]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kernel/fpu/xstate.c
x86/fpu: Fix "x86/fpu: Legacy x87 FPU detected" message
[karo-tx-linux.git] / arch / x86 / kernel / fpu / xstate.c
1 /*
2  * xsave/xrstor support.
3  *
4  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5  */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 #include <linux/mman.h>
9 #include <linux/pkeys.h>
10
11 #include <asm/fpu/api.h>
12 #include <asm/fpu/internal.h>
13 #include <asm/fpu/signal.h>
14 #include <asm/fpu/regset.h>
15 #include <asm/fpu/xstate.h>
16
17 #include <asm/tlbflush.h>
18
19 /*
20  * Although we spell it out in here, the Processor Trace
21  * xfeature is completely unused.  We use other mechanisms
22  * to save/restore PT state in Linux.
23  */
24 static const char *xfeature_names[] =
25 {
26         "x87 floating point registers"  ,
27         "SSE registers"                 ,
28         "AVX registers"                 ,
29         "MPX bounds registers"          ,
30         "MPX CSR"                       ,
31         "AVX-512 opmask"                ,
32         "AVX-512 Hi256"                 ,
33         "AVX-512 ZMM_Hi256"             ,
34         "Processor Trace (unused)"      ,
35         "Protection Keys User registers",
36         "unknown xstate feature"        ,
37 };
38
39 /*
40  * Mask of xstate features supported by the CPU and the kernel:
41  */
42 u64 xfeatures_mask __read_mostly;
43
44 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
45 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
46 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
47
48 /*
49  * The XSAVE area of kernel can be in standard or compacted format;
50  * it is always in standard format for user mode. This is the user
51  * mode standard format size used for signal and ptrace frames.
52  */
53 unsigned int fpu_user_xstate_size;
54
55 /*
56  * Clear all of the X86_FEATURE_* bits that are unavailable
57  * when the CPU has no XSAVE support.
58  */
59 void fpu__xstate_clear_all_cpu_caps(void)
60 {
61         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
62         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
63         setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
64         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
65         setup_clear_cpu_cap(X86_FEATURE_AVX);
66         setup_clear_cpu_cap(X86_FEATURE_AVX2);
67         setup_clear_cpu_cap(X86_FEATURE_AVX512F);
68         setup_clear_cpu_cap(X86_FEATURE_AVX512IFMA);
69         setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
70         setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
71         setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
72         setup_clear_cpu_cap(X86_FEATURE_AVX512DQ);
73         setup_clear_cpu_cap(X86_FEATURE_AVX512BW);
74         setup_clear_cpu_cap(X86_FEATURE_AVX512VL);
75         setup_clear_cpu_cap(X86_FEATURE_MPX);
76         setup_clear_cpu_cap(X86_FEATURE_XGETBV1);
77         setup_clear_cpu_cap(X86_FEATURE_AVX512VBMI);
78         setup_clear_cpu_cap(X86_FEATURE_PKU);
79         setup_clear_cpu_cap(X86_FEATURE_AVX512_4VNNIW);
80         setup_clear_cpu_cap(X86_FEATURE_AVX512_4FMAPS);
81 }
82
83 /*
84  * Return whether the system supports a given xfeature.
85  *
86  * Also return the name of the (most advanced) feature that the caller requested:
87  */
88 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
89 {
90         u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
91
92         if (unlikely(feature_name)) {
93                 long xfeature_idx, max_idx;
94                 u64 xfeatures_print;
95                 /*
96                  * So we use FLS here to be able to print the most advanced
97                  * feature that was requested but is missing. So if a driver
98                  * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
99                  * missing AVX feature - this is the most informative message
100                  * to users:
101                  */
102                 if (xfeatures_missing)
103                         xfeatures_print = xfeatures_missing;
104                 else
105                         xfeatures_print = xfeatures_needed;
106
107                 xfeature_idx = fls64(xfeatures_print)-1;
108                 max_idx = ARRAY_SIZE(xfeature_names)-1;
109                 xfeature_idx = min(xfeature_idx, max_idx);
110
111                 *feature_name = xfeature_names[xfeature_idx];
112         }
113
114         if (xfeatures_missing)
115                 return 0;
116
117         return 1;
118 }
119 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
120
121 static int xfeature_is_supervisor(int xfeature_nr)
122 {
123         /*
124          * We currently do not support supervisor states, but if
125          * we did, we could find out like this.
