(intel_sandybridge_quirk);
3135                 x86_add_quirk(intel_ht_bug);
3136                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3137                        sizeof(hw_cache_event_ids));
3138                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3139                        sizeof(hw_cache_extra_regs));
3140
3141                 intel_pmu_lbr_init_snb();
3142
3143                 x86_pmu.event_constraints = intel_snb_event_constraints;
3144                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3145                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3146                 if (boot_cpu_data.x86_model == 45)
3147                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3148                 else
3149                         x86_pmu.extra_regs = intel_snb_extra_regs;
3150
3151
3152                 /* all extra regs are per-cpu when HT is on */
3153                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3154                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3155
3156                 x86_pmu.cpu_events = snb_events_attrs;
3157
3158                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3159                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3160                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3161                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3162                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3163                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3164
3165                 pr_cont("SandyBridge events, ");
3166                 break;
3167
3168         case 58: /* 22nm IvyBridge       */
3169         case 62: /* 22nm IvyBridge-EP/EX */
3170                 x86_add_quirk(intel_ht_bug);
3171                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3172                        sizeof(hw_cache_event_ids));
3173                 /* dTLB-load-misses on IVB is different than SNB */
3174                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3175
3176                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3177                        sizeof(hw_cache_extra_regs));
3178
3179                 intel_pmu_lbr_init_snb();
3180
3181                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3182                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3183                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3184                 if (boot_cpu_data.x86_model == 62)
3185                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3186                 else
3187                         x86_pmu.extra_regs = intel_snb_extra_regs;
3188                 /* all extra regs are per-cpu when HT is on */
3189                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3190                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3191
3192                 x86_pmu.cpu_events = snb_events_attrs;
3193
3194                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3195                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3196                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3197
3198                 pr_cont("IvyBridge events, ");
3199                 break;
3200
3201
3202         case 60: /* 22nm Haswell Core */
3203         case 63: /* 22nm Haswell Server */
3204         case 69: /* 22nm Haswell ULT */
3205         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3206                 x86_add_quirk(intel_ht_bug);
3207                 x86_pmu.late_ack = true;
3208                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3209                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3210
3211                 intel_pmu_lbr_init_hsw();
3212
3213                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3214                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3215                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3216                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3217                 /* all extra regs are per-cpu when HT is on */
3218                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3219                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3220
3221                 x86_pmu.hw_config = hsw_hw_config;
3222                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3223                 x86_pmu.cpu_events = hsw_events_attrs;
3224                 x86_pmu.lbr_double_abort = true;
3225                 pr_cont("Haswell events, ");
3226                 break;
3227
3228         case 61: /* 14nm Broadwell Core-M */
3229         case 86: /* 14nm Broadwell Xeon D */
3230                 x86_pmu.late_ack = true;
3231                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3232                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3233
3234                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3235                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3236                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3237                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3238                                                                           HSW_SNOOP_DRAM;
3239                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3240                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3241                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3242                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3243
3244                 intel_pmu_lbr_init_snb();
3245
3246                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3247                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3248                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3249                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3250                 /* all extra regs are per-cpu when HT is on */
3251                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3252                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3253
3254                 x86_pmu.hw_config = hsw_hw_config;
3255                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3256                 x86_pmu.cpu_events = hsw_events_attrs;
3257                 x86_pmu.limit_period = bdw_limit_period;
3258                 pr_cont("Broadwell events, ");
3259                 break;
3260
3261         default:
3262                 switch (x86_pmu.version) {
3263                 case 1:
3264                         x86_pmu.event_constraints = intel_v1_event_constraints;
3265                         pr_cont("generic architected perfmon v1, ");
3266                         break;
3267                 default:
3268                         /*
3269                          * default constraints for v2 and up
3270                          */
3271                         x86_pmu.event_constraints = intel_gen_event_constraints;
3272                         pr_cont("generic architected perfmon, ");
3273                         break;
3274                 }
3275         }
3276
3277         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3278                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3279                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3280                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3281         }
3282         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3283
3284         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3285                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3286                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3287                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3288         }
3289
3290         x86_pmu.intel_ctrl |=
3291                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3292
3293         if (x86_pmu.event_constraints) {
3294                 /*
3295                  * event on fixed counter2 (REF_CYCLES) only works on this
3296                  * counter, so do not extend mask to generic counters
3297                  */
3298                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3299                         if (c->cmask != FIXED_EVENT_FLAGS
3300                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3301                                 continue;
3302                         }
3303
3304                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3305                         c->weight += x86_pmu.num_counters;
3306                 }
3307         }
3308
3309         /*
3310          * Access LBR MSR may cause #GP under certain circumstances.
3311          * E.g. KVM doesn't support LBR MSR
3312          * Check all LBT MSR here.
3313          * Disable LBR access if any LBR MSRs can not be accessed.
3314          */
3315         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3316                 x86_pmu.lbr_nr = 0;
3317         for (i = 0; i < x86_pmu.lbr_nr; i++) {
3318                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3319                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3320                         x86_pmu.lbr_nr = 0;
3321         }
3322
3323         /*
3324          * Access extra MSR may cause #GP under certain circumstances.
3325          * E.g. KVM doesn't support offcore event
3326          * Check all extra_regs here.
3327          */
3328         if (x86_pmu.extra_regs) {
3329                 for (er = x86_pmu.extra_regs; er->msr; er++) {
3330                         er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3331                         /* Disable LBR select mapping */
3332                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3333                                 x86_pmu.lbr_sel_map = NULL;
3334                 }
3335         }
3336
3337         /* Support full width counters using alternative MSR range */
3338         if (x86_pmu.intel_cap.full_width_write) {
3339                 x86_pmu.max_period = x86_pmu.cntval_mask;
3340                 x86_pmu.perfctr = MSR_IA32_PMC0;
3341                 pr_cont("full-width counters, ");
3342         }
3343
3344         return 0;
3345 }