126          *
127          * SDM says: If state component 'i' is a user state component,
128          * ECX[0] return 0; if state component i is a supervisor
129          * state component, ECX[0] returns 1.
130          */
131         u32 eax, ebx, ecx, edx;
132
133         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
134         return !!(ecx & 1);
135 }
136
137 static int xfeature_is_user(int xfeature_nr)
138 {
139         return !xfeature_is_supervisor(xfeature_nr);
140 }
141
142 /*
143  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
144  * a processor implementation detects that an FPU state component is still
145  * (or is again) in its initialized state, it may clear the corresponding
146  * bit in the header.xfeatures field, and can skip the writeout of registers
147  * to the corresponding memory layout.
148  *
149  * This means that when the bit is zero, the state component might still contain
150  * some previous - non-initialized register state.
151  *
152  * Before writing xstate information to user-space we sanitize those components,
153  * to always ensure that the memory layout of a feature will be in the init state
154  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
155  * see some stale state in the memory layout during signal handling, debugging etc.
156  */
157 void fpstate_sanitize_xstate(struct fpu *fpu)
158 {
159         struct fxregs_state *fx = &fpu->state.fxsave;
160         int feature_bit;
161         u64 xfeatures;
162
163         if (!use_xsaveopt())
164                 return;
165
166         xfeatures = fpu->state.xsave.header.xfeatures;
167
168         /*
169          * None of the feature bits are in init state. So nothing else
170          * to do for us, as the memory layout is up to date.
171          */
172         if ((xfeatures & xfeatures_mask) == xfeatures_mask)
173                 return;
174
175         /*
176          * FP is in init state
177          */
178         if (!(xfeatures & XFEATURE_MASK_FP)) {
179                 fx->cwd = 0x37f;
180                 fx->swd = 0;
181                 fx->twd = 0;
182                 fx->fop = 0;
183                 fx->rip = 0;
184                 fx->rdp = 0;
185                 memset(&fx->st_space[0], 0, 128);
186         }
187
188         /*
189          * SSE is in init state
190          */
191         if (!(xfeatures & XFEATURE_MASK_SSE))
192                 memset(&fx->xmm_space[0], 0, 256);
193
194         /*
195          * First two features are FPU and SSE, which above we handled
196          * in a special way already:
197          */
198         feature_bit = 0x2;
199         xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
200
201         /*
202          * Update all the remaining memory layouts according to their
203          * standard xstate layout, if their header bit is in the init
204          * state:
205          */
206         while (xfeatures) {
207                 if (xfeatures & 0x1) {
208                         int offset = xstate_comp_offsets[feature_bit];
209                         int size = xstate_sizes[feature_bit];
210
211                         memcpy((void *)fx + offset,
212                                (void *)&init_fpstate.xsave + offset,
213                                size);
214                 }
215
216                 xfeatures >>= 1;
217                 feature_bit++;
218         }
219 }
220
221 /*
222  * Enable the extended processor state save/restore feature.
223  * Called once per CPU onlining.
224  */
225 void fpu__init_cpu_xstate(void)
226 {
227         if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask)
228                 return;
229         /*
230          * Make it clear that XSAVES supervisor states are not yet
231          * implemented should anyone expect it to work by changing
232          * bits in XFEATURE_MASK_* macros and XCR0.
233          */
234         WARN_ONCE((xfeatures_mask & XFEATURE_MASK_SUPERVISOR),
235                 "x86/fpu: XSAVES supervisor states are not yet implemented.\n");
236
237         xfeatures_mask &= ~XFEATURE_MASK_SUPERVISOR;
238
239         cr4_set_bits(X86_CR4_OSXSAVE);
240         xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
241 }
242
243 /*
244  * Note that in the future we will likely need a pair of
245  * functions here: one for user xstates and the other for
246  * system xstates.  For now, they are the same.
247  */
248 static int xfeature_enabled(enum xfeature xfeature)
249 {
250         return !!(xfeatures_mask & (1UL << xfeature));
251 }
252
253 /*
254  * Record the offsets and sizes of various xstates contained
255  * in the XSAVE state memory layout.
256  */
257 static void __init setup_xstate_features(void)
258 {
259         u32 eax, ebx, ecx, edx, i;
260         /* start at the beginnning of the "extended state" */
261         unsigned int last_good_offset = offsetof(struct xregs_state,
262                                                  extended_state_area);
263         /*
264          * The FP xstates and SSE xstates are legacy states. They are always
265          * in the fixed offsets in the xsave area in either compacted form
266          * or standard form.
267          */
268         xstate_offsets[0] = 0;
269         xstate_sizes[0] = offsetof(struct fxregs_state, xmm_space);
270         xstate_offsets[1] = xstate_sizes[0];
271         xstate_sizes[1] = FIELD_SIZEOF(struct fxregs_state, xmm_space);
272
273         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
274                 if (!xfeature_enabled(i))
275                         continue;
276
277                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
278
279                 /*
280                  * If an xfeature is supervisor state, the offset
281                  * in EBX is invalid. We leave it to -1.
282                  */
283                 if (xfeature_is_user(i))
284                         xstate_offsets[i] = ebx;
285
286                 xstate_sizes[i] = eax;
287                 /*
288                  * In our xstate size checks, we assume that the
289                  * highest-numbered xstate feature has the
290                  * highest offset in the buffer.  Ensure it does.
291                  */
292                 WARN_ONCE(last_good_offset > xstate_offsets[i],
293                         "x86/fpu: misordered xstate at %d\n", last_good_offset);
294                 last_good_offset = xstate_offsets[i];
295         }
296 }
297
298 static void __init print_xstate_feature(u64 xstate_mask)
299 {
300         const char *feature_name;
301
302         if (cpu_has_xfeatures(xstate_mask, &feature_name))
303                 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
304 }
305
306 /*
307  * Print out all the supported xstate features:
308  */
309 static void __init print_xstate_features(void)
310 {
311         print_xstate_feature(XFEATURE_MASK_FP);
312         print_xstate_feature(XFEATURE_MASK_SSE);
313         print_xstate_feature(XFEATURE_MASK_YMM);
314         print_xstate_feature(XFEATURE_MASK_BNDREGS);
315         print_xstate_feature(XFEATURE_MASK_BNDCSR);
316         print_xstate_feature(XFEATURE_MASK_OPMASK);
317         print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
318         print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
319         print_xstate_feature(XFEATURE_MASK_PKRU);
320 }
321
322 /*
323  * This check is important because it is easy to get XSTATE_*
324  * confused with XSTATE_BIT_*.
325  */
326 #define CHECK_XFEATURE(nr) do {         \
327         WARN_ON(nr < FIRST_EXTENDED_XFEATURE);  \
328         WARN_ON(nr >= XFEATURE_MAX);    \
329 } while (0)
330
331 /*
332  * We could cache this like xstate_size[], but we only use
333  * it here, so it would be a waste of space.
334  */
335 static int xfeature_is_aligned(int xfeature_nr)
336 {
337         u32 eax, ebx, ecx, edx;
338
339         CHECK_XFEATURE(xfeature_nr);
340         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
341         /*
342          * The value returned by ECX[1] indicates the alignment
343          * of state component 'i' when the compacted format
344          * of the extended region of an XSAVE area is used:
345          */
346         return !!(ecx & 2);
347 }
348
349 /*
350  * This function sets up offsets and sizes of all extended states in
351  * xsave area. This supports both standard format and compacted format
352  * of the xsave aread.
353  */
354 static void __init setup_xstate_comp(void)
355 {
356         unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
357         int i;
358
359         /*
360          * The FP xstates and SSE xstates are legacy states. They are always
361          * in the fixed offsets in the xsave area in either compacted form
362          * or standard form.
363          */
364         xstate_comp_offsets[0] = 0;
365         xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
366
367         if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
368                 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
369                         if (xfeature_enabled(i)) {
370                                 xstate_comp_offsets[i] = xstate_offsets[i];
371                                 xstate_comp_sizes[i] = xstate_sizes[i];
372                         }
373                 }
374                 return;
375         }
376
377         xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
378                 FXSAVE_SIZE + XSAVE_HDR_SIZE;
379
380         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
381                 if (xfeature_enabled(i))
382                         xstate_comp_sizes[i] = xstate_sizes[i];
383                 else
384                         xstate_comp_sizes[i] = 0;
385
386                 if (i > FIRST_EXTENDED_XFEATURE) {
387                         xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
388                                         + xstate_comp_sizes[i-1];
389
390                         if (xfeature_is_aligned(i))
391                                 xstate_comp_offsets[i] =
392                                         ALIGN(xstate_comp_offsets[i], 64);
393                 }
394         }
395 }
396
397 /*
398  * Print out xstate component offsets and sizes
399  */
400 static void __init print_xstate_offset_size(void)
401 {
402         int i;
403
404         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
405                 if (!xfeature_enabled(i))
406                         continue;
407                 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
408                          i, xstate_comp_offsets[i], i, xstate_sizes[i]);
409         }
410 }
411
412 /*
413  * setup the xstate image representing the init state
414  */
415 static void __init setup_init_fpu_buf(void)
416 {
417         static int on_boot_cpu __initdata = 1;
418
419         WARN_ON_FPU(!on_boot_cpu);
420         on_boot_cpu = 0;
421
422         if (!boot_cpu_has(X86_FEATURE_XSAVE))
423                 return;
424
425         setup_xstate_features();
426         print_xstate_features();
427
428         if (boot_cpu_has(X86_FEATURE_XSAVES))
429                 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
430
431         /*
432          * Init all the features state with header.xfeatures being 0x0
433          */
434         copy_kernel_to_xregs_booting(&init_fpstate.xsave);
435
436         /*
437          * Dump the init state again. This is to identify the init state
438          * of any feature which is not represented by all zero's.
439          */
440         copy_xregs_to_kernel_booting(&init_fpstate.xsave);
441 }
442
443 static int xfeature_uncompacted_offset(int xfeature_nr)
444 {
445         u32 eax, ebx, ecx, edx;
446
447         /*
448          * Only XSAVES supports supervisor states and it uses compacted
449          * format. Checking a supervisor state's uncompacted offset is
450          * an error.
451          */
452         if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) {
453                 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
454                 return -1;
455         }
456
457         CHECK_XFEATURE(xfeature_nr);
458         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
459         return ebx;
460 }
461
462 static int xfeature_size(int xfeature_nr)
463 {
464         u32 eax, ebx, ecx, edx;
465
466         CHECK_XFEATURE(xfeature_nr);
467         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
468         return eax;
469 }
470
471 /*
472  * 'XSAVES' implies two different things:
473  * 1. saving of supervisor/system state
474  * 2. using the compacted format
475  *
476  * Use this function when dealing with the compacted format so
477  * that it is obvious which aspect of 'XSAVES' is being handled
478  * by the calling code.
479  */
480 int using_compacted_format(void)
481 {
482         return boot_cpu_has(X86_FEATURE_XSAVES);
483 }
484
485 static void __xstate_dump_leaves(void)
486 {
487         int i;
488         u32 eax, ebx, ecx, edx;
489         static int should_dump = 1;
490
491         if (!should_dump)
492                 return;
493         should_dump = 0;
494         /*
495          * Dump out a few leaves past the ones that we support
496          * just in case there are some goodies up there
497          */
498         for (i = 0; i < XFEATURE_MAX + 10; i++) {
499                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
500                 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
501                         XSTATE_CPUID, i, eax, ebx, ecx, edx);
502         }
503 }
504
505 #define XSTATE_WARN_ON(x) do {                                                  \
506         if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {        \
507                 __xstate_dump_leaves();                                         \
508         }                                                                       \
509 } while (0)
510
511 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {                      \
512         if ((nr == nr_macro) &&                                         \
513             WARN_ONCE(sz != sizeof(__struct),                           \
514                 "%s: struct is %zu bytes, cpu state %d bytes\n",        \
515                 __stringify(nr_macro), sizeof(__struct), sz)) {         \
516                 __xstate_dump_leaves();                                 \
517         }                                                               \
518 } while (0)
519
520 /*
521  * We have a C struct for each 'xstate'.  We need to ensure
522  * that our software representation matches what the CPU
523  * tells us about the state's size.
524  */
525 static void check_xstate_against_struct(int nr)
526 {
527         /*
528          * Ask the CPU for the size of the state.
529          */
530         int sz = xfeature_size(nr);
531         /*
532          * Match each CPU state with the corresponding software
533          * structure.
534          */
535         XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
536         XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
537         XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
538         XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
539         XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
540         XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
541         XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
542
543         /*
544          * Make *SURE* to add any feature numbers in below if
545          * there are "holes" in the xsave state component
546          * numbers.
547          */
548         if ((nr < XFEATURE_YMM) ||
549             (nr >= XFEATURE_MAX) ||
550             (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
551                 WARN_ONCE(1, "no structure for xstate: %d\n", nr);
552                 XSTATE_WARN_ON(1);
553         }
554 }
555
556 /*
557  * This essentially double-checks what the cpu told us about
558  * how large the XSAVE buffer needs to be.  We are recalculating
559  * it to be safe.
560  */
561 static void do_extra_xstate_size_checks(void)
562 {
563         int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
564         int i;
565
566         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
567                 if (!xfeature_enabled(i))
568                         continue;
569
570                 check_xstate_against_struct(i);
571                 /*
572                  * Supervisor state components can be managed only by
573                  * XSAVES, which is compacted-format only.
574                  */
575                 if (!using_compacted_format())
576                         XSTATE_WARN_ON(xfeature_is_supervisor(i));
577
578                 /* Align from the end of the previous feature */
579                 if (xfeature_is_aligned(i))
580                         paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
581                 /*
582                  * The offset of a given state in the non-compacted
583                  * format is given to us in a CPUID leaf.  We check
584                  * them for being ordered (increasing offsets) in
585                  * setup_xstate_features().
586                  */
587                 if (!using_compacted_format())
588                         paranoid_xstate_size = xfeature_uncompacted_offset(i);
589                 /*
590                  * The compacted-format offset always depends on where
591                  * the previous state ended.
592                  */
593                 paranoid_xstate_size += xfeature_size(i);
594         }
595         XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
596 }
597
598
599 /*
600  * Get total size of enabled xstates in XCR0/xfeatures_mask.
601  *
602  * Note the SDM's wording here.  "sub-function 0" only enumerates
603  * the size of the *user* states.  If we use it to size a buffer
604  * that we use 'XSAVES' on, we could potentially overflow the
605  * buffer because 'XSAVES' saves system states too.
606  *
607  * Note that we do not currently set any bits on IA32_XSS so
608  * 'XCR0 | IA32_XSS == XCR0' for now.
609  */
610 static unsigned int __init get_xsaves_size(void)
611 {
612         unsigned int eax, ebx, ecx, edx;
613         /*
614          * - CPUID function 0DH, sub-function 1:
615          *    EBX enumerates the size (in bytes) required by
616          *    the XSAVES instruction for an XSAVE area
617          *    containing all the state components
618          *    corresponding to bits currently set in
619          *    XCR0 | IA32_XSS.
620          */
621         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
622         return ebx;
623 }
624
625 static unsigned int __init get_xsave_size(void)
626 {
627         unsigned int eax, ebx, ecx, edx;
628         /*
629          * - CPUID function 0DH, sub-function 0:
630          *    EBX enumerates the size (in bytes) required by
631          *    the XSAVE instruction for an XSAVE area
632          *    containing all the *user* state components
633          *    corresponding to bits currently set in XCR0.
634          */
635         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
636         return ebx;
637 }
638
639 /*
640  * Will the runtime-enumerated 'xstate_size' fit in the init
641  * task's statically-allocated buffer?
642  */
643 static bool is_supported_xstate_size(unsigned int test_xstate_size)
644 {
645         if (test_xstate_size <= sizeof(union fpregs_state))
646                 return true;
647
648         pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
649                         sizeof(union fpregs_state), test_xstate_size);
650         return false;
651 }
652
653 static int init_xstate_size(void)
654 {
655         /* Recompute the context size for enabled features: */
656         unsigned int possible_xstate_size;
657         unsigned int xsave_size;
658
659         xsave_size = get_xsave_size();
660
661         if (boot_cpu_has(X86_FEATURE_XSAVES))
662                 possible_xstate_size = get_xsaves_size();
663         else
664                 possible_xstate_size = xsave_size;
665
666         /* Ensure we have the space to store all enabled: */
667         if (!is_supported_xstate_size(possible_xstate_size))
668                 return -EINVAL;
669
670         /*
671          * The size is OK, we are definitely going to use xsave,
672          * make it known to the world that we need more space.
673          */
674         fpu_kernel_xstate_size = possible_xstate_size;
675         do_extra_xstate_size_checks();
676
677         /*
678          * User space is always in standard format.
679          */
680         fpu_user_xstate_size = xsave_size;
681         return 0;
682 }
683
684 /*
685  * We enabled the XSAVE hardware, but something went wrong and
686  * we can not use it.  Disable it.
687  */
688 static void fpu__init_disable_system_xstate(void)
689 {
690         xfeatures_mask = 0;
691         cr4_clear_bits(X86_CR4_OSXSAVE);
692         fpu__xstate_clear_all_cpu_caps();
693 }
694
695 /*
696  * Enable and initialize the xsave feature.
697  * Called once per system bootup.
698  */
699 void __init fpu__init_system_xstate(void)
700 {
701         unsigned int eax, ebx, ecx, edx;
702         static int on_boot_cpu __initdata = 1;
703         int err;
704
705         WARN_ON_FPU(!on_boot_cpu);
706         on_boot_cpu = 0;
707
708         if (!boot_cpu_has(X86_FEATURE_FPU)) {
709                 pr_info("x86/fpu: No FPU detected\n");
710                 return;
711         }
712
713         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
714                 pr_info("x86/fpu: x87 FPU will use %s\n",
715                         boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
716                 return;
717         }
718
719         if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
720                 WARN_ON_FPU(1);
721                 return;
722         }
723
724         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
725         xfeatures_mask = eax + ((u64)edx << 32);
726
727         if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
728                 /*
729                  * This indicates that something really unexpected happened
730                  * with the enumeration.  Disable XSAVE and try to continue
731                  * booting without it.  This is too early to BUG().
732                  */
733                 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
734                 goto out_disable;
735         }
736
737         xfeatures_mask &= fpu__get_supported_xfeatures_mask();
738
739         /* Enable xstate instructions to be able to continue with initialization: */
740         fpu__init_cpu_xstate();
741         err = init_xstate_size();
742         if (err)
743                 goto out_disable;
744
745         /*
746          * Update info used for ptrace frames; use standard-format size and no
747          * supervisor xstates:
748          */
749         update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR);
750
751         fpu__init_prepare_fx_sw_frame();
752         setup_init_fpu_buf();
753         setup_xstate_comp();
754         print_xstate_offset_size();
755
756         pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
757                 xfeatures_mask,
758                 fpu_kernel_xstate_size,
759                 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
760         return;
761
762 out_disable:
763         /* something went wrong, try to boot without any XSAVE support */
764         fpu__init_disable_system_xstate();
765 }
766
767 /*
768  * Restore minimal FPU state after suspend:
769  */
770 void fpu__resume_cpu(void)
771 {
772         /*
773          * Restore XCR0 on xsave capable CPUs:
774          */
775         if (boot_cpu_has(X86_FEATURE_XSAVE))
776                 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
777 }
778
779 /*
780  * Given an xstate feature mask, calculate where in the xsave
781  * buffer the state is.  Callers should ensure that the buffer
782  * is valid.
783  *
784  * Note: does not work for compacted buffers.
785  */
786 void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
787 {
788         int feature_nr = fls64(xstate_feature_mask) - 1;
789
790         if (!xfeature_enabled(feature_nr)) {
791                 WARN_ON_FPU(1);
792                 return NULL;
793         }
794
795         return (void *)xsave + xstate_comp_offsets[feature_nr];
796 }
797 /*
798  * Given the xsave area and a state inside, this function returns the
799  * address of the state.
800  *
801  * This is the API that is called to get xstate address in either
802  * standard format or compacted format of xsave area.
803  *
804  * Note that if there is no data for the field in the xsave buffer
805  * this will return NULL.
806  *
807  * Inputs:
808  *      xstate: the thread's storage area for all FPU data
809  *      xstate_feature: state which is defined in xsave.h (e.g.
810  *      XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
811  * Output:
812  *      address of the state in the xsave area, or NULL if the
813  *      field is not present in the xsave buffer.
814  */
815 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
816 {
817         /*
818          * Do we even *have* xsave state?
819          */
820         if (!boot_cpu_has(X86_FEATURE_XSAVE))
821                 return NULL;
822
823         /*
824          * We should not ever be requesting features that we
825          * have not enabled.  Remember that pcntxt_mask is
826          * what we write to the XCR0 register.
827          */
828         WARN_ONCE(!(xfeatures_mask & xstate_feature),
829                   "get of unsupported state");
830         /*
831          * This assumes the last 'xsave*' instruction to
832          * have requested that 'xstate_feature' be saved.
833          * If it did not, we might be seeing and old value
834          * of the field in the buffer.
835          *
836          * This can happen because the last 'xsave' did not
837          * request that this feature be saved (unlikely)
838          * or because the "init optimization" caused it
839          * to not be saved.
840          */
841         if (!(xsave->header.xfeatures & xstate_feature))
842                 return NULL;
843
844         return __raw_xsave_addr(xsave, xstate_feature);
845 }
846 EXPORT_SYMBOL_GPL(get_xsave_addr);
847
848 /*
849  * This wraps up the common operations that need to occur when retrieving
850  * data from xsave state.  It first ensures that the current task was
851  * using the FPU and retrieves the data in to a buffer.  It then calculates
852  * the offset of the requested field in the buffer.
853  *
854  * This function is safe to call whether the FPU is in use or not.
855  *
856  * Note that this only works on the current task.
857  *
858  * Inputs:
859  *      @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
860  *      XFEATURE_MASK_SSE, etc...)
861  * Output:
862  *      address of the state in the xsave area or NULL if the state
863  *      is not present or is in its 'init state'.
864  */
865 const void *get_xsave_field_ptr(int xsave_state)
866 {
867         struct fpu *fpu = &current->thread.fpu;
868
869         if (!fpu->fpstate_active)
870                 return NULL;
871         /*
872          * fpu__save() takes the CPU's xstate registers
873          * and saves them off to the 'fpu memory buffer.
874          */
875         fpu__save(fpu);
876
877         return get_xsave_addr(&fpu->state.xsave, xsave_state);
878 }
879
880 #ifdef CONFIG_ARCH_HAS_PKEYS
881
882 #define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2)
883 #define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1)
884 /*
885  * This will go out and modify PKRU register to set the access
886  * rights for @pkey to @init_val.
887  */
888 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
889                 unsigned long init_val)
890 {
891         u32 old_pkru;
892         int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
893         u32 new_pkru_bits = 0;
894
895         /*
896          * This check implies XSAVE support.  OSPKE only gets
897          * set if we enable XSAVE and we enable PKU in XCR0.
898          */
899         if (!boot_cpu_has(X86_FEATURE_OSPKE))
900                 return -EINVAL;
901
902         /* Set the bits we need in PKRU:  */
903         if (init_val & PKEY_DISABLE_ACCESS)
904                 new_pkru_bits |= PKRU_AD_BIT;
905         if (init_val & PKEY_DISABLE_WRITE)
906                 new_pkru_bits |= PKRU_WD_BIT;
907
908         /* Shift the bits in to the correct place in PKRU for pkey: */
909         new_pkru_bits <<= pkey_shift;
910
911         /* Get old PKRU and mask off any old bits in place: */
912         old_pkru = read_pkru();
913         old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
914
915         /* Write old part along with new part: */
916         write_pkru(old_pkru | new_pkru_bits);
917
918         return 0;
919 }
920 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
921
922 /*
923  * This is similar to user_regset_copyout(), but will not add offset to
924  * the source data pointer or increment pos, count, kbuf, and ubuf.
925  */
926 static inline int xstate_copyout(unsigned int pos, unsigned int count,
927                                  void *kbuf, void __user *ubuf,
928                                  const void *data, const int start_pos,
929                                  const int end_pos)
930 {
931         if ((count == 0) || (pos < start_pos))
932                 return 0;
933
934         if (end_pos < 0 || pos < end_pos) {
935                 unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos));
936
937                 if (kbuf) {
938                         memcpy(kbuf + pos, data, copy);
939                 } else {
940                         if (__copy_to_user(ubuf + pos, data, copy))
941                                 return -EFAULT;
942                 }
943         }
944         return 0;
945 }
946
947 /*
948  * Convert from kernel XSAVES compacted format to standard format and copy
949  * to a ptrace buffer. It supports partial copy but pos always starts from
950  * zero. This is called from xstateregs_get() and there we check the CPU
951  * has XSAVES.
952  */
953 int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
954                         void __user *ubuf, struct xregs_state *xsave)
955 {
956         unsigned int offset, size;
957         int ret, i;
958         struct xstate_header header;
959
960         /*
961          * Currently copy_regset_to_user() starts from pos 0:
962          */
963         if (unlikely(pos != 0))
964                 return -EFAULT;
965
966         /*
967          * The destination is a ptrace buffer; we put in only user xstates:
968          */
969         memset(&header, 0, sizeof(header));
970         header.xfeatures = xsave->header.xfeatures;
971         header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR;
972
973         /*
974          * Copy xregs_state->header:
975          */
976         offset = offsetof(struct xregs_state, header);
977         size = sizeof(header);
978
979         ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count);
980
981         if (ret)
982                 return ret;
983
984         for (i = 0; i < XFEATURE_MAX; i++) {
985                 /*
986                  * Copy only in-use xstates:
987                  */
988                 if ((header.xfeatures >> i) & 1) {
989                         void *src = __raw_xsave_addr(xsave, 1 << i);
990
991                         offset = xstate_offsets[i];
992                         size = xstate_sizes[i];
993
994                         ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count);
995
996                         if (ret)
997                                 return ret;
998
999                         if (offset + size >= count)
1000                                 break;
1001                 }
1002
1003         }
1004
1005         /*
1006          * Fill xsave->i387.sw_reserved value for ptrace frame:
1007          */
1008         offset = offsetof(struct fxregs_state, sw_reserved);
1009         size = sizeof(xstate_fx_sw_bytes);
1010
1011         ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count);
1012
1013         if (ret)
1014                 return ret;
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * Convert from a ptrace standard-format buffer to kernel XSAVES format
1021  * and copy to the target thread. This is called from xstateregs_set() and
1022  * there we check the CPU has XSAVES and a whole standard-sized buffer
1023  * exists.
1024  */
1025 int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
1026                      struct xregs_state *xsave)
1027 {
1028         unsigned int offset, size;
1029         int i;
1030         u64 xfeatures;
1031         u64 allowed_features;
1032
1033         offset = offsetof(struct xregs_state, header);
1034         size = sizeof(xfeatures);
1035
1036         if (kbuf) {
1037                 memcpy(&xfeatures, kbuf + offset, size);
1038         } else {
1039                 if (__copy_from_user(&xfeatures, ubuf + offset, size))
1040                         return -EFAULT;
1041         }
1042
1043         /*
1044          * Reject if the user sets any disabled or supervisor features:
1045          */
1046         allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR;
1047
1048         if (xfeatures & ~allowed_features)
1049                 return -EINVAL;
1050
1051         for (i = 0; i < XFEATURE_MAX; i++) {
1052                 u64 mask = ((u64)1 << i);
1053
1054                 if (xfeatures & mask) {
1055                         void *dst = __raw_xsave_addr(xsave, 1 << i);
1056
1057                         offset = xstate_offsets[i];
1058                         size = xstate_sizes[i];
1059
1060                         if (kbuf) {
1061                                 memcpy(dst, kbuf + offset, size);
1062                         } else {
1063                                 if (__copy_from_user(dst, ubuf + offset, size))
1064                                         return -EFAULT;
1065                         }
1066                 }
1067         }
1068
1069         /*
1070          * The state that came in from userspace was user-state only.
1071          * Mask all the user states out of 'xfeatures':
1072          */
1073         xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR;
1074
1075         /*
1076          * Add back in the features that came in from userspace:
1077          */
1078         xsave->header.xfeatures |= xfeatures;
1079
1080         return 0;
1081 }